
1

Remote	A(esta+on	of	low-end	
Embedded,	IoT	and	“Smart”	devices		

		

GENE	TSUDIK	
Computer	Science	Department	

UCI	
	

gene.tsudik@uci.edu	
LAB:	h(p://sprout.ics.uci.edu	

	
	

Joint	work	with	colleagues	from:	
UCI,	HRL,	Eurecom,	TU	Darmstadt,	Aalto	U,	Intel	Labs	

1

Outline

•  Introduction/Motivation

•  Remote Attestation (simple setting)

•  Attacks on Prover

•  Attesting Many Provers

•  Coping with Physical Attacks

•  The End

2

2

§  Privacy in Social Networks
§  Stylometric Linkability and Attribution
§  Off-Line Private Social Interactions

§  Genomic Privacy and Security
§  Security of Embedded Devices & Systems
§  Private Database Querying
§  Usable Security
§  Biometrics
§  S&P in Future Internet Architectures

For more info see: sprout.ics.uci.edu

What’s an embedded device?

•  Buzzwords: Embedded Systems/Devices, IoT, CPS, etc.

•  Anything that’s not a general-purpose computer

4

3

5	

RFIDs	

Sensors	and	
Actuators 		SmartCards	

Connected	devices	

Industrial	
systems 		

Widening Range of
Specialized Embedded Devices

Office/Home	Appliances	

Smart-wear	

Peripherals	
	

Medical	devices	

Toys	

Switches,	routers,	
access	points	

•  Smart watches, e.g., Samsung, Apple

•  Smart eye-wear, e.g., Google Glass

•  Smart toys

•  Smart pills

•  Smart footwear

•  Smart clothes

ALL OF THEM HAVE BEEN OR SOON WILL BE HACKED

Already here or coming soon…

6

4

§  Default PINs or passwords

§  Wide-open communication

§  Buggy software

§  No (or inadequate) hardware protection

§  Limited “real estate”, limited budgets

§  HW/FW/SW trojans (aka malware)

§  Attacks aim to:

§  Snoop, exfiltrate

§  Cause physical damage

Why?

7

Notable	AKacks	

■  Stuxnet [1] (also DUQU)

•  Infected controlling windows machines
•  Changed parameters of the PLC (programmable logic

controller) used in centrifuges of Iranian nuclear reactors

■  Attacks against automotive controllers [2]
•  Internal controller-area network (CAN)
•  Exploitation of one subsystem (e.g., bluetooth)

allows access to critical subsystems (e.g., braking)

■  Medical devices
•  Insulin pump hack [3]
•  Implantable cardiac defibrillator [4]

[1] W32.Stuxnet Dossier, Symantec 2011
[2] Comprehensive Experimental Analyses of Automotive Attack Surfaces, USENIX 2011
[3] Hacking Medical Devices for Fun and Insulin: Breaking the Human SCADA System, Blackhat 2011
[4] Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses, S&P 2008

8	

5

Adversarial	&	AKack	Flavors	
•  Remote

•  Goal: infect device with malware
•  Malware propagates from the outside, perhaps slowly (e.g., jumps air-gaps)

•  Local
•  Goal: impersonate and/or clone device, collect information
•  Eavesdrops on -- and/or controls -- communication to/from device

•  Physical Non-intrusive
•  Goal: Learn device secrets, impersonate and/or clone
•  Located near device
•  Side-channel attacks

•  Physical Intrusive
•  Goal: clone and/or manually infect device
•  Captures device and physically extract secrets
•  Stealthy or not?

•  Some hybrids of the above… 9	

What	can	we	do?	

• Prevention or detection?

• Protect devices individually or in bulk?

10	

6

Outline
•  Introduction/Motivation
•  Remote Attestation (simple setting)
•  Attacks on Prover
•  Attesting Many Provers
•  Coping with Physical Attacks
•  The End

11

DetecTon	necessitates	Remote	AKestaTon	

What is Remote Attestation?
■  2-party security protocol between trusted Verifier and untrusted Prover
■  A service that allows the former to verify internal state of the latter

Where:
■  Prover – untrusted (possibly compromised/infected) device
■  Verifier – trusted reader/controller/base-station (not always present)
■  Internal state of Prover includes:

•  Code, Registers, Data Memory (RAM), I/O, etc.

Adversary:
■  Can compromise Prover at will (remote)
■  Can control communication channels (local)
■  Physical attacks usually considered out of scope

•  Will re-visit this…
12	

7

Low-End Embedded Devices are
Amoebas of the Computing World

■  Memory: program and data
■  CPU, Integrated clock
■  As well as:

•  Communication interfaces (USB, CAN, Serial, Ethernet, etc.)
•  Analog to digital converters

■  Examples: TI MSP430, Atmel AVR, Raspberry Pi
13

Remote	AKestaTon	
■  If Prover is infected, resident malware lies about software state
■  Need to have guarantees that Prover is “telling the truth”

14	

4.	Res
ponse

	

2.	Challenge	
1.	Generate	
challenge	

3.	Compute	Response,	
e.g.,	via	checksum	

5.	Verify		
Response	

VERIFIER	 PROVER	(device)	

8

Remote	AKestaTon	

Prior work:
■  Very popular topic
■  Can bootstrap other services

•  e.g., code update, secure erasure
■  Many publications and deployed systems

■  Secure Hardware-based
•  Uses OTS TPM components

■  Software-based (aka time-based)
•  Uses custom checksums

■  Hybrid (sw/hw co-design)

15	

So[ware	AKestaTon	
■  Prover has no architectural support for security

•  Commodity/legacy device
•  Peripheral, e.g., adapter, camera, keyboard, mouse

■  Verifier sends customized (random-seeded) checksum routine which covers
memory in a unique (unpredictable) pattern

■  Prover runs checksum over memory, returns result
■  Verifier uses precise timing to determine presence/absence of malware
■  Main idea: malware has nowhere to hide, no place to go…

•  Even if it does manage to hide itself physically, delay will be noticed

For this to work, need 3 assumptions:
1.  VerifierßàProver round-trip time must be either negligible or constant

•  Meaning: one-hop communication

2.  Checksum code must be minimal in both time and space
•  How to prove that?

3.  Prover must not have outside help
•  No extraneous communication during attestation (aka “adversarial silence”)

16	

9

SW	AKestaTon	

17	

•  Some	prominent	SW	aKestaTon	
techniques	have	been	aKacked	

•  None	provide	concrete	proofs	or	guarantees	

•  STll,	the	only	choice	for	legacy	
devices,	e.g.,	peripherals	

HW-based	AKestaTon	

■  Prover has architectural support for attestation, usually using a TPM
■  TPM is essentially a tamper-evident or tamper-resistant “alien”
■  A heavy-weight approach, not suitable for low-end devices

•  Due to: cost, size, energy, etc.

■  Overkill: not clear what features are really needed for attestation

18	

10

19	

	
Hybrid	AKestaTon	

	
	

Main Idea: systematically derive/identify exact
features/components necessary for remote
attestation under a given adversarial model

19	

SMART:	Secure	&	Minimal	Architecture	for	Remote	Trust	
(NDSS	2012)	

Motivation:
■  Secure Hardware techniques too costly for low-end

devices
■  Software attestation not applicable for remote settings
■  What is the minimal set of architectural (sw & hw)

features needed to achieve provably secure remote
attestation?

Desired properties:
■  Minimal modifications to current platforms

•  Lowest # of additional gates
■  Security under a strong attacker model
■  Applicability to low-end MCU platforms
■  No physical attacks (for now)

20	

11

Deriving	Features	needed	for	
Remote	AKestaTon	

21	

Remote	
AKestaTon	

Prover	
AuthenTcaTon	

AuthenTcated	
Integrity	of	Prover’s	

	Internal	State	

MAC	funcTon	+	
helper	code	

Prover		
Secret	Key	

Verifier	
Challenge	

Restricted	Access	
Secret		Key	Storage	

Atomic	
ExecuTon	

Non-malleable	
Code	=	ROM	

Exc
lus
ive
	

acc
ess

	

Building	Blocks	
1.  Secure Key Storage (as little as 180 bits)

•  Mandatory for remote Prover
•  Enables Prover authentication

2.  Trusted ROM code memory region
•  Read-only means integrity: computes response
•  Accesses/uses key (exclusively)

3.  MCU access control
•  Grants access to key only from within ROM

4.  MCU-enforced atomicity of ROM code execution
•  Atomically disable/enable interrupts on entry/exit
•  No invocation other than from the start
•  No termination other than from the end

 22	

12

Key	Storage	&	Memory	Access	Control	
■  Key facilitates Prover authentication
■  Can’t be stored in regular memory

–  Or malware would steal it

■  Need to restrict access

Our approach
■  Restrict key access to trusted ROM
■  Control program counter value

MCU
core

M
em

ory controller

SMART ROM

Key

Address
Space

SRAM

Flash

Data/address Data/address

23	

The	complete	protocol	

Verifier	 Prover	Challenge:	nonce,	boundaries	

Respo
nse:	

MAC	(e
.g.	HM

AC)		

24	

13

Issues…	

 If Prover is infected, ROM code and malware share the
same MCU resources

■  Malware can set up execution environment to compromise ROM

code and extract key

■  Malware can schedule interrupts to occur asynchronously while
key (or some function thereof) is in main memory

■  Malware can use code gadgets in ROM to access key
•  Return-Oriented Programming (ROP)

■  ROM code might leave traces of key in memory after its execution

25	

Countermeasures	

■  Atomic ROM code execution: enforced in hardware
•  Enter at first instruction
•  Exit at last instruction
•  If IP points to ROM, previous instruction must be in ROM*

■  ROM code instrumented to check for memory safety
•  Used DEPUTEE package
•  Upon detecting error, reboot and clean up memory

■  Interrupts disabled immediately upon ROM entry
•  Before key usage (enabled upon exit)
•  DINT instruction must itself be atomic

■  Erase key-related material before end of execution

26	

14

Costs	of	ROM	and	Access	Control	
Prototyped on commodity low-end MCU platforms

27	

Outline
•  Introduction/Motivation
•  Remote Attestation (simple setting)
•  Attacks on Prover
•  Attesting Many Provers
•  Coping with Physical Attacks
•  The End

28

15

SMART	follow-ons	

•  TrustLite	(EuroSys’12):	mulTple	applicaTon	
processes	

•  TyTan	(DAC’15):	real-Tme	applicaTons,	secure	
interrupts	

29	

Verifier	ImpersonaTon	+	DoS	AKacks	

q So far, assumed that Verifier is honest while Prover is
possibly compromised

q  What if Prover is honest but Verifier is not?
q  What if Adversary’s goal is DoS of Prover?
q  Attestation can be quite resource-consuming
q  Attestation takes Prover away from its real and maybe critical job

(e.g., fire, CO2 or vibration detection)
q  What if attestation is combined with erasure and/or sw update?
q  Verifier Impersonation and DoS are easier than compromising Prover

q Prior remote attestation techniques don’t address this

q How to do this with minimal overhead & minimal additional
features?

30	

16

Challenges	

q  Software attestation can’t do this at all
q  No secure place to store any secret or public key

q  With secure hardware, this is easy
q A ``Cadillac’’ solution, unsuitable for low-end MCUs

31	

Verifier	AuthenTcaTon	

u  Prover’s attestation request must be authenticated

u  Authentication is, in itself, a form of DoS

u  Authentication requires:

u  Key(s)
u  Freshness & Timeliness

32	

17

	In	more	detail:	

q  Key(s)
q  Shared secret key (in access-restricted ROM)
q  Verifier public key (in ROM)
q  Access-restricted PUF

q  Freshness
q  Challenges
q  Sequence numbers
q  Timestamps

q  Well-known pros and cons

33	

BoKom-line:	

NEED:

q  Reliable Read-Only Clock

»  Time-check incoming requests
»  Timeliness and freshness
»  Battery, clock crystal, etc.

OR

q Secure Writeable Memory

»  Check for monotonically increasing timestamps
»  Freshness only

34	

18

Outline
•  Introduction/Motivation
•  Remote Attestation (simple setting)
•  Attacks on Prover
•  Attesting Many Provers (swarms/networks)
•  Coping with Physical Attacks
•  The End

35

AKesTng	Groups	of	Embedded	Devices	

Drones	
Video	surveillance,	environment	monitoring	

Robot	swarms	
Prospec+ng,	rescue,	etc.	

Transporta+on	
Automo+ve,	marine,	avionic	systems	

Smart	factories	and	buildings	(home/office)		
Collabora+ng	CPS	

All	are	subject	to	aKacks..	 36	

19

EXAMPLE:	Smart	Building	

HVAC	
HeaTng,	temperature	sensors,	…	

Fire	alarm		
Smoke	detectors,	sprinklers,	…	

Energy	management	
Smart	meters,	solar	panels,	…	

Decentralized	control	
Smartphones,	tablets,	…	

Many	(possibly	wirelessly)	connected	CPS	sharing	resources	
e.g.,	CPS	monitoring	windows	used	by	air	condiToning	and	alarm	system	

Access	control		
Card	readers,	burglar	alarm,	…	

Mul+ple	CPS:	

Current	aKestaTon	schemes	
do	not	scale	

37	

SEDA:	Scalable	Embedded	Device	
AKestaTon	(ACM	CCS’15)	

•  Scalable	
Supports	integrity	verificaTon	of	large	device	groups	

•  Cumula+ve		
More	efficient	than	aKesTng	each	single	device	

•  Decentralized		
Distributes	(not	evenly)	load	and	energy	consumpTon	over	all	devices	
•  Flexible	
Independent	of	integrity	measurement	mechanism	used	by	devices	
•  Applicable	to	low-end	MCU-s	
ImplementaTon	based	on	SMART	and	TrustLite	security	architectures	
	

38	

20

System	Model	

Each	device		
can	communicate	
only	to	its	neighbors	

Devices	in	swarm		may	have	
different	hardware	and	
so[ware	configuraTons	

𝑉

39	

Each	device	has	minimal	
aKestaTon	features,	e.g.,	
SMART	or	TrustLite		

Adversary	Model	and	AssumpTons	

Controls	Communica+on	
•  Eavesdrops,	modifies,	deletes,	

inserts	messages	

Remotely	Compromises	Mul+ple	Devices	
•  Any	set	of	(even	all)	devices	

So[ware	

AKestor	

40	
But,	no	physical	a(acks	

21

Scalable	Embedded	Device	AKestaTon	
(SEDA)	

Device	Join	(join)	
•  Run	when	new	device	is	added	to	a	swarm	
•  Uses	public	key	crypto	(to	avoid	need	for	pre-established	shared	keys)	

Device	Ini+aliza+on	
•  Prepares	devices	to	be	deployed	
•  Executed	by	swarm	operator	𝓞	in	a	trusted	environment	

Swarm	A(esta+on	(a(est)	
•  Between	verifier	and	one	device	
•  Uses	public	key	crypto	(to	avoid	need	for	pre-established	shared	keys)	

Device	A(esta+on	(a(dev)	
•  Between	devices	
•  Uses	only	symmetric	crypto	for	high	performance	

41	

AKestaTon	(1)	
Swarm		 Verifier		

AuthenTc	channel	
Spanning	Tree	

aKest	

1.  Verifier	selects	random	
device	(D1)	iniTalizes	
aKestaTon	

2.  Spanning	tree	is	
created,	rooted	at	D1	

42	

22

AKestaTon	(2)	
Swarm		 Verifier		

AuthenTc	channel	
Spanning	Tree	
CumulaTve	aKestaTon	

1.  Verifier	selects	random	
device	(D1)	iniTalizes	
aKestaTon	

2.  Spanning	tree	is	created	
rooted	at	D1	

3.  Each	device	gets	aKested	
by	its	parent	(leaves	first)	

4.  Sub-tree	roots	accumulate	
results	and	report	to	their	
parent	

5.  D1	reports	overall	result	to	
verifier	

aKest	device	

aKest	device	

aK
es
t	d
ev
ice
	

aK
es
t	d
ev
ice
	

aK
es
t	d
ev
ice
	

aKest	device	

Device	aKestaTon	report	

Accumulated	aKestaTon	report	 43	

Outline
•  Introduction/Motivation
•  Remote Attestation (simple setting)
•  Attacks on Prover
•  Attesting Many Provers
•  Coping with Physical Attacks
•  The End

44

23

DARPA:	Device	AKestaTon	Resilient	to	
Physical	AKacks	(current	work)	

		

q  Physical	AKacks	are	difficult	to	miTgate	in	a	single-Prover	seong	

q 	More	realisTc	in	group	context		
q many	distributed	Provers	
q some	devices	might	be	subject	to	capture	and	physical	aKack	

q 	How	to	miTgate	device	capture?	

	

q ObservaTon:	capture	è	absence	

	

	

45	

DARPA:	Device	AKestaTon	Resilient	to	
Physical	AKacks	

q  Main	idea:	each	interval	of	duraTon	T,	devices	periodically	
collecTvely	emit	and	collect	each	other’s	authenTc	“heartbeats”	

q 	Heartbeats	are	periodically	collected	by	verifier		

q 	Missing	heartbeat	è	absent	device	è	possible	capture	

q 	Minimal	Requirements:		
q  	SMART	architecture	
q  	Reliable	Read-Only	Clock	

q Can	tolerate	VERY	powerful	adversary:	
q REMOTE	(can	infect	all	devices	with	malware)	
+	
q PHYSICAL		(can	capture/aKack	all	devices	but	one)	

46	

24

Current	Topics/DirecTons	

q Single	Prover/Verifier	Seong	
q Verifier	AuthenTcaTon,	DoS	MiTgaTon	
q Formal	proofs	and	analyses	
q CustomizaTon:	code	update,	secure	erasure,	secure	boot	
q Experiments	and	implementaTon	

q Groups/Swarms	of	devices	(mulTple	Provers)	
q Efficient	collecTve	aKestaTon	techniques	
q Heterogeneous	devices	and	variable	aKestaTon	support	
q Physical	AKack	(Capture)	miTgaTon	

	

	
47	

Some	references	

48	

F. Brasser, et al.
Remote Attestaion: the Prover’s Perspective
IEEE/ACM DAC 2016.

A. Ibrahim, et al.
DARPA: Device Attestation Resilient to Physical Attacks,
ACM WISEC 2016.

T. Abera, et al.,
C-FLAT: Control-FLow ATtestation for Embedded Systems Software,
ACM CCS 2016.

N. Asokan, et al.,
SEDA: Scalable Embedded Device Attestation,
ACM CCS 2015.

K. El Defrawy, et al.,
Remote Attestation of Heterogeneous Cyber-Physical Systems: The Automotive Use Case,
ESCAR 2015.

A. Francillon, et al.,
A Minimalist Approach to Remote Attestation,
ACM/IEEE DATE 2014.

P. Koeberl, et al.
TrustLite: a security architecture for tiny embedded devices
EUROSYS 2014.

K. Eldefrawy, et al.,
SMART: Secure and Minimal Architecture for Establishing Dynamic Root of Trust,
NDSS 2012.

D. Perito and G. Tsudik,
Secure Code Update for Embedded Devices via Proofs of Secure Erasure,
ESORICS 2010.

25

Thanks!	

