
8/9/2017

1

Joseph W. Yoder

The Refactory

Teams That Innovate

Copyright 2017 Joseph Yoder & The Refactory, Inc.

Twitter: @metayoda
joe@refactory.com

http://www.refactory.com

http://www.teamsthatinnovate.com

Software Engineering

for Large Systems

Introducing Joseph

Founder and Architect, The Refactory, Inc.

Pattern enthusiast, author and Hillside
Board President

Author of the Big Ball of Mud Pattern

Adaptive Systems expert (programs
adaptive software, consults on
adaptive architectures, author of
adaptive architecture patterns,
metatdata maven, website:
adaptiveobjectmodel.com)

Agile enthusiast and practitioner

Business owner (leads a world class
development company)

Consults and trains top companies on
design, refactoring, pragmatic testing

Amateur photographer, motorcycle
enthusiast, enjoys dancing samba!!!

Loves Sushi, Ramen, Taiko Drums

8/9/2017

2

What is Software Engineering?

Software engineering (SE) is the
application of engineering to the

development of software in a
systematic method….Wikipedia

Software Engineering

Definition of SOFTWARE ENGINEERING

: a branch of computer science that

deals with the design, implementation, and

maintenance of complex computer programs

software engineer

noun

Webster’s Definition

8/9/2017

3

Software Engineering
Definition of SOFTWARE ENGINEERING

1. Development of procedures and systematic

applications that are used on electronic machines.

Software engineering incorporates various accepted

methodologies to design software…takes into

consideration what type of machine the software will

be used on, how the software will work with the

machine, and what elements need to be put in place

to ensure reliability.

2. Higher education degree program, which usually

requires a certain number of courses to be completed

in order to receive certification or a degree.

Business Dictionary’s Definition

Software Engineering

Definition of SOFTWARE ENGINEERING

: detailed study of engineering to the design,

development and maintenance of software.

Software engineering was introduced to address the

issues of low-quality software projects. Problems

arise when a software generally exceeds timelines,

budgets, and reduced levels of quality. It ensures

that the application is built consistently, correctly,

on time and on budget and within requirements.

Economic Times Definition

8/9/2017

4

Software Engineering

Definition of SOFTWARE ENGINEERING

: the process of analyzing user needs and

designing, constructing, and testing end user

applications that will satisfy these needs through

use of software programming languages. It is the

application of engineering principles to software

development. In contrast to simple programming,

software engineering is used for larger and more

complex software systems, which are used as

critical systems for businesses and organizations.

Techopedia’s Definition

Software Engineering

Definition of SOFTWARE ENGINEERING

: the application of principles used in the field

of engineering, which usually deals with physical

systems, to the design, development, testing,

deployment and management of software systems.

Uses a disciplined, structured approach to

programming … with the goal of improving the

quality, time and budget efficiency, along with

the assurance of structured testing and engineering

certification.

TechTarget’s Definition

8/9/2017

5

So Really…What is
Software Engineering???

What about Agile?

8/9/2017

6

https://commons.wikimedia.org/wiki/File:2012_WTCC_Race_of_Japan_(Race_1)_opening_lap.jpg

8/9/2017

7

architecture quality can be invisible

…especially when the spotlight is on

FEATURES

8/9/2017

8

EBiz

New Products

Features

Mobile

Version

© Can Stock Photo Inc. / alex5248

The Solution

© Can Stock Photo Inc. / Freezingpicture

8/9/2017

9

What’s below
the waterline?

all those “ilities”
we can’t ignore
…

Reliability

Scalability

Stability

Maintainability

Performance

© Can Stock Photo Inc. / SergeyNivens Chris Richardson
http://microservices.io

19

8/9/2017

10

Sustaining Your Architecture

Agile Myths
 Simple solutions are always best

 We can easily adapt to changing

requirements (new requirements)

 Scrum/TDD will ensure good

Design/Architecture

 Good architecture simply emerges

from “good” development practice

 You always go fast when doing agile

 Make significant architecture

changes at the last moment

“www.agilemyths.com”

Sustaining Your Architecture

Big Ball of Mud
Alias: Shantytown, Spaghetti Code

A BIG BALL OF MUD is haphazardly

structured, sprawling, sloppy, duct-tape and bailing

wire, spaghetti code jungle.

The de-facto standard software

architecture. Why is the gap

between what we preach and

what we practice so large?

We preach we want to build high quality

systems but why are BBoMs so prevalent?

8/9/2017

11

Sustaining Your Architecture

Big Ball of Mud
Alias: Shantytown, Spaghetti Code

A BIG BALL OF MUD is haphazardly

structured, sprawling, sloppy, duct-tape and bailing

wire, spaghetti code jungle.

The de-facto standard software

architecture. Why is the gap

between what we preach and

what we practice so large?

We preach we want to build high quality

systems but why are BBoMs so prevalent?

Brazilian architect

Oscar Niemeyer

Lisa Pollack

Sustaining Your Architecture

Worse is Better

Ideas resembles Gabriel’s 1991
“Worse is Better”

Worse is Better is an argument to
release early and then have the
market help you design the final
product…It is taken as the first
published argument for open
source, among other things

Do BBoM systems have a Quality?

8/9/2017

12

Sustaining Your Architecture

What exactly do we

mean by "Big"?

Well, for teams I consider > 10^2 big

and for code I consider > 10^5 big

What is Large???

1,000,000 (loc)

10,000,000 (loc)

100,000,000 (loc)

1,000,000,000 (loc)

Many terabytes of data

Many dependencies

Lot’s of connected pieces

Many intertwined systems

8/9/2017

13

Sustaining Your Architecture

Where Mud Comes From?

People Write Code People make Mud

Sustaining Your Architecture

Keep it Working, Piecemeal

Growth, Throwaway Code

http://www.zippah.com/~dtweed/dilbert/w0726866.htm
http://www.zippah.com/~dtweed/dilbert/w0726866.htm
http://liftoff.msfc.nasa.gov/RealTime/JTrack/Spacecraft.html
http://liftoff.msfc.nasa.gov/RealTime/JTrack/Spacecraft.html

8/9/2017

14

Ultra-Large-Scale Systems

Ultra-large-scale (ULS) systems will be interdependent

webs of software-intensive systems, people, policies,

cultures, and economics…Cloud, IoT, Big data, …

http://www.sei.cmu.edu/uls/

Large-scale systems include:

Many lines of code (loc)

Many dependencies

Lots of stored data

Lot’s of connected pieces

Many intertwined systems

Many overlapping policies

Various security issues

Many people involved

What are Large Scale Systems

8/9/2017

15

Large-scale systems include:

Very clusters of hardware

Many networks integrated

Lot’s of possible failure points

Distributed Systems with multiple

data centers around the world

Systems that were not originally

designed to work together

No single team or timeframe

What are Large Scale Systems

Need to Balance many forces

Simplicity

Scalability

Adaptability

Flexibility

Performance

Reliability

Features

…

8/9/2017

16

Complex vs Complicated Systems
(Cynefin Framework)

"Cynefin as of 1st June 2014" by Snowded - Own work. Licensed under CC BY-SA 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Cynefin_as_of_1st_June_2014.png#/media/File:Cynefin_as_of_1st_June_2014.png

What do
you Value?

Yoda’s Principles Licensed under CC: https://www.flickr.com/photos/rlei_ki/8587714166/in/album-72157633765455261/

8/9/2017

17

How can I be more confident

© Can Stock Photo /

Linda Masters Northrop

8/9/2017

18

Confidence

Values Drive Practices

8/9/2017

19

Agile/Lean Design Values

Core values:

 Design Simplicity

 Quick Feedback

 Frequent Releases

 Continuous Improvement

 Teamwork/Trust

 Satisfying stakeholder needs

 Building Quality Software

Keep Learning

 Sustainable Development

8/9/2017

20

Delivery Size???

Delivery Size is Key

Large Delivery Size can cause many issues

Issues:

 More potential defects

 Longer time to get feedback

 Slower adjust time

 Harder to experiment

 Problems take a long time to fix

8/9/2017

21

Small Deliveries
Quick Feedback

Chris Richardson

8/9/2017

22

What about Quality?

Bad Code Smells
Have you ever looked at

a piece of software that

doesn't smell very nice?

A code smell is any
symptom in the
source code that can
indicate a problem!

8/9/2017

23

Neglect Is Contagious

Disorder increases and software rots over time

Don’t tolerate a broken window

http://www.pragmaticprogrammer.com/ppbook/extracts/no_broken_windows.html

Is it better to

clean little by

little?

Or to let dirt

and mess

accumulate?

http://www.pragmaticprogrammer.com/ppbook/extracts/no_broken_windows.html

8/9/2017

24

Some dirt becomes

very hard to clean

if you do not clean

it right away!

Technical Debt?

Clean Code Doesn't Just Happen

•You have to craft it

•You have to maintain it

•You have to make a professional commitment

“Any fool can write code that a computer can understand.

Good programmers write code that humans can understand.”

– Martin Fowler

8/9/2017

25

But We Don’t Have Time!

Professional Responsibility
There’s no time to wash hands, get to the next patient!

http://en.wikipedia.org/wiki/Image:I_Semmelweis.jpg

8/9/2017

26

Professionalism

Make it your responsibility to create software:

Delivers business value

Is clean

Is tested

Is simple

Good design principles

When working with existing code:

If you break it, you fix it

You never make it worse than it was

You always make it better

Refactoring
“If you value clean code…”

8/9/2017

27

Sustaining Your Architecture

Refactorings
Behavior Preserving

Program Transformations

• Rename Instance Variable

• Promote Method to Superclass

• Move Method to Component

Always done for a reason!!!

Refactoring is key and integral

to most Agile processes!!!

TDD

Two Refactoring Types*

Floss Refactorings—frequent, small

changes, intermingled with other

programming

(daily health)

Root canal refactorings—infrequent,

protracted refactoring, during which

programmers do nothing

else (major repair)

* Emerson Murphy-Hill and Andrew Black in

“Refactoring Tools: Fitness for Purpose”

http://web.cecs.pdx.edu/~black/publications/IEEESoftwareRefact.pdf

8/9/2017

28

Sustaining Your Architecture

Safe Refactorings
Rename is always safe!!!

New Abstract Class moving

common features up

Extract Method (always safe)

Extract Interface / Extract Constant

Pull Up / Push Down

Create common component

for shared internal methods
 Fairly safe but can be harder to share

Sustaining Your Architecture

You Must Test
When you find smelly code,

you often apply refactorings
to clean your code.

Testing is a key principle
for safe refactoring!

8/9/2017

29

Sustaining Your Architecture

Common Wisdom

“In almost all cases, I’m

opposed to setting aside time

for refactoring. In my view

refactoring is not an activity you

set aside time to do.

Refactoring is something

you do all the time in little

bursts.” — Martin Fowler

Work refactoring into your daily routine…

Sustaining Your Architecture

Strangler Pattern

Gradually create a new system

around the edges of the old,

letting it grow slowly over

several years until the old

system is strangled…

A natural wonder of the rain forests in Australia are the huge strangler vines.

They seed in the upper branches of a fig tree and gradually work their way down

the tree until they root in the soil. Over many years they grow into fantastic and

beautiful shapes, meanwhile strangling and killing the tree that was their host.

8/9/2017

30

PAUSE POINTS HELP

Kaizen
The Sino-Japanese word "kaizen" simply means

"change for better", with no inherent meaning of

either "continuous" or "philosophy" in Japanese

dictionaries or in everyday use. The word refers to

any improvement, one-time or continuous, large or

small, in the same sense as the English word

"improvement". (Wikipedia)

Most view it as Continuous Improvement…

8/9/2017

31

Slack Time
Need Slack time to improve

Ways to get slack time…

 Monitor and Make Visible

 Reduce Waste (Muda)

 Inject time into process

(retros, daily cleanup, …)

Try little experiments…

(c) Can Stock Photo / AntonioGuillem

Continuous Improvement

“Retrospectives are Key!!!”

Small Steps we can take - next sprint!!!

8/9/2017

32

Spotify: Innovation

Regular Practices

We must make time:

Allocate time for dealing with tech debt

Team building and education sessions

Evaluate and Reflect…small changes

8/9/2017

33

As we become more connected…

CC-BY-SA-4.0 Ameer Nasrallah https://commons.wikimedia.org/wiki/File:Iot_apps.png

Large Scale SE Principles

 Building Infrastructure

o Identify common problems, build infrastructure to address them

• Important to not try to satisfy everyone

• Perfection is the enemy of “Good Enough”

o Don't build infrastructure just for its own sake

• Identify common needs and address them

• Don't imagine unlikely potential needs that aren't really there

 Design for Growth

o Try to anticipate how requirements will evolve

o Keep likely features in mind as you design base system

o Think how design will scale if growth changes by 10X or 100X

8/9/2017

34

Large Scale SE Principles
 Design for Low Latency

o Low avg. times (happy users) – 90% average idle time is ok

o Lot’s of caching and parallelism can be helpful

 Make Applications Robust

o Aggressive load balancing

o Failover to other replicas/datacenters

o Bad backend detection: disable live requests until gets better

o Do something reasonable even if not all is right

– Better to give users limited functionality than an error page

 Keep Software Clean

o Code reviews

o Design reviews

o Lots of testing

– unit tests for individual modules

– larger tests for whole systems

– continuous testing system

HOW SYSTEM QUALITY WORK
CAN FIT INTO YOUR RHYTHMS

8/9/2017

35

“QUALITY IS NOT AN ACT, IT IS A HABIT.”
—ARISTOTLE

Build architectural quality into your project rhythms

SO

CHOOSE THE MOST

RESPONSIBLE MOMENT

Some decisions are too important to leave

until The Last Responsible Moment

8/9/2017

36

Qualify the Roadmap

“All you need is the plan, the roadmap, and

the courage to press on to your destination”

— Earl Nightingale

Qualify the Roadmap
2017
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2018
Jan Feb Mar

DELIVERY

Delays

expected to

Version 1

D
E

V
E

L
O

P
M

E
N

T
D

A
S

H
B

O
A

R
D

BUDGET RESOURCE ARCHITECTURE DEPENDENCIES

Budget will

need

bolstering in

Q2 2017

All resources

on track.

Persistence

Framework

Load-

Balancing.

Cloud

Partnerships

and services

all in place

and on track.

RISKS ISSUES ON RADAR

COMPETITOR

E Corp – new

product.

ARCHITECTURE

Performance

Platform stability

DELIVERY

Tech issues

ARCHITECTURE

Migration

Security

AUG 2017

New mobile

opportunity

OCT 2017

Re-evaluate

NO SQL strategy

RICH MOBILE WEB APPSMOBILE WEB v2MOBILE WEB v1

PC PLATFORM v1 PC PLATFORM v2 ONGOING RELEASES

MOBILE RESEARCH ANDROID v1 IOS v1 RESPONSIVE DESIGN

E
N

T
E

P
R

IS
E

 A
R

C
H

IT
E

C
T

U
R

E

MOBILE GENERIC SERVICES SYBASE TO ORACLE MIGRATIONPERSISTENCE FRAMEWORK

LOAD BALANCING PLATFORM STABILITY

CLOUD RESEARCH MICROSERVICES

TBD

LOW

RISK

HIGH

RISK NORMAL

NO SQL / BIG DATA v1 NO SQL / BIG DATA v2

MOBILE SECURITY

8/9/2017

37

Qualify the Backlog

You can add backlog items for technical debt and

quality-related architecture work… yes, you can

Make Architecture Work
Visible and Explicit

http://philippe.kruchten.com/2013/12/11/the-missing-value-of-software-architecture/

Visible Feature
Invisible Architectural

Feature

Visible Defect Technical Debt

Color your backlog—Phillipe Kruchten

Positive Value

Negative Value

Visible Invisible

8/9/2017

38

Plan a Sprint

Product
Envisioning

/
Roadmap

Deploy to
Stakeholders

Functional
Acceptance

Testing

Develop

and Manage

the Backlog

Run a Sprint

Daily Review

Incorporate Feedback

How Quality Fits
Into An Agile Process

Identify:

Architecture Risks

Key Quality Scenarios

Landing Zone Criteria

Can

Include

Quality

Items

Quality
Testing

Include

relevant

quality

tasks

Test Driven Development

8/9/2017

39

Test Driven Development

Large Scale Thinking
Get feedback and advice early and often

it is is ok to brainstorm and think

Talk with colleagues and chat at a whiteboard

Discuss designs & evaluate (spike solutions)

Constantly monitor what is going on…

Build operational dashboards and more

Think carefully about interfaces

(how will others use the interface)

o Get feedback on your interfaces, evolve as needed

o Learn from proven well-designed interfaces

8/9/2017

40

Large Scale Practices
 Good Modularity and Abstraction principles still work

o no one group (and no single timeframe) has created

all the software, so do only what you can

 Be expansive in exception handling

o When one happens, log all the relevant details; write the

exception handler to try to repair the problems or at least

continue in some fashion

 Log stuff just in case

 Write code to check consistency and validity of data, and run that

code periodically or continuously in the background

 Write code to repair inconsistent or invalid data, preferably

by reconstructing it from sources other than the bad data itself

 Don’t assume synchronization is perfect; tolerate messed up data

ONGOING QUALITY ACTIVITIES

8/9/2017

41

Visibility is Important

Monitor System Qualities—
Build An Operational Dashboard

8/9/2017

42

Quality Focused
Checklists

• Release Checklists*

– Agreed upon checklist
for quality and major
architecture concerns

• Use at pause points

– sprint planning,
release planning,
…

*Thanks, James Thorpe for

sharing your company’s checklist

Two Kinds of
Checklists

1.Read-review

2.Do-confirm

8/9/2017

43

*Thanks, Alex Balboaca for sharing

Checklists at MozaicWorks*

Define Architecture Triggers

• Conditions that
cause architecture
investigation/ tasks

– Quality target
no longer met

– Code quality
metrics violations

– …

• Have broad
system impact

8/9/2017

44

Sustaining Your Architecture

Continuous Inspection

Asian PLoP 2014 Paper

CODE SMELL DETECTION

METRICS (TEST COVERAGE,

CYCLOMATIC COMPLEXITY,

TECHNICAL DEBT, SIZES, …)

APPLICATION SECURITY CHECKS

ARCHITECTURAL CONFORMANCE

AUTOMATE WHERE YOU CAN!!!

Sustaining Your Architecture

Continuous Inspection

8/9/2017

45

Periodically Re-Evaluate
Architecture Risks

Iteration
Planning

Implementation

Delivery and
Feedback

Continuous Improvement

Architecture Quality

Agile Values Can Drive

Architectural Practices
 Do something. Don’t debate or

discuss architecture too long

 Do something that buys
you information

 Prove your architecture ideas

 Reduce risks

 Make it testable

 Prototype realistic scenarios
that answer specific questions

 Incrementally refine
your architecture

 Defer architectural decisions that
don’t need to be immediately made

Do
something!
Prove &
Refine.

8/9/2017

46

Patterns for Evolving

Agile Architecture

USA PLoP 2015

Patterns for Evolving

Agile Architecture

Asian PLoP 2015

8/9/2017

47

Patterns for Being Agile at Quality

Core Patterns
Breaking Down Barriers
Integrate Quality

Identifying Qualities
Finding the Qualities
Agile Quality Scenarios
Quality Stories
Measureable
System Qualities
Fold-out Qualities
Agile Landing Zone
Recalibrate the
Landing Zone
Agree on Quality Targets

Making Qualities Visible

System Quality
Dashboard

System Quality Radiator

Qualify the Roadmap

Qualify the Backlog

Automate First

Quality Checklists

Becoming Agile at Quality

Whole Team
Quality Focused Sprints
Product Quality Champion
Agile Quality Specialist
Spread the
Quality Workload
Shadow the Quality Expert
Pair with a
Quality Advocate

QA to AQ: Patterns about transitioning from Quality
Assurance to Agile Quality, AsianPLoP 2014

QA to AQ Part Two: Shifting from Quality Assurance to
Agile Quality, PLoP 2014

QA to AQ Part Three: Shifting from Quality Assurance
to Agile Quality “Tearing Down the Walls”,
SugarLoafPLoP 2014

QA to AQ Part Four: Shifting from Quality Assurance
to Agile Quality “Prioritizing Qualities and Making
them Visible”, PLoP 2015

QA to AQ Part Five: Being Agile At Quality “Growing
Quality Awareness and Expertise”, AsianPLoP 2016

QA to AQ Part Sox: Being Agile At Quality “Enabling
and Infusing Quality”, AsianPLoP 2016

Patterns to Develop and Evolve Architecture in an
Agile Project, PLoP 2016,

Continuous Inspection, AsianPLoP 2016

QA to AQ

Patterns about transitioning from

Quality Assurance to Agile Quality

Joseph W. Yoder 1, Rebecca Wirfs-Brock2, Ademar Aguiar3

1
 The Refactory, Inc.,

2
Wirfs-Brock Associates, Inc.

3
 FEUP

joe@refactory.com, rebecca@wirfs-brock.com, ademar.aguiar@fe.up.pt

Abstract. As organizations transition from waterfall to agile processes, Quality

Assurance (QA) activities and roles need to evolve. Traditionally, QA activities

have occurred late in the process, after the software is fully functioning. As a

consequence, QA departments have been “quality gatekeepers” rather than actively

engaged in the ongoing development and delivery of quality software. Agile teams

incrementally deliver working software. Incremental delivery provides an

opportunity to engage in QA activities much earlier, ensuring that both

functionality and important system qualities are addressed just in time, rather than
too late. Agile teams embrace a “whole team” approach. Even though special skills

may be required to perform certain development and Quality Assurance tasks,

everyone on the team is focused on the delivery of quality software. This paper

outlines 21 patterns for transitioning from a traditional QA practice to a more agile
process. Six of the patterns are completely presented that focus on where quality is

addressed earlier in the process and QA plays a more integral role.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: NEED TO ADD HERE

General Terms
Agile, Quality Assurance, Patterns, Testing

Keywords
Agile Quality, Quality Assurance, Testing

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on

the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

Preliminary versions of these papers were presented in a writers' workshop at the 3rd Asian Conference on Pattern Languages of

Programs (AsianPLoP). AsianPLoP'2014, March 5-7, Tokyo, Japan. Copyright 2014 is held by the author(s). ACM 978-1-XXXX-

XXXX-X.

…PATTERNS FOR TRANSITIONING
FROM TRADITIONAL TO AGILE QA
AND AGILE ARCHITECTURE Copies available off our

websites.

8/9/2017

48

Sustaining Your Architecture

Indicators You’ve Paid Enough

Attention to Architecture

 Defects are localized

 Stable interfaces

 Consistency

 Developers can easily add
new functionality

 New functionality doesn’t
“break” existing architecture

 Few areas that developers avoid
because they are too difficult to work in

 Able to incrementally integrate new functionality

Other Techniques for

Improving Quality
Steve McConnell

http://kev.inburke.com/kevin/the-best-ways-to-find-bugs-in-your-code/

Average is 40% for

any one technique!

Combining

techniques

gives you

quality (> 90%)

8/9/2017

49

VALUES DRIVE PRACTICE
CALL TO ACTION

Daily Practices
Sustainable Development

(CC) by muffinn on Flickr

Visibility
Visibility

“We are uncovering easier ways of developing valuable

products by doing it and helping others to do it.

Through this work we have come to value:”

8/9/2017

50

Lazy Manifesto

Keeping slack over being busy all the time

Small high quality software over

large complex software

Doing only what is necessary over

exhaustively discovering all tasks

Doing less to deliver the same over

doing more to deliver less

“We are uncovering easier ways of developing valuable

products by doing it and helping others to do it.

Through this work we have come to value:”

That is, while there is value in the items on the right,

we value the items on the left more…

Harada Kiro

Relaxed

Principles of Lazy Manifesto

Doing nothing is always an option.

We seek to minimize the number of backlog items while keeping the value of the backlog.

We believe to keep increasing velocity is not always good.

We try to eliminate tasks that generate no value.

We try to combine tasks to reduce latency and rework.

We try to rearrange tasks to find problems early.

We try to simplify all tasks as much as possible

We are not afraid of eliminating our own tasks / processes

by continuously acquiring new skills / capabilities.

We expand capabilities over increasing capacities.

We only work hard to make our work easier and safer.

We always look to get help while we provide help to others with minimum effort.

We never try to add an unnecessary principle simply to match with the other manifesto :)

“We follow these principles when they don’t add work:”

Relaxed

Harada Kiro

8/9/2017

51

Dogmatic

Pragmatic

Synonyms: bullheaded, dictative,

doctrinaire, fanatical, intolerant

Antonyms: amenable, flexible,

manageable

Synonyms: common, commonsense,

logical, practical, rational,

realistic, sensible

Antonyms: idealistic, unrealistic

Being Pragmatic

No Planning

No Design

or Architecture

Sometimes

called Agile

Lot’s of

Upfront

Planning

Lot of Design

& Architecture

Traditional

or Waterfall

Rough

Adaptive

Plan (changing)

Right Balance

of Design

& Architecture

Being Agile

Balance Between…

8/9/2017

52

It is a Journey

Commitment

Follow-through

Deliberate practices

Slack Time to Improve

Paying attention

Continuous Learning

© Can Stock Photo Inc. / jefras

Joe’s cool photo goes here!!!joe@refactory.com

Twitter: @metayoda

www.joeyoder.com

www.refactory.com

Thanks!!!

