MOTIVATION	Machine Learning Basics	PoS Tag	Word2Vec	Conclusion

MACHINE LEARNING FOR SMART LEARNERS

Marcelo Finger and Felipe Salvatore

Department of Computer Science Instituto de Matemathics and Statistics University of Sao Paulo, Brazil

Sao Paulo School of Advanced Science on Smart Cities 2017

MARCELO FINGER AND FELIPE SALVATORE MACHINE LEARNING FOR SMART LEARNERS

What Is All This Fuss About Machine Learning?

MARCELO FINGER AND FELIPE SALVATORE MACHINE LEARNING FOR SMART LEARNERS

WHAT IS ALL THIS FUSS ABOUT MACHINE LEARNING?

It's Just Hype !!! (Oba-Oba)

WHAT IS ALL THIS FUSS ABOUT MACHINE LEARNING?

- It's Just Hype !!! (Oba-Oba)
- Other areas that went through similar hype
 - Boolean Algebra and Digital Circuits (\$\$\$)
 - Automata and Formal Languages
 - Relational Databases (\$\$\$)
 - Expert Systems
 - Object-oriented Programming (\$\$\$), etc

What Is All This Fuss About Machine Learning?

- It's Just Hype !!! (Oba-Oba)
- Other areas that went through similar hype
 - Boolean Algebra and Digital Circuits (\$\$\$)
 - Automata and Formal Languages
 - Relational Databases (\$\$\$)
 - Expert Systems
 - Object-oriented Programming (\$\$\$), etc
 - When hype is gone, what remains is Science

MOTIVATION	Machine Learning Basics	PoS Tag	Word2Vec	Conclusion
TOPICS				

Machine Learning and Smart Cities

- 2 Machine Learning Basics
- **③** Example 1: PoS Tagging
- Example 2: Feature Learning via Word2Vec

6 CONCLUSION

Machine Learning and Smart Cities

- 2 Machine Learning Basics
- **8** Example 1: PoS Tagging
- DEXAMPLE 2: FEATURE LEARNING VIA WORD2VEC

6 CONCLUSION

\bullet I have been working with machine learning (ML) since 1995

- ${\scriptstyle \bullet}$ I have been working with machine learning (ML) since 1995
 - mainly in Computational Linguistics

- \bullet I have been working with machine learning (ML) since 1995
 - mainly in Computational Linguistics
- Also worked in 2 environmental projects with ML

- I have been working with machine learning (ML) since 1995
 - mainly in Computational Linguistics
- Also worked in 2 environmental projects with ML
- Materials Discovery for Air and Water Cleaning (2012-13)
 - Fine Chemistry, (very) expensive data
 - High complexity (NPc), no so big data
 - Cornell University

- I have been working with machine learning (ML) since 1995
 - mainly in Computational Linguistics
 - Also worked in 2 environmental projects with ML
 - Materials Discovery for Air and Water Cleaning (2012-13)
 - Fine Chemistry, (very) expensive data
 - High complexity (NPc), no so big data
 - Cornell University
 - Materials Refinement (just started)
 - Brute Chemistry, not so expensive data
 - Lots of data (Big Data)
 - Civil engineering (USP), several companies interested

- - \bullet I have been working with machine learning (ML) since 1995
 - mainly in Computational Linguistics
 - Also worked in 2 environmental projects with ML
 - Materials Discovery for Air and Water Cleaning (2012-13)
 - Fine Chemistry, (very) expensive data
 - High complexity (NPc), no so big data
 - Cornell University
 - Materials Refinement (just started)
 - Brute Chemistry, not so expensive data
 - Lots of data (Big Data)
 - Civil engineering (USP), several companies interested

• Q: What is the product that is most manufactured today?

Q: What is the product that is most manufactured today?
A: Concrete

• Q: What is the product that is most manufactured today?

• A: Concrete

- Artificial Stone, mainly used in cities
- Big potential to improve living environment
- Affects the efficiency of built environment and climate change

• Q: What is the product that is most manufactured today?

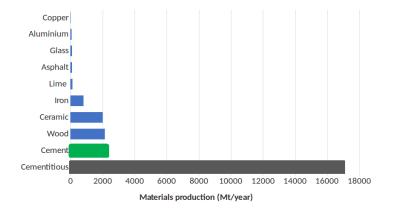
• A: Concrete

- Artificial Stone, mainly used in cities
- Big potential to improve living environment
- Affects the efficiency of built environment and climate change
- Per-capta production (2003):

• Q: What is the product that is most manufactured today?

• A: Concrete

- Artificial Stone, mainly used in cities
- Big potential to improve living environment
- Affects the efficiency of built environment and climate change
- Per-capta production (2003):
 - 4.2 t/inhabitant (cementitious material)



EVOLUTION OF CO₂ Emissions from Cement

Conclusion: Concrete has an enormous impact in CO₂ emissions

MARCELO FINGER AND FELIPE SALVATORE MACHINE LEARNING FOR SMART LEARNERS IME-USP

Concrete Depends on Too Many Inputs

- Cement quality
- Water quantity
- Aggregate origin (Sand, natural gravel, and crushed stone)
- Chemical and mineral admixtures
- Reinforcement (steel, protracted steel)
- Type of production, temperature, humidity, altitude
- Intended use, dust emission,
- Mixing, workability, curing, time to dry out, etc

Concrete Depends on Too Many Inputs

- Cement quality
- Water quantity
- Aggregate origin (Sand, natural gravel, and crushed stone)
- Chemical and mineral admixtures
- Reinforcement (steel, protracted steel)
- Type of production, temperature, humidity, altitude
- Intended use, dust emission,
- Mixing, workability, curing, time to dry out, etc
- And there are lots of data collected

MOTIVATION	Machine Learning Basics	PoS Tag	Word2Vec	CONCLUSION
The Pr	OBLEM			

 Given the inputs, predict CO₂ emission and important properties (compressive strength, tensile strength, elasticity, coefficient of thermal expansion)

- Given the inputs, predict CO₂ emission and important properties (compressive strength, tensile strength, elasticity, coefficient of thermal expansion)
- Ontrol deviations in the production process

- Given the inputs, predict CO₂ emission and important properties (compressive strength, tensile strength, elasticity, coefficient of thermal expansion)
- Ontrol deviations in the production process
- Propose new kinds of cements and cementitious material to optimize:
 - CO₂ emission
 - profit
 - Cement use in concrete
 - Chemical additives in concrete, etc.

- Given the inputs, predict CO₂ emission and important properties (compressive strength, tensile strength, elasticity, coefficient of thermal expansion)
- Ontrol deviations in the production process
- Propose new kinds of cements and cementitious material to optimize:
 - CO₂ emission
 - profit
 - Cement use in concrete
 - Chemical additives in concrete, etc.

So now we can talk about machine learning

SIMILAR APPROACHES IN THE LITERATURE

- Taffese & Sistonen. Machine learning for durability and ..., Automation in Construction, 2017
 - Machine learning methods can substitute time and resource consuming lab tests
 - Machine learning techniques can play a substantial role in durability assessment
 - Machine learning algorithms utilizing sensors data can discover hidden insights
 - The future durability assessment and service-life prediction approach is proposed

Thanks to Prof. Vanderley M. John for input on concrete information

Machine Learning and Smart Cities

2 Machine Learning Basics

8 Example 1: PoS Tagging

DEXAMPLE 2: FEATURE LEARNING VIA WORD2VEC

6 CONCLUSION

- Branch of Computer Science
- Aim: Give "computers the ability to learn without being explicitly programmed"

How?

- Branch of Computer Science
- Aim: Give "computers the ability to learn without being explicitly programmed"

How?

• Algorithms that learn from data

- Branch of Computer Science
- Aim: Give "computers the ability to learn without being explicitly programmed"

How?

- Algorithms that learn from data
- and make predictions on data

- Branch of Computer Science
- Aim: Give "computers the ability to learn without being explicitly programmed"

How?

- Algorithms that learn from data (Learning Phase)
- and make predictions on data (Execution Phase)

The Most Important Element?

MARCELO FINGER AND FELIPE SALVATORE MACHINE LEARNING FOR SMART LEARNERS

The Most Important Element?

Data

MARCELO FINGER AND FELIPE SALVATORE MACHINE LEARNING FOR SMART LEARNERS

THE MOST IMPORTANT ELEMENT?

- Data
 - Annotated Data: input and desired output. Expensive.
 - Raw Data: input only. Less expensive.

THE MOST IMPORTANT ELEMENT?

Data

Annotated Data: input and desired output. Expensive.
 Basis for Supervised Learning

• Raw Data: input only. Less expensive.

Basis for Unsupervised Learning

THE MOST IMPORTANT ELEMENT?

Data

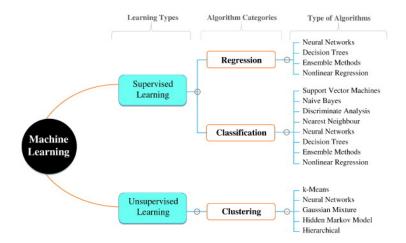
Annotated Data: input and desired output. Expensive.
 Basis for Supervised Learning

• Raw Data: input only. Less expensive.

Basis for Unsupervised Learning

- Other important elements:
 - learning models
 - learning algorithms
 - computing power

Common Uses of Machine Learning



Common Application Domains

- Unstructured models
- Image Processing
- Computational Linguistics

MACHINE LEARNING MODEL TYPES (A MORE RELEVANT CLASSIFICATION)

• Generative Models: model-based learning

• Regressive Models: function-based learning

MACHINE LEARNING MODEL TYPES (A MORE RELEVANT CLASSIFICATION)

• Generative Models: model-based learning

- Decision Trees
- Logic-based models: association rules, inductive logic
- Markov Models: hidden, explicit, variable length
- Bayesian Models: naive, graphic models
- Probabilistic relational models
- PAC learning, etc

• Regressive Models: function-based learning

- Perceptron and its variants
- SVM
- Neural Nets (NN), etc

Concrete Examples (from Language Processing)

Example 1

- Generative / Model-based
- Supervised
- Classification
- Hidden Markov Model

EXAMPLE 2 • Regressive / function-based

- Unsupervised
- Feature Learning
- Neural Net

Concrete Examples (from Language Processing)

EXAMPLE 1 Part-of-speech tagging

- Generative / Model-based
- Supervised
- Classification
- Hidden Markov Model

- Unsupervised
- Feature Learning
- Neural Net

Concrete Examples (from Language Processing)

EXAMPLE 1 Part-of-speech tagging

- Generative / Model-based
- Supervised
- Classification
- Hidden Markov Model

EXAMPLE 2 Word2Vec

- Regressive / function-based
- Unsupervised
- Feature Learning
- Neural Net

Machine Learning and Smart Cities

- 2 Machine Learning Basics
- **3** Example 1: PoS Tagging
- DEXAMPLE 2: FEATURE LEARNING VIA WORD2VEC

6 Conclusion

HIDDEN MARKOV MODELS

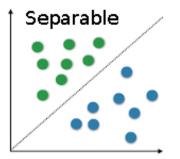
See presentation attached

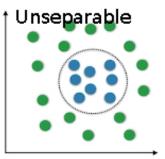
Machine Learning and Smart Cities

- 2 Machine Learning Basics
- State 1: Pos Tagging
- Example 2: Feature Learning via Word2Vec

6 Conclusion

It all started with the linear separation problem





PERCEPTRON

- Created by Rosenblatt [1957]
- Binary separation of data $X = \{x_1, \dots, x_n\}$, $dim(x_i) = k$
- Find w and b such that, for $x \in X$

$$perceptron(x) = \begin{cases} 1, & w \cdot x + b > 0 \\ 0, & w \cdot x + b < 0 \end{cases}$$

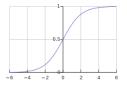
- Zero (unseparable) or infinitely many hyperplanes (w, b)
- Minsky & Papert [1969]: Xor-functions cannot be learned by single layer perceptrons

DEALING WITH NON-SEPARABLE CASES

- SVM
 - Employs Quadratic Programming to obtain single answer
 - Expanding number of dimensions leads to separability, extra dimensions are a function of given ones
 - Uses "kernels" to deal with large number of dimensions

DEALING WITH NON-SEPARABLE CASES

- SVM
 - Employs Quadratic Programming to obtain single answer
 - Expanding number of dimensions leads to separability, extra dimensions are a function of given ones
 - Uses "kernels" to deal with large number of dimensions
- Neural Networks
 - Multilayer perceptrons
 - 0-1 functions a problem for learning (not differentiable)
 - Use some sigmoid (σ) function instead



• Neuron: $\sigma(w \cdot x + b)$

NEURAL NET (OLD VIEW)



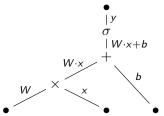
Does not scale. e.g. $|X| \ge 15,000$

NEURAL NET (NEW VIEW)

• A whole layer may be represented as :

$$layer(x) = \sigma(Wx + b)$$

• x, b, layer(x): vectors; W: matrix



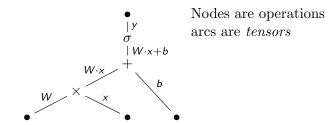
Nodes are operations arcs are *tensors*

NEURAL NET (NEW VIEW)

• A whole layer may be represented as :

$$layer(x) = \sigma(Wx + b)$$

• x, b, layer(x): vectors; W: matrix



• Training occurs over such graph using backpropagation

THE BACKPROPAGATION ALGORITHM

- Proposed by Kelley [1960], Bryson [1961] and Dreyfus [1962]
- Popularized by Rumelhart, Hinton & Williams [1986]
- Learning by gradient descent.
- Supervised learning
- Applies to a tensor graph (not only NN!)

THE BACKPROPAGATION ALGORITHM (GUTS)

- Initializes weights to be learned randomly
- Minimizes a loss function. E.g. $L(x) = \sum (y_i \hat{y}_i(x))^2$
 - Phase 1: Propagation. Computes the output \hat{y} and loss L
 - Phase 2: Weight update. α is the learning rate

$$W^{t+1} = W^t + \alpha \frac{\partial L}{\partial W}$$

$$\boldsymbol{b}^{t+1} = \boldsymbol{b}^t + \alpha \frac{\partial \boldsymbol{L}}{\partial \boldsymbol{b}}$$

- A cycle propagation-update is an epoch
- Local optimization, may get stuck at local minima

Word2vec is a name that covers two models

- Skip-gram
- Continuous Bag-of-Words (CBOW)
- Aim: learn efficiently a vectorial representation of words $banana \longrightarrow \langle v_1, \dots, v_N \rangle, v_i \in \mathbb{Q}$
- Unsupervised learning from a large unstructured corpus
- Based on word co-ocurrence statistics. The idea is not new: "You shall know a word by the company it keeps" (J.R Firth, 1957)

Given a corpus, choose:

- A vocabulary V.
- A vector size N to represent words

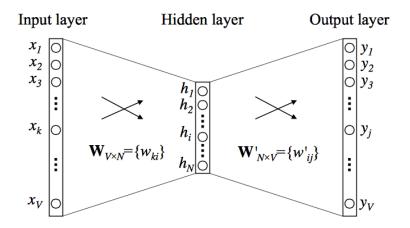
Use matrices $W \in \mathbb{Q}^{|V|,N}$ and $W' \in \mathbb{Q}^{N,|V|}$ to create **two** vetor representations of each word w:

- input vector: v_{W} (line of W).
- **output vector**: v'_{w} (column of W').

The model's task is to predict a focus word given a context of words:

O primeiro rei de Portugal nasceu em ...

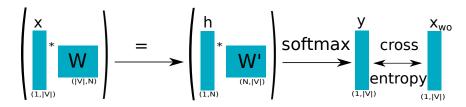
$\begin{array}{l} \mbox{Observation} \Rightarrow (\mbox{rei, primeiro}) \\ \Rightarrow (\mbox{input word, output word}) \\ \Rightarrow (\mbox{w}_{I}, \mbox{w}_{O}) \end{array}$



Deep learning, with depth 2!!!

PoS TAG

A SIMPLIFIED CBOW MODEL



MARCELO FINGER AND FELIPE SALVATORE MACHINE LEARNING FOR SMART LEARNERS IME-USP

Some Definitions

A **one-hot** is a vector of bits with a single 1-bit; all other bits 0. Given N elements we associate them to N 1-hot vectors of size N:

$$\langle 0 \cdots 0 1 0 \cdots 0 \rangle$$

The **softmax** function is a probability distribution over the elements of a vector:

$$P(z_j) = \frac{e^{z_j}}{\sum_{i=1}^N e^{z_i}}$$

The **cross-entropy** of distributions *p* and *q*

$$CE(p,q) = -\sum_i p_i \log q_i$$

Given (x_{w_I}, x_{w_O}) one-hot of (w_I, w_O) and $x = x_{w_I}$, the model is:

$$h_i = \sum_{s=1}^{|V|} w_{si} x_s \text{ com } i = 1, \dots, N$$
 (1)

$$u_j = \sum_{s=1}^{N} w'_{sj} h_s \ \ {
m com} \ j = 1, \dots, |V|$$
 (2)

$$y_j = P(w_j | w_l) = \frac{\exp(u_j)}{\sum_{j'=1}^{|V|} \exp(u_{j'})} \quad \text{com } j = 1, \dots, |V|$$
 (3)

$$E = CE(x_{w_{O}}, y) = -\sum_{s=1}^{|V|} x_{w_{OS}} \log(y_{s})$$
(4)

Due to 1-hot format of x_{w_I} e x_{w_O} we simplify (1), (2), (3) e (4)

$$h = v_{w_I} \tag{5}$$

$$u_j = v'_{w_j}.^{\mathsf{T}} v_{w_j} \tag{6}$$

$$y_{j} = \frac{\exp(u_{j})}{\sum_{j'=1}^{|V|} \exp(u_{j'})}$$
(7)

$$E = -u_{j^*} + \log(\sum_{j'=1}^{|V|} \exp(u_{j'}))$$
(8)

where j^* is the index of w_O .

A SIMPLIFIED CBOW MODEL: UPDATE

Applying backpropagration we have the weight update of the last layer is

$$w_{ij}^{\prime (new)} = w_{ij}^{\prime (old)} - \alpha \, e_j \, h_i \tag{9}$$

in vector notation

$$\mathbf{v}_{\mathbf{W}_{j}}^{\prime (new)} = \mathbf{v}_{\mathbf{W}_{j}}^{\prime (old)} - \alpha \, \mathbf{e}_{j} \, \mathbf{v}_{\mathbf{W}_{j}} \tag{10}$$

where $e = y - x_{w_o}$

A SIMPLIFIED CBOW MODEL: UPDATE

- $w_j \neq w_O \Rightarrow -\alpha e_j < 0 \Rightarrow$ subtract from v'_{w_j} a fraction of $v_{w_l} \Rightarrow$ increase the cosine distance between v_{w_l} and v'_{w_l} .
- $w_j = w_O \Rightarrow -\alpha e_j > 0 \Rightarrow \text{add a fraction of } v_{w_I} \text{ to } v'_{w_j} \Rightarrow$ decrease the cosine distance between v_{w_I} and v'_{w_i} .

A SIMPLIFIED CBOW MODEL: UPDATE

Proceed with backpropagation:

$$W^{(new)} = W^{(old)} - \alpha \, x E H^T \tag{11}$$

$$v_{w_l}^{(new)} = v_{w_l}^{(old)} - \alpha \, x E H_{(k_l,.)}^T \tag{12}$$

where $EH = e(W')^T$ and k_I is the index of w_I .

Repeat this process with examples from the corpus, the effect accumulates and as a result words with similar contexts will get close to each other.

The model captures the co-ocurrence statistics using cosine distance

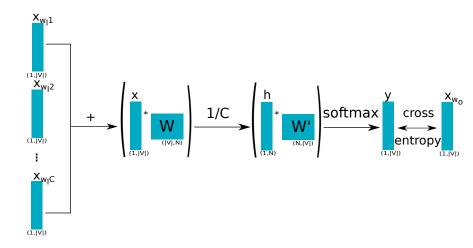
MOTIVATION	Machine Learning Basics	PoS Tag	WORD2VEC	Conclusion
CBOW				

Now, starting from an arbitrary window of size C, we construct observations such as $([w_{l_1}, \ldots, w_{l_C}], w_O)$. E.g., for C = 4:

Nunca me acostumei com o cantor dessa banda, e nem ...

([com, o, dessa, banda], cantor)

CBOW: MODELO (I)



CBOW: MODEL

$$x = x_{\mathbb{W}_{l_1}} + \dots + x_{\mathbb{W}_{l_C}} \tag{13}$$

$$h = \frac{1}{C} (v_{w_{l_1}} + \dots + v_{w_{l_C}})$$
(14)

$$u_j = \sum_{s=1}^N w'_{sj} h_s \tag{15}$$

$$y_{j} = p(\mathbf{w}_{j} | \mathbf{w}_{I_{1}}, \dots, \mathbf{w}_{I_{C}}) = \frac{\exp(v'_{\mathbf{w}_{j}}, {}^{T}h)}{\sum_{j'=1}^{|V|} \exp(v'_{\mathbf{w}_{j'}}, {}^{T}h)}$$
(16)

$$E = -u_{j^*} + \log(\sum_{j'=1}^{|V|} \exp(u_{j'}))$$
(17)

$$\mathbf{v}_{\mathbf{w}_{j}}^{\prime (new)} = \mathbf{v}_{\mathbf{w}_{j}}^{\prime (old)} - \alpha \, \mathbf{e}_{j} \, \mathbf{h} \tag{18}$$

$$v_{\mathbb{W}_{l_c}}^{(new)} = v_{\mathbb{W}_{l_c}}^{(old)} - \frac{1}{C} \alpha \, x E H^T_{(k_{l_c},.)} \tag{19}$$

for c = 1, ..., C. Where $k_{l_1}, ..., k_{l_C}$ are the indexes of $w_{l_1}, ..., w_{l_C}$ respectively.

$$y_j = \frac{\exp(u_j)}{\sum_{j'=1}^{|V|} \exp(u_{j'})}$$

Too costly to compute for each input training instance

- Negative Sampling
- Hierarchical Softmax

NEGATIVE SAMPLING

We keep x, W, W', h as before. To compute the error function, we employ a distribution $P_n(w)$ over all words in the corpus. E.g.:

$$P_n(\mathbf{w}) = \frac{U(\mathbf{w})^{\frac{3}{4}}}{Z}$$

Using $P_n(w)$ we sample w_{i_1}, \ldots, w_{i_K} ; avoid w_O amog them

NEGATIVE SAMPLING

 $(\mathbf{w}_I, \mathbf{w}_O)$

Positive example

 $(\mathbf{w}_{i_1}, \mathbf{w}_O), \ldots, (\mathbf{w}_{i_K}, \mathbf{w}_O)$

Negative examples

MARCELO FINGER AND FELIPE SALVATORE MACHINE LEARNING FOR SMART LEARNERS

NEGATIVE SAMPLING: THE MODEL

$$p(D=1 \mid w, w_O) = \sigma(v'_w \cdot^T h)$$

probability of (w, w_0) to co-occur in the corpus (in a *C*-window)

$$p(D = 0 \mid w, w_O)$$

probability of $(\mathbb{w},\mathbb{w}_{\mathcal{O}})$ not to co-occur in the corpus

The goal of training now is to maximize the probabilities

 $p(D=1 \mid w_I, w_O), \ p(D=0 \mid w_{i_1}, w_O), \ldots, \ p(D=0 \mid w_{i_K}, w_O)$

NEGATIVE SAMPLING: THE MODEL

Minimize the following error function:

$$\begin{split} E &= -\log(p(D = 1 \mid w_{I}, w_{O}) \cdot \prod_{s=1}^{K} p(D = 0 \mid w_{i_{s}}, w_{O})) \\ &= -(\log p(D = 1 \mid w_{I}, w_{O}) + \log(\prod_{s=1}^{K} p(D = 0 \mid w_{i_{s}}, w_{O}))) \\ &= -(\log p(D = 1 \mid w_{I}, w_{O}) + \sum_{s=1}^{K} \log(p(D = 0 \mid w_{i_{s}}, w_{O}))) \\ &= -\log \sigma(v'_{w_{O}} \cdot^{T} h) - \sum_{s=1}^{K} \log(\sigma(-v'_{w_{i_{s}}} \cdot^{T} h)) \end{split}$$

NEGATIVE SAMPLING: UPDATE

$$\mathbf{v}_{\mathbb{W}_{O}}^{\prime (new)} = \mathbf{v}_{\mathbb{W}_{O}}^{\prime (old)} - \alpha \left(\sigma(\mathbf{v}_{\mathbb{W}_{O}}^{\prime} \cdot \mathbf{x}^{T} h) - 1 \right) h \tag{20}$$

$$\mathbf{v}_{\mathbb{W}_{i_{s}}}^{\prime (new)} = \mathbf{v}_{\mathbb{W}_{i_{s}}}^{\prime (old)} - \alpha \,\#(i_{s}) \,\sigma(\mathbf{v}_{\mathbb{W}_{i_{s}}}^{\prime} \cdot \overset{T}{\cdot} h) \,h \qquad (21)$$

$$W^{(new)} = W^{(old)} - \alpha \, x E H^T \tag{22}$$

where

$$EH = (\sigma(v'_{w_O} \cdot T h) - 1) v'_{w_O} + \sum_{s=1}^{K} \sigma(v'_{w_{i_s}} \cdot T h) v'_{w_{i_s}}$$

Deep learning with 1.5 layers !!!

MARCELO FINGER AND FELIPE SALVATORE MACHINE LEARNING FOR SMART LEARNERS

INTRINSIC EVALUATION OF THE METHOD

 w_1 is to w_2 as w_3 is to x

- $w_1 = France$, $w_2 = Paris$, $w_3 = Japan$; x = Tokyo
- $w_1 = man$, $w_2 = king$, $w_3 = woman$; x = queen

INTRINSIC EVALUATION OF THE METHOD

•
$$w_1 = white$$
, $w_2 = beauty$, $w_3 = black$; $x = ugly$

INTRINSIC EVALUATION OF THE METHOD

 w_1 is to w_2 as w_3 is to x

• $w_1 = France$, $w_2 = Paris$, $w_3 = Japan$; x = Tokyo

• $w_1 = man$, $w_2 = king$, $w_3 = woman$; x = queenProblematic cases:

• $w_1 = man$, $w_2 = manager$, $w_3 = woman$; x = secretary

• $w_1 = white$, $w_2 = beauty$, $w_3 = black$; x = ugly

The method unveils sexism and racism buried in the data! Book: Weapons of Math Destruction

APPLICATIONS (EXTRINSIC EVALUATION)

Many NLP applications employ word2vec

We have implemented word2vec in portuguese, using Google's TensorFlow

https://github.com/felipessalvatore/Word2vec-pt

And used it for Named Entity Recognition (NER)

Machine Learning and Smart Cities

- 2 Machine Learning Basics
- 8 Example 1: PoS Tagging
- DEXAMPLE 2: FEATURE LEARNING VIA WORD2VEC

6 Conclusion

THANK YOU!

Visit our group's Machine Learning tutorials https://github.com/MLIME/Frameworks

- Tensorflow
- Theano+Lasagne
- Keras

MARCELO FINGER AND FELIPE SALVATORE MACHINE LEARNING FOR SMART LEARNERS

MOTIVATION	Machine Learning Basics	PoS Tag	Word2Vec	CONCLUSION
BIBLIOG	RAPHY			

- Halevy, A. Norvig, P. and Pereira, F. (2009). The unreasonable effectiveness of data in *Intelligent Systems*, IEEE.
- Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representation in vector space. *arXiv preprint arXiv:1301.3781*.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In *Advances in Neural Information Processing Systems*, pages 3111-3119.
- Morin, F., Bengio, Y. (2005). Hierarchical probabilistic neural network language model. In *AISTATS*, pages 246-252.
- Rong, X. (2016). Word2vec Parameter Learning Explained. *arXiv preprint arXiv:1411.2738*.