
Traffic-Light Control for Emergency Vehicles

Rodrigo Gonçalves de Branco Prof. Edson Norberto Cáceres - Advisor Prof. Ronaldo Alves Ferreira June 26, 2020

College of Computing Federal University of Mato Grosso do Sul - UFMS

Motivation

Motivation

20 per cent of emergency patient deaths blamed on traffic jam delays

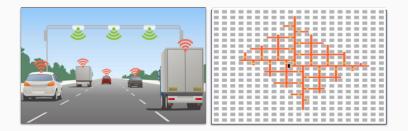
Jan 16. 2017

Thailand - 20% of death due to traffic jam - Jan 2017!

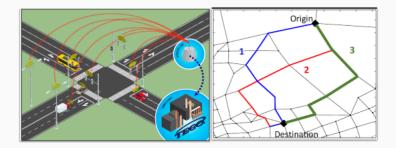
Big picture - Mobility and Public Transportation

Problems and Goals

Reduce the delay (time loss) of the EV in traffic Using traffic light (TL) preemption

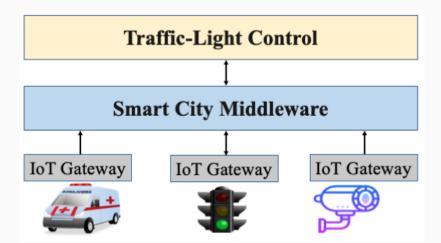


Do not impact (too much) other vehicles!

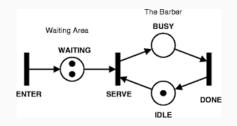


Research challenges

- Does green light mean vehicles passing through?
- Is it an optimization problem?
- Is it NP-Hard?
- Can we use probabilistic modeling?



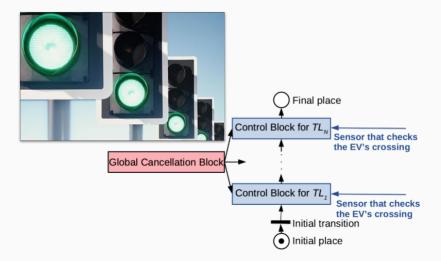
Proximity sensors X Focus on intersection X Unrealistic scenarios X



Different EVs, with different routes **X** Hard-to-deploy infrastructure **X** Lack of formal properties of safety for the entire EV route **X**

Focus on solution!!!

Proposed Solution - TPN



Directed Graph

- Useful to model distributed, parallel and concurrent systems
- Places, transitions, and directed edges
- Transitions can be fired when tokens are present in their input places
- Timed Petri Net minimum time to fire a transition

Proposed Solution - TPN

Control of all TLs in the EV route

Proposed Solution - TPN

Individual control of a TL

$$T_{2_{i}} = \begin{cases} 0, \text{if } \frac{d_{TL_{i}}}{ASLpath_{i}} \leq \epsilon \text{ or } ASpath_{i} \leq \delta \\ \max\{(\frac{d_{TL_{i}}}{ASLpath_{i}} - t_{flush_{i}}) \times (1 - Opath_{i}), 0\} \end{cases}$$
(1)

Why is it safe?

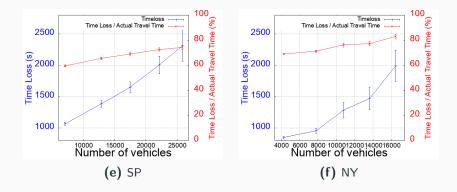
- i It executes at most one preemption action
- ii It does not restore the state of any TL_i before its preemption
- iii It executes at most one restore action

The token that gets to P_3 arrives only via P_0 , which receives a token only once from the *Initial Transition* for TL_1 or from T_1 of TL_{i-1} for all TL_i , $2 \le i \le N$. Because the preemption action happens when the token gets to P_3 , a control block executes at most one preemption.

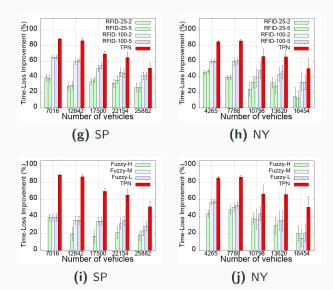
For properties (*ii*) and (*iii*), the token must get to P_6 via T_4 . As T_4 depends on P_4 and P_3 , a control block does not restore the state of a TL_i before P_3 triggered the preemption. Likewise, because P_4 gets only one token, the restore action happens at most once.

Performance Evaluation

- SUMO Simulator
- SP and NY
- All routes were generated using the OSMWebWizard tool
- Cars, trucks and motorcycles


Performance Evaluation

a long took
E Trans Constant
A Material In and Andrews
A Explan
Printing Income Tests France
E Lobar Salar
A BRA


Scenario	Car	Truck	Moto	Total	Scenario	Car	Truck	Moto	Total
1	3494	1167	2355	7016	1	2128	706	1431	4265
2	5826	2322	4694	12842	2	3544	1412	2833	7789
3	8136	3509	5855	17500	3	5009	2151	3639	10799
4	10457	4656	7041	22154	4	6422	2847	4353	13622
5	12258	5624	8000	25882	5	7830	3579	5045	16454
(a) Sao Paulo				(b) New York					

- A vehicle was chosen to be the EV in each city (crossing 65 TLs)
- Routes
 - EV: fixed
 - Other: dynamic
- Two other algorithms: RFID and Fuzzy
- 60 independent simulation runs

Simulation Results - Time Loss - No Preemption

Simulation Results - Time Loss Improvement - TPN \times RFID And Fuzzy

16

Limitations and Future Work

- Use more than one EV (conflict policies)
- $\bullet\,$ Allow improvement beyond 100%
 - by allowing that the EV speed be greater than the maximum speed limit of the streets
- Integrate our solution with the InterSCity middleware
 - real versus simulated time
- Go deep on Research challenges

Final Considerations

- Source code at https://github.com/ smartcity-tpn-preemption/tpn-preemption
- Comparision example
 - SP-1 https://youtu.be/_AgZ3HyDgCs
 - SP-5 https://youtu.be/7r_lyiemsE0

My e-mail: rodrigo.g.branco@gmail.com

