
Model-Driven Domain-Specific Middleware

Fábio M. Costa∗, Karl A. Morris†, Fabio Kon‡, Peter J. Clarke§
∗Instituto de Informática, Universidade Federal de Goiás, Goiânia-GO, Brazil

Email: fmc@inf.ufg.br
†Department of Computer and Information Sciences, Temple University, Philadelphia-PA, USA

Email: karl.morris@temple.edu
‡Department of Computer Science, University of São Paulo, São Paulo-SP, Brazil

Email: kon@ime.usp.br
§School of Computing and Information Sciences, Florida International University, Miami-FL, USA

Email: clarkep@cis.fiu.edu

Abstract—Middleware was introduced to facilitate the de-
velopment of sophisticated applications based on a uniform
methodology and industry standards. However, early research
and practice suggested that no one-size-fits-all approach was
suitable for all application domains and scenarios. This gave rise
to industry initiatives to standardize domain-specific middleware
services and profiles, as well as research efforts on configurable,
reflective, and adaptive middleware. The industry’s approach
led to easy deployment, although with a level of flexibility
limited by the extent of existing profiles. The approach of the
research community, on the other hand, enabled high flexibility,
allowing any middleware configuration to be defined. Never-
theless, creating sound configurations using this approach is a
challenging task, limiting the target audience to expert engineers.
As a consequence, both initiatives do not scale with the current
proliferation of specialized application domains. In this paper, we
target this problem with an approach that leverages model-driven
engineering for the construction of domain-specific middleware
platforms. A set of high-level, yet expressive, building blocks is
defined in the form of a metamodel, which is used to create mod-
els that specify the desired middleware configuration. We argue
that this approach enables the rapid development of middleware
platforms to match the proliferation of application domains, at
the same time as it does not require per-application middleware
construction or even highly skilled middleware engineers. We
present the current state of our research and discuss research
directions to fully realize the approach.

Index Terms—distributed systems middleware; middleware
engineering; adaptive middleware; model-driven engineering.

I. INTRODUCTION

Although middleware facilitates the development of applica-
tions, the construction of effective, robust middleware itself is
a very complex and challenging task. Engineering middleware
for a specific application domain requires not only good skills
in software design and implementation but also considerable
experience in implementing applications for that particular
domain. To take a middleware system built for one specific
domain and adapt it for another domain is a very difficult task
and frequently leads to non-optimized cumbersome solutions.

To address this challenge, in the past 20 years, middleware
researchers have proposed more flexible and configurable ways
to build such systems. Technologies such as customizable
and component-based middleware [1], [2], reflective mid-
dleware [3], aspect-oriented middleware [4], [5], real-time

middleware [6], and model-driven middleware [7] brought new
ways of architecting middleware to cope with the variety of re-
quirements, contexts and domains that such systems must deal
with. These approaches offer considerable flexibility for the
construction of middleware, but unfortunately their building
blocks do not leverage the common middleware requirements
found within particular application domains. Instead, they
focus on building custom middleware configurations from the
ground-up, using generic constructs that require significant
expertise, and providing no clear path to reusing middleware
across different applications within a domain. Furthermore, the
proliferation of specialized application domains, such as in the
Internet of Things and smart cities, requires new advances in
middleware engineering to support applications on different
devices with different needs with respect to QoS and other
non-functional properties.

We build on the knowledge acquired by the middleware
community in the past decades to propose a novel approach
for middleware design and implementation: Model-Driven
Domain-Specific Middleware (MD-DSM). We propose the
use of Model-Driven Engineering concepts to facilitate the
development of middleware systems that are specialized for
particular application domains. Moreover, to facilitate applica-
tion development by domain experts, or even by end-users, we
propose that middleware should be capable of running model-
based applications. Thus, we overload the meaning of “model-

driven” to convey the idea that middleware is built in terms

of models, as well as the fact that it runs applications that are

themselves defined in the form of models. MD-DSM thus seeks
to seamlessly unify three different perspectives of Software
Engineering research for middleware: the use of models to
build middleware, the ability to tailor middleware to specific
domains, and the use of middleware as an execution engine for
model-based applications. Middleware construction relies on
a domain-independent middleware modeling language, which
enables middleware engineers to define the structural and
functional elements of the platform for a specific domain.
Execution of application models, in turn, relies on a precise
description of domain-specific knowledge, which is used to
automatically generate the operational semantics required for
the correct interpretation of application model constructs. Fur-

2017 IEEE 37th International Conference on Distributed Computing Systems
© 2017 IEEE — DOI: 10.1109/ICDCS.2017.197
http://ieeexplore.ieee.org/abstract/document/7980137/



thermore, using models as a integral part of the development
process supports easy customization, rapid development, and
more comprehensive validation, starting at the design phase,
potentially with a high percentage of code generation, and
enabling round-trip engineering.

As a preliminary assessment of the approach, we review
existing realizations of its foundation elements. We review
a middleware architectural style based on application model
execution, followed by its use in different application domains.
We discuss an approach for building middleware using models
that capture the common characteristics of a domain in the
form of constructs for application development. This culmi-
nates with a description of MD-DSM as an approach to unify
the three software engineering perspectives mentioned above.

In the remaining of this paper, Section II considers the
motivation and challenges for MD-DSM, while Section III
describes its associated methodology. Section IV reviews exist-
ing research that supports its proposal. Section V presents the
foundation elements that underpin the approach, followed by
Section VI, which describes the design of an MD-DSM plat-
form. Section VII presents an evaluation of the foundational
elements. Finally, Section VIII discusses related work, and
Section IX concludes the paper, pointing out future research
directions.

II. MOTIVATION AND CHALLENGES

From an applications point of view, the motivation for
MD-DSM can be found, for instance, in the realm of the
Future Internet. The expected uses and the technologies that
enable the Future Internet will result in a proliferation of new
and specialized application domains. For instance, the general
Healthcare domain can be specialized into more specific sub-
domains, each with its own merits, such as elderly care, patient
monitoring, life support, epidemics management, and public
policy design, to mention just a few. Similarly, the broad Smart
Cities domain can be more conveniently handled in terms
of more specialized application domains, among them, traf-
fic control, public transportation, energy management, public
safety, air quality, waste management, and emergency services.
Specifically in the case of smart cities, Wenge et al. [8]
suggest that any domain-related service can be turned into a
smart-X system (e.g., smart transportation, smart traffic, smart
grid). Moreover, they argue in favor of the integration of such
smart systems as an essential aspect of a larger smart cities
picture. In addition to that, and based on the principles of
model-driven engineering, we argue that each such application
domain needs its own modeling language to facilitate the
creation and maintenance of new applications by utilizing
constructs that are familiar to users of that particular domain.

Thus, there is a need to tackle two related challenges: (1)
providing support for the development of middleware that is
tailored for specific application domains, and (2) the need to
develop and fully support domain-specific modeling languages
for each such domain. While answering the latter challenge is
a necessary step toward enabling the development of simple

applications by end-users, the former is a key ingredient to
efficiently support such applications.

In this paper, we target the first challenge above, namely,
the provision of an approach and related infrastructure to
facilitate the development of domain-specific middleware. The
second challenge, which refers to the development of domain-
specific application modeling languages for each domain of
interest, has been addressed in our past research [9]–[12]. We
assume the existence of such application modeling languages
and provide the means to build model-driven middleware to
support them by means of the dynamic execution of applica-
tion models.

We note that more traditional methodologies, such as
component-based development, can be used to produce spe-
cialized middleware for each domain [1], [2], [13]. However,
these methodologies do not scale well with the growing
number of application domains, as they require considerable
expertise in middleware design and implementation. The use
of model-driven techniques to build domain-specific middle-
ware, as discussed above, raises the level of abstraction and
makes the problem more tractable and amenable to non-
expert developers, possibly domain experts, as opposed to
being accessible only to middleware experts. In addition,
the abstractions used to develop applications on top of the
middleware are closer to the domain vocabulary, facilitating
the job of domain experts. Not only this improves the speed of
development but the formalization of such abstractions enables
the use of automated tools to verify the consistency of the
generated middleware, improving the reliability of its code.

Therefore, producing custom middleware configurations for
each and every specialized application domain becomes a fea-
sible target. Besides, middleware models may be realized on
top of a component-based substrate, thus leveraging existing
technology.

III. OVERVIEW OF THE APPROACH

The overall approach is outlined in Figure 1, which shows
the use of a common metamodel to create middleware models
for different domains. These models are then used to create
middleware instances that provide support for applications
in each domain. Applications, in turn, are also built using
a model-driven approach, noting the need for conformance
between the application domain-specific modeling language
(DSML) and the middleware model that supports it.

Figure 2 outlines the process of developing middleware and
applications in MD-DSM. Initially, the middleware platform
is generated from two input models: a model of its structural
elements, and a model of the domain knowledge describing its
operational semantics. Both are provided by someone taking
up the role of middleware engineer (such as a domain expert).

Note that, in contrast to early approaches to customized
middleware [14], [15], which add specialized components to
a generic base platform, MD-DSM provides, in the form of a
metamodel, the basic building blocks to construct entirely new
middleware structures. Another difference is that MD-DSM
explicitly focuses on the development of common middleware



Fig. 1. Model-Driven Domain-Specific Middleware: Overall approach.

Fig. 2. Outline of the MD-DSM process.

for a variety of applications within a focused domain, instead
of trying to customize middleware on a per-application basis.
Once the middleware is instantiated, it can interpret application
models provided by users, resulting in the orchestration of
the underlying resources and services to produce the intended
application behavior.

MD-DSM thus targets a specific architectural style for
middleware, based on a model execution engine that runs
application models created using an application-level DSML.
We adopt a particular reference architecture for the model
execution engine, based on layers of abstraction. This architec-
tural choice facilitates the creation of a common middleware
metamodel with well-defined execution semantics, at the same
time as it does not compromise MD-DSM’s ability to support
the creation of middleware for different application domains.

The reference architecture is structured in four layers: (1)
the User Interface layer provides a language environment for
users to specify application models; (2) the Synthesis layer
is responsible for transforming application models into se-
quences of commands; (3) the Controller layer is responsible
for driving the execution of commands, taking into account
the current context, applicable non-functional properties, and
assurance of soundness and safety of the applications seman-
tics; and (4) the Broker layer is responsible for interacting
with the underlying resources and services for the actual
execution of commands, considering systems issues such as
heterogeneity and concurrency. Note that we leverage on the
models@runtime approach [16], so that application models

can be reflectively modified at runtime with immediate effect
on how the underlying resources and services are handled.

IV. EXPERIENCE IN SPECIFIC APPLICATION DOMAINS

We now review previous experience that motivates MD-
DSM as a unifying approach for building domain-specific
middleware. We describe four different platforms, which,
despite being aimed at distinct application domains, share
the same foundation: the ability to dynamically interpret
domain-specific application models using a layered reference
architecture. MD-DSM resulted from an effort to generalize
and systematically apply the architectural principles of those
platforms, contributing to streamline the construction of cus-
tom middleware for particular application domains. Note that,
for historical reasons, the term ‘middleware’ is used in this
section to refer to the specific layer that deals with the delivery
of services and their associated non-functional properties,
whereas in the generalized approach of MD-DSM, it refers to
the entire platform that supports the development, execution,
and runtime adaptation of model-driven applications.

A. Communication Domain

The Communication Modeling Language (CML) is a DSML
for the domain of user-to-user communication [9], [10]. It
enables domain experts to describe models for particular
communication scenarios. Such models are fed into a model
execution engine, called Communication Virtual Machine

(CVM), which enacts the behavior intended by the user (as
expressed in the model) by means of the orchestrated use of
underlying communication services. It should be noted that
the models used to specify the communication scenarios are
based on the semantics of distributed applications and the
CVM must therefore exhibit the behavior associated with such
systems, including concurrency, scalability, fault tolerance and
transparency, among others.

CML may be used to create two types of models: schema

and instance, similar to the concepts of class and object in
the OO paradigm. Schemas can be divided into control –
that defines the configuration of the communication, and data

– that defines the media and media structures that can be
used in the communication defined by the control schema.
The CVM consists of a four-layer architecture as shown in
Figure 3. The purpose of each layer is as follows: (1) user

communication interface (UCI) – provides the user with the
ability to specify his/her communications needs; (2) synthesis

engine (SE) – transforms CML models into control scripts and
negotiates communication models with other parties in the
communication; (3) user-centric communication middleware

(UCM) – is responsible for the delivery of the communication
services by interpreting the control scripts from the SE; and (4)
network communication broker (NCB) – provides a network
independent API to the UCM and hides the heterogeneity of
the underlying communication services.

B. Smart Microgrids Domain

We developed a modeling language and execution engine
for energy management in the smart microgrid domain [11],



User / Application (local)

User Comm. Interface 
(UCI)

Synthesis Engine (SE)

User-Centric Comm. 
Middleware (UCM)

Network Comm. Broker 
(NCB)

Communication Networks

CVM

Network Session

Legend
Control and Data Flow Virtual Communication

User / Application (local)

User Comm. Interface 
(UCI)

Synthesis Engine (SE)

User-Centric Comm. 
Middleware (UCM)

Network Comm. Broker 
(NCB)

Communication Networks

CVM

Fig. 3. Communication Virtual Machine (CVM).

based on the approach used for the communication domain.
In this work, the modeling language was the Microgrid

Modeling Language (MGridML) and the execution engine
was the Microgrid Virtual Machine (MGridVM). The user
expresses the configuration requirements of the microgrid,
which maybe a home, using MGridML and the MGridVM
interprets the model to realize the state of the system. Unlike
the communication domain, the models for the microgrid
domain exhibit the behavior associated with the semantics of
a centralized application and include features such as a shared
main processing unit, accessibility to all resources, and high
resource utilization, among others.

MGridVM uses a four-layer architecture similar to the CVM
as shown in Figure 4. The differences are mainly due to the
nature of the domain. The layers of the MGridVM are: (1)
microgrid user interface (MUI) – provides the user with the
ability to create MGridML models specifying the requirements
of the energy management in the microgrid; (2) microgrid

synthesis engine (MSE) – transforms the MGridML models
into control scripts and establishes causality with the plant con-
trollers; (3) microgrid control middleware (MCM) – interprets
control scripts, maps logical controllers to physical controllers,
applies energy management algorithms, and enforces policies
for various device configurations; and (4) microgrid hardware

broker (MHB) – responsible for issuing atomic commands
to the microgrid controllers (and devices) and for monitoring
controller states.

C. Smart Spaces Domain

We developed another modeling language, called 2SML,
and its respective execution engine, 2SVM, for the domain
of smart space programming [12]. The language constructs
represent the main kinds of elements that constitute smart

Users

Microgrid User Interface (MUI)

Microgrid Synthesis Engine 
(MSE)

Microgrid Control Middleware 
(MCM)

Microgrid Hardware Broker 
(MHB)

Plant Controllers

MGridVM

Smart 
Contoller A Controller B

Smart 
Device C

Fig. 4. Microgrid Virtual Machine (MGridVM).

spaces – users, smart objects, and ubiquitous applications
– along with the relationships among them. The execution
engine interprets a 2SML model and generates the necessary
commands to configure the programmable entities of the smart
space (smart objects and applications).

The execution engine has a four-layer architecture similar
to CVM. The main difference is that the architecture was
adapted to the characteristics of the execution environment:
the instance of 2SVM that runs on the central device that
controls the smart space only has the three top layers, while
the instances that run on smart objects only have the two
bottom layers. The rationale for this is that model synthesis
only happens in the smart space controller, which dispatches
the synthesized control scripts to the middleware layer on the
smart objects. The broker layer, in turn, is only necessary in
the smart objects, which is where 2SVM actually interacts with
the controlled resources. Another important difference is that
the generated control scripts are not immediately executed by
the middleware layer. Instead, they are installed at the layer
and their execution is triggered by asynchronous events, such
as when smart objects enter or leave the environment.

D. Mobile Crowdsensing Domain

Finally, we also developed a modeling language and its
corresponding execution engine for the domain of participa-
tory sensing using smartphones. They are called CSML and
CSVM, respectively, and allow the user to specify models
that represent crowdsensing queries, which in turn are dy-
namically interpreted to drive the acquisition of sensing data
(from participating devices) and the subsequent processing
to produce the query results [17]. For long running queries,
CSVM also allows on-the-fly changes to the user’s model,
which dynamically reflect on the execution of the query.



Similarly to 2SVM, CSVM adopts an adaptation of the four-
layer architecture, according to the execution environment. A
crowdsensing environment is composed of a logically central-
ized provider and a potentially large set of devices. The CSVM
configuration that runs on mobile devices has all the four
layers, whereas the configuration that runs on the provider only
has the three bottom layers, since creation and modification
of user models only happens in the mobile devices.

E. Discussion

A common characteristic of the above platforms is that
they share the same architectural style and reference archi-
tecture. The architectural style is that of a model execution
engine, which takes application models as input and produces
application behavior based on the model-driven orchestrated
use of underlying resources. For instance, in the case of
CVM, the resources are the communication services, whereas
in MGridVM they are the microgrid controllers and smart
devices. As for the reference architecture, the platforms adopt
a four-layer architecture with user interface, synthesis engine,
middleware (henceforth called controller), and broker layers.

The reference architecture (and the architectural style it
implements) has proven adequate for the design of middleware
in the four very different application domains reviewed in this
section. It is flexible enough to be adapted to the processes,
concepts and execution environment that characterize each
domain, and yet is expressive enough to fully enable the
realization of applications in each case. For instance, while the
CVM adopts a synchronous model of execution, based on the
control of streaming and data communication among a handful
of interacting parties, the other three platforms follow a
mostly asynchronous mode of execution, in environments with
potentially large numbers of objects that present important
scalability requirements. This enables us to propose it as the
architectural basis for the middleware engine that underlies
the MD-DSM approach. In comparison with more traditional
middleware, this reference architecture raises the level of
abstraction of the middleware interface used by application
developers: from the traditional API level to the level of user-
defined models, which is precisely the interface provided by
the Synthesis and UI layers.

V. ELEMENTS OF THE APPROACH

The experience gained with building these platforms en-
abled us to identify the common structures that must be present
in model-driven middleware independently of any particular
application domain. Based on this, we have identified two
foundational principles to build domain-specific middleware
using the layered reference architecture described above, to-
gether with their corresponding domain-independent building
blocks and supporting mechanisms.

A. Model-based construction of middleware

As demonstrated in Section IV, the four-layer architecture
for model execution engines can be applied to build middle-
ware for multiple, diverse application domains. Based on this

Fig. 5. High level structure of the metamodel.

experience, we are currently developing a metamodel that cap-
tures the principles and constructs used to build such platforms
and which are common across domains. A middleware model,
which is created as an instance of this metamodel, defines
the mechanisms and structures needed to interpret user-defined
application models. In other words, it describes the model of

execution (MoE) for an application-level DSML.

The middleware metamodel is complemented by a generic,
domain-independent, runtime environment responsible for
loading and executing middleware models to realize their
respective MoE [18]. The runtime environment is used to
generate and execute the appropriate middleware components
defined in the model. It does so with a component factory
that generates each middleware component based on code
templates that are parameterized with metadata from the
middleware model. It also provides threads (and the underlying
concurrency model) to run the middleware components.

The actual semantics of the application domain, in turn,
is specified together with the middleware model, in terms of
actions that convey the behavior of each of the constructs
defined in the application-level DSML. Importantly, alternative
actions can be defined for the same construct, and the choice of
action to use in a particular execution of an application model
element is based on policies and context variables defined in
the middleware model.

This approach has been demonstrated in two application
domains: communication [18] and microgrids [19]. The macro
structure of the middleware metamodel is in accordance with
the layered architecture described in Section IV. Each layer is
defined by its own (sub-)metamodel, as shown in Figure 5.

We currently have fully functional metamodels for the Bro-
ker and Controller layers, as described next. The metamodel
for the Synthesis layer is currently under development. It
will be a generalization of the computational model for the
synthesis process defined in [11], which is based on the use
of labeled transition systems to encode the domain-specific
semantics of model synthesis. The main components in the
synthesis engine are: (1) model comparator - compares the
new user-defined model and the current runtime model to
produce a change list; (2) change interpreter - processes the
change list to generate control scripts (using the current state
of the labeled transition system) and handles events from the
Controller layer; and (3) dispatcher - dispatches a new runtime
model to the UI and updates the currently executing model.
As for the UI layer, we leverage on existing tooling, such
as those that compose the Eclipse Modeling Framework [20],
which provide model editors and other model manipulation



tools generated from the metamodel of the given DSML.

A simplified view of the metamodel for the Broker layer is
shown in Figure 6. It defines the constructs that are needed
to build different configurations of the layer. Among such
constructs are the main Manager, which is responsible for
exposing the layer’s interface and handling calls received
from the upper layer and events received from the underlying
resources. Calls and events are handled by selecting and
dispatching appropriate actions, as discussed below. Besides
the main manager, the metamodel enables the definition of spe-
cialized managers for other aspects of the layer’s functionality:
state management (to store and manipulate the layer’s runtime
model), policy management (to evaluate and execute policies
that govern the layer’s behavior), autonomic management (for
self-configuration), and resource management (to interface
with the underlying resources).

A middleware engineer thus models a configuration of the
Broker layer by instantiating and appropriately initializing the
elements of this metamodel, according to the requirements of
the application domain. For instance, for the Autonomic

Manager, different symptoms, change requests and change
plans may be defined to specify the different situations in
which autonomic behavior is triggered and how to handle each
such occurrence. In addition, the middleware engineer also
needs to specify the actions to be executed in response to calls
and events received by the Broker layer. These are specified
in the model as instances of Action and Handler, respec-
tively, which define the mechanisms to select the appropriate
action in each case.

The metamodel for the Controller layer is similar. The main
differences are: (a) it does not have the resource and autonomic
managers, two features that are unique to the Broker layer;
and (b) it replaces the elements that represent signals, calls,
and events with elements to represent the command scripts
that are received from the Synthesis layer. In addition, the
Handler now has the responsibility to iterate over the scripts,
choosing the appropriate action to interpret each command. A
more detailed design of the Controller layer is presented in
Section VI, as part of the integrated MD-DSM approach.

B. Separating Domain Knowledge from Model of Execution

Based on the application-level DSMLs and their respective
execution engines described in Section IV, as well as their
common features, the next logical step was to separate the
domain-specific knowledge (DSK) from the model of exe-
cution (MoE) in the execution engines. This resulted in a
generic MoE (or simply GMoE) for each layer of the reference
architecture. In the following, we describe the separation
of the DSK from the MoE for each layer, paying special
attention to the Controller layer. Key to the instantiation of an
MD-DSM platform, as shown in Figure 2, is the integration
of the middleware model (instantiated from the middleware
metamodel) and the DSK.

As suggested in the previous section, the separation between
DSK and MoE for the UI layer is facilitated by the existing

tools used to create the modeling environment. The domain-
specific knowledge is contained in the metamodel for the
DSML and the tools (Eclipse Modeling Framework [20] and
Graphical Modeling Framework [21]) provide the MoE needed
to instantiate the UI.

The input to the Synthesis layer is a sequence of user-
defined DSML models and the output is a set of control scripts
sent to the Controller layer for processing. The semantics
used to execute DSML models in the Synthesis layer involves
comparing two models at runtime: the model that is currently
running (an empty model if the system has just been started)
and a new (updated) model submitted by the user. Based on
the differences between the two models and on the current
state of the system, the semantics is determined [11].

The MoE for the Synthesis layer includes the actions
performed by the model comparator, change interpreter, and
dispatcher components (see Section V-A). The domain-specific
knowledge includes the metamodel for the DSML, labeled
transition systems containing the behavior, and the metamodel
for the control scripts. The labeled transition systems contain
the behavior for the level of abstraction relevant to the synthe-
sis process. A more detailed explanation of the separation of
the domain-specific knowledge and the MoE for the Synthesis
layer is presented in [11]

Unlike the UI and Synthesis layers of the execution engine,
the DSK and MoE are more tightly coupled in the Broker
layer. Allen et al. [22] provide a detailed description of the
behavior of the network communication broker for the CVM.
Although there is no current work describing how the DSK and
MoE may be separated for the existing broker of the CVM,
Section V-A outlines an early approach for instantiating the
DSK and MoE for the components of this layer. This is one
of the areas for future research in MD-DSM.

The main layer that addresses operational variability is the
middleware control layer (Controller). Its main purpose is
to execute the command scripts received from the Synthesis
layer. It does so by isolating the commands contained in
a script and dynamically generating, for each command, an
executable model that conveys the operational semantics of
the command in accordance with the current context and user-
defined rules. To achieve this goal, the Controller layer focuses
on classification as a pillar of its design. In this approach,
domain operations are placed in categories that describe their
goal. Additionally, we classify various data used by the layer
using a similar mechanism, but with the purpose of being able
to refer to these data as opposed to categorizing them [23].

By breaking down operational facets to their composite
operations and data, and classifying these components based
on their goal, we are able to demarcate the specific concerns of
a domain. Having determined this classification, the remaining
executing components are void of any domain-specific con-
cerns and therefore formed the domain-independent portion
of the architecture.

To properly capture domain-specific concerns (classification
and operations) we define two artifacts, and related sub-
artifacts:



Fig. 6. Metamodel for the Broker layer.

• Domain Specific Classifiers, or DSCs, categorize opera-
tions and data based on the business rules of a domain.
A set of classifiers is generated for a domain following
an analysis of the various operations that take place in a
given system, and the data with which these operations
are concerned. Once generated, the DSCs serve as a
mechanism to describe interfaces with implicit domain-
specific constraints. This is tangentially related to the
definition of interfaces found in object oriented design.

• Procedures, and their accompanying execution units

(EUs), undertake the domain specific operations of the
controller. They are classified by DSCs (to reduce com-
plexity, current constraints limit a single procedure to
be classified by a single DSC), allowing them to be
considered as candidates to realize the abstract operation
(i.e., the interface) that matches their classifying DSC.

With these domain-specific artifacts, the execution engine
mentioned above is able to perform the operations of the sys-
tem’s middleware and can examine various ways of executing
a particular command depending on the number of procedures
whose classification matches a particular DSC.

The generation of an execution model operates on procedure
metadata to determine the optimal configuration of a set of
procedures to carry out a requested operation based on active
policies. It determines valid configurations by examining the
DSC-described dependencies of a procedure X, and matches
them with other procedures that are classified by the DSCs
on which X depends. This step is repeated recursively while
ensuring that unwanted configurations such as cycles are
avoided, until a procedure dependency tree is generated. This
tree is referred to as an Intent Model (IM), see Figure 7,
whose operation is classified by the classifying DSC of the
root procedure. It is understood that once generated, an IM
can perform the requested operation through its execution.

Once generated, an IM is executed by the Controller layer
by examining the EUs of the various procedures and executing
the statements found therein. A set of domain-independent
operations are available to a running EU that cover areas such
as memory management, event handling, message passing and
remote calls. These generic operations form the Controller’s
model of execution, and dictate how a procedure is able to

Fig. 7. Intent Model definition.

undertake its function. The concrete implementation of the
model of execution is the Controller’s execution engine.

The execution engine of the Controller is a stack machine
that operates by executing the EUs of the procedure currently
on top of the stack. In addition to executing its own code, a
procedure X, through its EUs, can call procedures that were
matched to its declared dependencies, which results in the
called procedure being pushed onto the stack, or it can signal
that it has completed its operation, resulting in the procedure
being popped from the stack. An invocation of a procedure
declared as a dependency is accomplished through a DSC-
based call. When invoked, the execution engine retrieves the
previously matched procedure from the IM and begins the
execution of that procedure’s EUs. The execution of an EU
involves making calls to the underlying Broker layer through
a set of exposed APIs. The APIs allow the Controller layer to
execute the various domain-specific operations for which the
EUs and containing procedures were developed, as well as any
domain-independent operations that the Controller requires,
such as remote communication and coordination.

C. Discussion

The metamodel-based approach described in Section V-A is
flexible enough to model middleware for different application



domains. It even enables very different middleware config-
urations, such as those described in Section IV, where an
entire layer may be suppressed if not needed. A limitation
of the approach, however, is that it does not separate the
internal structure and semantics of the middleware (defined
by the managers and their features) from the semantics of
the DSML that it runs (defined by the set of actions). They
are both specified as part of the same middleware model.
Although this is a valid approach, as demonstrated in [18]
and [19], it results in unnecessary coupling. For instance,
if new courses of action (to interpret the DSML constructs)
need to be implemented, the entire middleware model may
need to be reloaded, which may be a cause of inefficiency.
Moreover, the lack of separation may become confusing as it
merges the concerns related to middleware engineering with
those of application-level DSML engineering (which include
the actions that define the DSML semantics).

Ideally, the internal structure and semantics of the middle-
ware and the semantics of the application domain should be
specified separately. The approach described in Section V-B
allows precisely such separation. Nevertheless, the existing
realization of this approach assumes a fixed configuration
for the middleware model of execution, thus not exploiting
opportunities to make it more tailored (and efficient) for
each application domain. MD-DSM, as discussed in the next
section, is based on the observation that these two approaches
complement each other in a synergistic way, combining their
benefits and solving each other’s limitations.

VI. DESIGNING AN MD-DSM PLATFORM

The conceptual elements that comprise the vision of Model-
Driven Domain-Specific Middleware were laid out in Sec-
tion III. In this section, we describe our first efforts towards
combining the two foundational principles reviewed in Sec-
tion V. This combination represents a significant step towards
realizing the MD-DSM vision. The result is an approach
that enables engineers to exploit the characteristics of each
application domain to build middleware that is tailored to
the domain. It does so by using a separation of concerns
approach that allows the internal structure of the middleware
to be described separately from the operational semantics of
the application modeling language.

Currently, we have defined the architectural foundation to
combine the two principles at the level of the Controller
layer. The metamodel for this layer has been extended with
constructs to represent the intent model generation feature
described in Section V-B. A possible configuration for the
Controller layer, which would have been defined as part of
a middleware model, is shown in Figure 8. The figure only
shows the elements that are related to the integration of the
two principles (other elements, such as policy evaluators and
resource managers, are omitted for brevity).

As shown in Figure 8, calls generated by the Synthesis
layer (from the user’s application model), together with events

received from the underlying layer (Broker) or generated at
the Controller layer itself, are received by Controller layer’s

Fig. 8. Sample Model of Execution for the Controller layer.

facade. Both calls and events are treated in the same way
and thus are indistinctly called signals. Received signals
are queued for processing and then parsed to generate the
commands that convey the intent of the user’s model in a
procedural way.

The metamodel enables coexistence of two distinct ap-
proaches to define the operational semantics of commands:
Case 1 – selection of predefined actions; and Case 2 – dynamic
generation of intent models (IMs). In both cases, the selection
or generation process is guided by domain-specific classifiers
(DSCs) defined as part of the layer’s model. These DSCs are
used either by Action Handlers to select an appropriate action
to execute each command, or by an Intent Model Handler

to instrument IM generation using the approach described in
Section V-B. Importantly, the choice of which approach to
use for each received command is determined by a command
classification step that precedes actual command execution.
Command classification takes into account domain policies
and context information to choose between cases 1 and 2 for
each command. Irrespectively of choosing Case 1 or Case
2, the resulting behavior is expressed either in the form of
calls to the Broker layer or events that represent exceptional
conditions to be processed by the Controller layer itself (via
Event Handler).

Finally, note that Figure 8 is only an example, as other
configurations are possible. For instance, we may define a
Controller layer that relies solely on predefined action handlers
for domains where efficiency is more important than flexibility.
Conversely, for domains with highly dynamic behavior, flexi-
bility may be more important, and we may have a Controller
that relies solely (or mostly) on dynamic IM generation.
Another rationale for balancing the choice between cases 1
and 2 is related to the amount of memory available to run
the middleware. In cases where memory footprint needs to be
reduced, dynamic IM generation avoids having to store a large
number of predefined actions for each available command.

VII. PRELIMINARY EVIDENCE

In this section we present existing results on the implemen-
tation and evaluation of the two foundational elements for the



MD-DSM approach. These results enable us to demonstrate
the effectiveness and the performance of these two elements
when used separately. They also serve as preliminary evidence
for the effectiveness of their combined use.

A. Model-based construction of middleware

The metamodel-based approach described in Section V-A
has been successfully employed to construct middleware for
the domains of communication and smart microgrids. In both
cases, we were able to validate the behavioral equivalence (in
terms of the sequence of commands that were generated for
the underlying resources as a result of model interpretation) of
the model-based implementations of the middleware and their
original, handcrafted, counterparts.

An initial performance evaluation was based on a version of
CVM’s Broker layer built using the metamodel [18]. The intent
was to compare the performance of the model-based version
with that of the original layer of CVM presented in [22],
[24]. A set of eight scenarios for multimedia communication,
including session establishment, reconfiguration and recovery
from failures, were implemented using both versions of the
Broker layer. In terms of raw performance, the model-based
version spent, on average, 17% more time to execute the
scenarios than the original version. This overhead is a direct
consequence of the extra flexibility allowed by the model-
based approach. However, we note that in this experiment we
decided to model an exact copy of the original Broker layer.
The flexibility of the model-based approach would enable us
to model leaner configurations for each of the layers, featuring
only the strictly required components, thus contributing to
compensate for the extra overhead.

Please note that the evaluation did not consider the time re-
quired to load the middleware model into the runtime environ-
ment and getting it up and running, which is a time-consuming
operation. Nevertheless, this operation is only carried out at
initialization time, thus not affecting the performance of the
middleware when it runs application models.

B. Separating Domain Knowledge from Model of Execution

In order to test the middleware’s approach to separate
concerns and address variability in operations, as well as the
effectiveness of its execution model, we performed a domain
analysis, and subsequently created the specific artifacts for
the same two domains: communication [10], [23], and smart
microgrids [11], [23]. A summary of the results, focusing on
the Controller layer of the execution engine for these domains,
is presented below.

The evaluation involved the design of DSCs and procedures
for both domains, expressing typical scenarios and measuring
the ability and efficiency of the layer to execute them. To test
the Controller layer’s ability to separate concerns, we focused
on its execution engine (the domain-independent aspect) to
operate with DSCs and procedures from both domains without
modification. In order to test variability, we populated the
Controller’s repository with multiple procedures that matched
specific DSCs and then measured its ability to choose one

execution path instead of another based on environmental
context. In both scenarios, the Controller’s repository was
populated with metadata of 100 curated procedures aimed at
achieving optimum dependency matching. With this test, the
Controller layer was able to complete a full generation cycle
(IM generation, validation, and selection) in under 120 ms,
with the average cycle time quickly approaching 1 ms as we
approached 100000 cycles (equivalent to 100000 sequential
requests to the Controller) [23]. It was also shown that while
the response time of our Controller layer architecture was
measurably slower than a previous non-adaptive Controller
undertaking the same task, scenarios where adaptability was
beneficial to the task at hand would result in as much as
an order of magnitude improvement in response time for our
adaptive Controller layer (approx. 800 ms for our architecture,
compared to approx. 4000 ms for the older non-adaptable
architecture). Additionally, due to the separation of domain-
specific concerns, we were able to achieve a reduction in lines
of code (from 1402 to 1176) resulting in smaller compiled
bytecode and execution footprint.

We were able to demonstrate the applicability of our ap-
proach with successful tests in both domains. Additionally, we
tested the time requirements of the architecture compared to
non-adaptable systems and found our results to be promising
when considering the additional capabilities achieved [23].
While this does not allow us to declare the general applica-
bility of our approach in any domain for which a DSVM was
deemed appropriate, the results are encouraging and motivate
further research.

C. Discussion

The two approaches used as the basis for MD-DSM –
model-based construction of middleware, and separation of
domain knowledge from the model of execution – are fairly
orthogonal to each other. The former allows the construction
of domain-specific models of execution (MoE), while the latter
enables the incorporation of domain knowledge in the gener-
ated MoE. In fact, the integration and subsequent operation of
the domain knowledge in the MoE is significantly transparent
to the actual configuration of MoE in use. Thus, it is reasonable
to argue that the separate evaluation of the two approaches
provide a good indication for their performance as part of
the unified approach. As future work, we aim to confirm
this argument by repeating the above experiments using the
integrated prototype that we are currently developing.

VIII. RELATED WORK

The MD-DSM approach crosscuts research in a number of
related areas, from model-driven engineering to configurable
and adaptive middleware, including combinations of both.

In particular, the Domain-Specific Development Infrastruc-
tures (DSDI) approach [25] closely relates to MD-DSM. It
entails the use of a common metamodel to establish the
semantics of a set of related domain-specific modeling lan-
guages (DSML). A model interpreter is generated from the
integration of the metamodels of these modeling languages.



This interpreter, in turn, is able to generate code from appli-
cation architecture models targeting a particular middleware
platform. Although the DSDI approach in principle supports
domain-specific middleware (the middleware is represented as
one of the integrated metamodels), it crucially differs from
MD-DSM in which it assumes that the middleware platform
for a particular domain already exists. MD-DSM, in contrast,
provides principled support for the creation of domain-specific
middleware. Nevertheless, the common metamodel of DSDI,
which provides the semantic anchoring for the DSMLs, offers
a useful perspective from which to view the relationship
between the common middleware metamodel of MD-DSM
and the application metamodels. In fact, the DSDI approach to
metamodel integration can be useful to automatically enforce
conformance between the middleware model and the respec-
tive application modeling language in MD-DSM.

Model-Driven Middleware [7] (MDM) focuses on the gen-
eration of middleware for distinct applications with specific
QoS requirements. MDM has been successfully used to sup-
port configuration and deployment of QoS-enabled publish-
subscribe middleware for large component-based systems [26]
and, more recently, to optimize middleware for the different
variants of a software product-line [27]. The approach, how-
ever, does not consider the wider problem of building common
middleware for specific application domains, as in MD-DSM.

A more explicit approach for the use of models and
metamodels to build middleware is proposed in [28], which
describes Genie, a development tool that combines component
frameworks, reflection, and software families for the devel-
opment of dynamically configurable middleware platforms.
Genie proposes the use of different DSMLs (and thus differ-
ent metamodels) to model middleware for different domains
(e.g., one DSML for the domain of pub-sub middleware,
and another for the domain of grid middleware). In contrast,
MD-DSM employs a single, domain-independent metamodel
to express the structure of middleware platforms, while the
domain semantics is captured using a complementary set of
constructs, as described in Section V. We argue that this unifies
the experience of creating middleware platforms for different
domains, without the need to create and manage a variety
of middleware modeling languages. More recently, Bencomo
et al. [29] have proposed the use of models@runtime to dy-
namically generate middleware connectors for interoperability
among heterogeneous networked systems. Interestingly, the
runtime models used to synthesize connectors are themselves
created at runtime from models that specify the networked
systems that need to interoperate. This provides an interesting
perspective for MD-DSM, as their approach could inspire
a solution for the interoperability problem across different
domain specific middleware platforms.

IX. CONCLUSION

Configurability and dynamic adaptability are now common
middleware features, both in research prototypes and, to
a certain extent, in industry products. As a result, it has
become possible to tailor middleware to particular domains

and usage scenarios. However, the proliferation of application
domains increases the demand for custom middleware, with
features that closely match the requirements of a particu-
lar domain. Under these circumstances, current middleware
engineering techniques are just too time-consuming, as they
require significant expertise in middleware development. Our
approach addresses this problem by raising the level of
middleware development from code-level programming to
high-level model specification, with the immediate effect of
facilitating the creation of custom middleware for emerging
domains. Furthermore, the approach extends the benefits of
model-driven development to the application level, as the
resulting middleware supports the execution of applications
that are themselves defined in the form of models using a
domain-specific modeling language. We argue that this high-
level methodology for application development, coupled with
the domain specificity offered by MD-DSM, will contribute
to make the task of creating new, purpose-built apps more
accessible to novice developers and even to power end-users.

Our research to date has demonstrated the feasibility of MD-
DSM in terms of its constituent elements, namely the model-
driven construction of middleware and the description and
automated generation of the operational semantics needed for
the middleware to execute application models. These elements
were validated and evaluated in different application domains.
The results, both in terms of performance and functionality,
not only indicate the feasibility of the combined approach, but
also provide good perspectives for our ongoing work to fully
realize the MD-DSM vision.

The main research challenges to be addressed include the
need for an approach to systematically extract the middle-
ware requirements of an application domain and to provide
assurance about the appropriate matching between such re-
quirements and the structure and functionality described in the
respective domain-specific middleware model. Related to that,
an approach is also needed to systematically ensure that the
generated MD-DSM adequately supports the application-level
DSML. Supporting more elaborate application-level DSMLs,
as in aspect-oriented modeling [30], is another important
challenge, and an MD-DSM platform should be capable of
simultaneously executing (through a weaving step) multiple
related models that describe the different concerns of an
application. Finally, performance issues need to be addressed
with respect to the requirements and characteristics of each
application domain, in order to tune and optimize an MD-
DSM instance for its respective domain.

ACKNOWLEDGMENT

The authors would like to thank FAPEG, the research sup-
port foundation of the state of Goiás, Brazil, for partly funding
this work. This research is part of the INCT of the Future
Internet for Smart Cities funded by CNPq, proc. 465446/2014-
0, CAPES proc. 88887.136422/2017-00, and FAPESP, proc.
2014/50937-1. The authors would also like to thank Weider
Barbosa, from UFG, for his work on an early prototype.



REFERENCES

[1] M. Roman, D. Mickunas, F. Kon, and R. H. Campbell, “LegORB and
ubiquitous CORBA,” in Reflective Middleware Workshop. Palisades,
NY: ACM/USENIX, 2000, pp. 1–2.

[2] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama,
and T. Sivaharan, “A generic component model for building systems
software,” ACM Transactions on Computer Systems (TOCS), vol. 26,
no. 1, p. 1, 2008.

[3] F. Kon, F. Costa, G. Blair, and R. H. Campbell, “The case for reflective
middleware,” Communications of the ACM, vol. 45, no. 6, pp. 33–38,
Jun. 2002.

[4] E. Truyen, N. Janssens, F. Sanen, and W. Joosen, “Support for distributed
adaptations in aspect-oriented middleware,” in Proceedings of the 7th
International Conference on Aspect-oriented Software Development, ser.
AOSD ’08. New York, NY: ACM, 2008, pp. 120–131.

[5] C. Zhang and H.-A. Jacobsen, “Resolving feature convolution in mid-
dleware systems,” in Proceedings of the 19th ACM Conference on
Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA). New York, NY: ACM, 2004, pp. 188–205.

[6] H. Pérez and J. J. Gutiérrez, “A survey on standards for real-time
distribution middleware,” ACM Comput. Surv., vol. 46, no. 4, pp. 49:1–
49:39, 2014.

[7] A. Gokhale, K. Balasubramanian, A. S. Krishna, J. Balasubramanian,
G. Edwards, G. Deng, E. Turkay, J. Parsons, and D. C. Schmidt, “Model
driven middleware: A new paradigm for developing distributed real-time
and embedded systems,” Science of Computer Programming, vol. 73,
no. 1, pp. 39 – 58, 2008.

[8] R. Wenge, X. Zhang, C. Dave, L. Chao, and S. Hao, “Smart city archi-
tecture: A technology guide for implementation and design challenges,”
Communications, China, vol. 11, no. 3, pp. 56–69, March 2014.

[9] Y. Deng, S. M. Sadjadi, P. J. Clarke, V. Hristidis, R. Rangaswami,
and Y. Wang, “CVM – A communication virtual machine,” Journal of
Systems and Software, vol. 81, no. 10, pp. 1640–1662, 2008.

[10] Y. Wu, A. A. Allen, F. Hernandez, R. France, and P. J. Clarke, “A
domain-specific modeling approach to realizing user-centric communi-
cation,” Software: Practice & Experience, vol. 42, no. 3, pp. 357–390,
2012.

[11] M. Allison, K. A. Morris, F. M. Costa, and P. J. Clarke, “Synthesiz-
ing interpreted domain-specific models to manage smart microgrids,”
Journal of Systems and Software, vol. 96, pp. 172–193, 2014.

[12] L. A. Freitas, F. M. Costa, R. C. A. Rocha, and A. Allen, “An
architecture for a smart spaces virtual machine,” in Proceedings of the
9th Workshop on Middleware for Next Generation Internet Computing,
2014, pp. 7:1–7:6.

[13] P. Costa, G. Coulson, C. Mascolo, L. Mottola, G. P. Picco, and
S. Zachariadis, “Reconfigurable component-based middleware for net-
worked embedded systems,” International Journal of Wireless Informa-
tion Networks, vol. 14, no. 2, pp. 149–162, 2007.

[14] V. Issarny, C. Bidan, and T. Saridakis, “Achieving middleware cus-
tomization in a configuration-based development environment: expe-
rience with the aster prototype,” in 4th Int. Conf. on Configurable
Distributed Systems, 1998, pp. 207–214.

[15] M. Astley, D. C. Sturman, and G. A. Agha, “Customizable middleware
for modular distributed software,” Commun. ACM, vol. 44, no. 5, pp.
99–107, May 2001.

[16] G. Blair, N. Bencomo, and R. France, “Models@run.time,” Computer,
vol. 42, no. 10, pp. 22–27, Oct 2009.

[17] P. C. F. Melo, R. C. A. da Rocha, and F. M. Costa, “Enabling dynamic
crowdsensing through models@runtime,” Journal of Applied Computing
Research, vol. 5, no. 1, pp. 17–31, 2016.

[18] G. C. M. Sousa, F. M. Costa, P. J. Clarke, and A. A. Allen, “Model-
driven development of DSML execution engines,” in Proceedings of the
7th Workshop on Models@Run.time, ser. MRT ’12. New York, NY,
USA: ACM, 2012, pp. 10–15.

[19] A. S. Jr., F. M. Costa, and P. Clarke, “A model-driven approach to
develop and manage cyber-physical systems,” in Proceedings of the 8th
Workshop on Models@Run.Time. Miami, Florida: CEUR Workshop
Proceedings Series, 2013, pp. 1–11.

[20] The Eclipse Foundation, “Eclipse modeling framework,” May 2016,
http://www.eclipse.org/modeling/emf/.

[21] ——, “Graphical modeling framework,” May 2016,
http://www.eclipse.org/modeling/gmp/.

[22] A. A. Allen, F. M. Costa, and P. J. Clarke, “A user-centric approach to
dynamic adaptation of reusable communication services,” Personal and
Ubiquitous Computing, vol. 20, no. 2, pp. 209–227, 2016.

[23] K. A. Morris, M. Allison, F. M. Costa, J. Wei, and P. J. Clarke, “An
adaptive middleware design to support the dynamic interpretation of
domain-specific models,” Information & Software Technology, vol. 62,
pp. 21–41, 2015.

[24] A. A. Allen, “Abstractions to support dynamic adaptation of communi-
cation frameworks for user-centric communication,” Ph.D. dissertation,
Florida International University, Miami, FL, 2011.

[25] G. Edwards and N. Medvidovic, “A methodology and framework for
creating domain-specific development infrastructures,” in Proc. 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2008), Sept 2008, pp. 168–177.

[26] G. Edwards, G. Deng, D. C. Schmidt, A. Gokhale, and B. Natarajan,
“Model-driven configuration and deployment of component middleware
publish/subscribe services,” in Proc. 3rd Int. Conf. on Generative
Programming and Component Engineering, 2004, pp. 337–360.

[27] A. S. Krishna, A. Gokhale, D. C. Schmidt, V. P. Ranganath, J. Hatcliff,
and D. C. Schmidt, “Model-driven middleware specialization techniques
for software product-line architectures in distributed real-time and em-
bedded systems,” in Proceedings of the MODELS 2005 Workshop on
MDD for Software Product-lines. ACM/IEEE, 2005, pp. 1–8.

[28] N. Bencomo, G. Blair, and P. Grace, “Models, reflective mechanisms
and family-based systems to support dynamic configuration,” in Proc.
1st Workshop on MOdel Driven Development for Middleware, 2006.

[29] N. Bencomo, A. Bennaceur, P. Grace, G. Blair, and V. Issarny, “The role
of models@run.time in supporting on-the-fly interoperability,” Comput-
ing, vol. 95, no. 3, pp. 167–190, 2013.

[30] R. France, I. Ray, G. Georg, and S. Ghosh, “Aspect-oriented approach
to early design modelling,” IEE Proceedings-Software, vol. 151, no. 4,
pp. 173–185, 2004.


