
A Hybrid CPU-GPU-MIC Algorithm for the Hitting Set
Problem

Danilo Carastan-Santos1, David C. Martins-Jr1, Luiz C. S. Rozante1
Siang W. Song2, Raphael Y. de Camargo1

1Centro de Matemática, Computação e Cognição
Universidade Federal do ABC (UFABC)

Santo André, Brazil

2Instituto de Matemática e Estatı́stica
Universidade de São Paulo (USP)

São Paulo, Brazil

{danilo.santos, david.martins, luiz.rozante}@ufabc.edu.br

song@ime.usp.br, raphael.camargo@ufabc.edu.br

Abstract. We present a hybrid exact algorithm for the Hitting Set Problem
(HSP) for highly heterogeneous CPU-GPU-MIC platforms. With several tech-
niques that permit an efficient exploitation of each architecture, low commu-
nication cost and effective load balancing, we were able to solve large HSP
instances in reasonable time, achieving good performance and scalability. We
obtained speedups of up to 25.32 in comparison with using two six-core CPUs
and exact HSP solutions for instances with tens of thousands of variables in less
than 5 hours. These results reinforce the statement that heterogeneous clusters
of CPUs, GPUs and MICs can be used efficiently for high-performance comput-
ing.

1. Introduction
Many important theoretical or practical problems can be modeled, in part or as a whole,
as an instance of the Hitting Set problem (HSP) whose main objective, informally, is to
find a minimum set of variables that satisfies every element in a finite set of constraints.
This satisfiability reasoning is present, for example, in problems from Systems Biol-
ogy, such as genomic reversal distance [Kolman and Walen 2007], classification models
[Hvidsten et al. 2003], polymerase chain reaction experiments [Pearson et al. 1996] and
gene regulatory networks (GRN) inference [Ideker et al. 2000, Ruchkys and Song 2003].
A common characteristic of these problems is that the input size of the modeled HSP
instances is often large, making the retrieval of the exact solutions impracticable for tra-
ditional algorithms.

Since the Hitting Set problem is NP-hard [Garey and Johnson 1999],
there exist some solutions that try to circumvent this problem, either by im-
posing restriction on the problem, such as with non-polynomial exact al-
gorithms [Shi and Cai 2010], or by using heuristics and approximations
[Cendic 2014, Hochbaum 1997]. Most recent works in HSP algorithms focus only
on multithread parallelism, with different approaches to tackle HSP such as hyper-
graphs [Murakami and Uno 2014] and MapReduce [Cardoso and Abreu 2013]. Gainer-

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

196

Dewar and Vera-Licona [Gainer-Dewar and Vera-Licona 2017] present an extensive re-
view of recent HSP algorithms. Due to the absence of accelerator-aided HSP algorithms,
we have previously proposed a highly parallel and efficient algorithm for GPU (Graphics
Processing Unit) [Owens et al. 2008] clusters that finds exact solutions for HSP instances
with thousands of variables [Carastan-Santos et al. 2015, Carastan-Santos et al. 2017].
In these previous works, however, we explored only a single architecture for finding
exact HSP solutions.

With the advent of new accelerator technologies such as Many Integrated Core
(MIC) architectures [Duran and Klemm 2012], hybrid heterogeneous platforms com-
posed of CPUs, GPUs and MICs became a common occurrence in research centers. In
order to fully exploit the computer power of these novel hybrid platforms, there is a grow-
ing effort to develop hybrid applications, that is, applications capable of using CPU, GPU
and MIC processors together [Andrade et al. 2014, Wolfe et al. 2014, Reza et al. 2015,
Sı̂rbu and Babaoglu 2016]. However, this growing effort is still small mostly due to two
major hindrances: (i) these heterogeneous platforms demand hybrid algorithms to effi-
ciently exploit all co-processor architectures in conjunction and (ii) the efficiency of the
usage of CPU-GPU-MIC platforms in a wide range of applications is not clearly known.
In this regard, in this paper we explore ways to circumvent these hindrances in the scope
of the Hitting Set Problem, and thus we present the following contributions:

• We propose a hybrid exact Hitting Set algorithm for CPU-GPU-MIC hetero-
geneous platforms, which efficiently exploits the advantages of each individual
architecture on the heterogeneous cluster, efficiently minimizes communication
among nodes and properly balances the load among the processors;
• We report a performance evaluation of the heterogeneous CPU-GPU-MIC clus-

ter usage with our hybrid HSP implementation. The experimental results show
that if (i) the load balancing is properly set, (ii) each individual architecture ad-
vantage is exploited and (iii) the node to node communication cost is minimized,
we can effectively use heterogeneous CPU-GPU-MIC clusters, which allow us to
solve unprecedentedly large HSP instances with tens of thousands of variables in
reasonable time.

The remaining parts of this manuscript are organized as follows: Section 2
presents a formal definition of HSP, followed by our exact hybrid algorithm design, in-
cluding the load balancing procedure. In Section 3 our proposed MIC HSP implemen-
tation is presented. The experimental results showing the performance evaluation are
presented and discussed in Section 4 and in Section 5 we present the main conclusions.

2. Hybrid CPU-GPU-MIC Hitting Set Algorithm

Formally, the Hitting Set Problem (HSP for short) can be defined as follows. Given a
finite set X , a collection S of subsets of X , which we call a collection of clauses, and a
positive integer k, the goal is to find a subset H ⊆ X with the smallest cardinality such
that:

|H| ≤ k and H ∩ S 6= ∅,∀S ∈ S. (1)

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

197

More than one subset of X may satisfy the conditions above. We call H =
{H1, H2, ..., H|H|} the collection of possible solutions. In this work our goal is to ob-
tain all possible solutions H ∈ H.

2.1. Exact Hybrid HSP Algorithm

We adopted an enhanced exhaustive search algorithm [Carastan-Santos et al. 2017] that
enumerates and evaluates all candidate solutions – which are encoded as combinations
of variables of X – in increasing order of cardinality i, 1 ≤ i ≤ k and stops when a
solution is found. The evaluation process is a disjunction check with the clauses in a sorted
collection SortS, which is the collection S whose clauses are sorted in increasing order
of its sizes. Evaluating the candidate solution with SortS allows an efficient discarding of
non solution candidates.

We define a heterogeneous CPU-GPU-MIC platform as a set of c machines con-
nected by the network, in which the jth machine has gj processing units (PUs), which
can be CPUs, GPUs or MICs. We adopted a master-slave approach, where the mas-
ter process is responsible for assigning work to the slave processes and each slave pro-
cess is responsible for demanding work to be processed in its respective PU. Algo-
rithm 1 shows the pseudo-code for the master process and Algorithm 2 shows the pseudo-
code for the slave process. In such a setting, the total number of processes is then
np = (

∑c
j=1 gj)+1. Each PU architecture has its own processing module, represented by

the function EvalSolutionsOnPU() in Algorithm 2, which is an architecture specific
implementation of the code that can be called by the slave processes as a kernel, offload or
function call for GPU, MIC and CPU, respectively. For CPUs and GPUs we adopted the
exact HSP algorithm developed by Carastan-Santos et. al [Carastan-Santos et al. 2017].
For MICs we adopted the exact MIC HSP algorithm presented in Section 3.

Algorithm 1 Exact Hybrid Parallel Algorithm for Hitting Set Problem (Master Process).

Input: set X of variables, collection S, in-
teger k > 0, number of candidates per
task batch b · v, stop constant STOP ,
number of slave processes ns

Output: solution vector H where each sub-
vector of H represents a subset H ⊆
X with smallest cardinality, such that
|H| ≤ k and H ∩ S 6= ∅,∀S ∈ S.

1: i← 1
2: H← ∅
3: SortS← SortClauses(S)
4: BroadcastToSlaves(SortS)
5: while i ≤ k do
6: u←

(|X|
i

)

7: τ = du/(b · v)e
8: sp← 0

9: for j = 0 to τ do
10: sP id← RecvAvailableSlave()
11: SendStartPoint(sp, sP id)
12: sp← sp+ (b · v)
13: end for
14: WaitForSlavesToFinish()
15: H← GatherSolutions()
16: if H is not empty then
17: break
18: end if
19: i = i+ 1
20: end while
21: for j = 0 to ns do
22: sP id← RecvAvailableSlave()
23: SendStartPoint(STOP, sP id)

24: end for
25: return H

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

198

Algorithm 2 Exact Hybrid Parallel Algorithm for Hitting Set Problem (Slave Process).

Input: set X of variables, vector SortS,
master process ID mPid, stop constant
STOP .

Output: solution vector localH where each
subvector of localH represents a subset
H ⊆ X with smallest cardinality, such
that |H| ≤ k and H ∩ S 6= ∅, ∀S ∈ S.

1: sP id← GetProcessID()
2: localH← ∅
3: w = |SortS|

4: loop
5: SendAvailableSlave(sP id,

mPid)
6: sp← RecvStartPoint()
7: if sp = STOP then
8: break
9: end if

10: SeeD← NSGetSeeds(sp)
11: EvalSolutionsOnPU

(SeeD,SortS, localH, w, κ)

12: end loop

For a given cardinality i, τ =
⌈(|X|

i

)
/(b · v)

⌉
task batches are created. For typical

input sizes the number of task batches τ is high, and these task batches can be dynamically
assigned to the available PUs by the master process and executed as either a kernel, offload
or function call. The key factor is to transfer as little information as possible to each slave
process so that they can start their processing immediately. The b and v variables are
tuning parameters that are explained with more detail in Section 2.2.

To control which instances will be processed by each slave process, the master
process initializes a starting point variable sp as 0. When a slave requests new work,
the master sends the current sp value and increases it by b · v. After receiving sp, the
slave process generates the list of candidates that will help the processing unit to gen-
erate its candidate solutions. Let X be the set of variables of an instance of HSP. To
generate this list of candidates in an efficient manner, we use a combinatorial numbering
system (Equation 2), which establishes a unique correspondence between a combination
of elements of X of cardinality i, denoted by Ci = {ci, ci−1, ..., c2, c1}, and an integer N,
0 ≤ N ≤

(|X|
i

)
[Knuth 2005]. In this way, the combinatorial numbering system – denoted

by the function NSGetSeeds() in Algorithm 2 – is used in the CPU by the slave pro-
cess to generate only a very small number of candidate solutions, with N = sp+ (j · κ),
0 ≤ j < β, κ = b(b · v)/βc, where β is either the number of threads to be launched (in
the case of CPU or MIC), or the number of GPU blocks to be launched (in the case of
GPU). These combinations generated by the combinatorial numbering system are stored
in a vector called SeeD and this vector is transmitted to the PU in the offload call, kernel
call or function call. The other candidate solutions are generated in sequence for each
thread in the PU during the offload call, kernel call or function call, having as starting
point a unique combination present in the vector SeeD that was generated outside of the
processing unit.

N =

(
ci
i

)
+

(
ci − 1

i− 1

)
+ ...+

(
c2
2

)
+

(
c1
1

)
,

ci > ci−1 > ... > c2 > c1 ≥ 0

(2)

Figure 1 illustrates this distribution of task batches among PUs. Found solutions

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

199

are stored on local solution vectors localH by each slave process. When the master de-
tects that all of the τ tasks batches were assigned to a slave process, it means that all
candidate solutions of the current cardinality i are being tested and then it waits (function
WaitForSlavesToFinish() of the Algorithm 1) for all slave processes to com-
plete its computations. Once the computations of all slave processes are completed, the
master gathers the solutions found by them (function GatherSolutions() of the Al-
gorithm 1). If no solution is found, it increases the cardinality by 1 and the entire process
is repeated, until i reaches the value k.

Master Process

30 60 900sp:

Kernel Call (GPU)

90

91

92

93

94

95

96

97

98

99

Slave Process 4

Offload Call (MIC)

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Slave Process 3

Function Call (CPU)

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Slave Process 2

Function Call (CPU)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Slave Process 1

25

26

27

28

29

55

56

57

58

59

85

86

87

88

89

Figure 1. An example of the task batch distribution process among PUs, for 100
candidate solutions and task batch size b · v = 30. Note that only information
about four candidate solutions (the green ones) is sent through the network.

We should note that most of the data required by the algorithm are generated in
parallel by different processes and the only large data structure sent using the network is
the SortS (see line 4 of the Algorithm 1) structure, which is sent once at the beginning of
the algorithm. During the algorithm execution, only small values, such as sp values, are
transferred. At the end of the execution, the solution list is transferred. Therefore all the
remaining calculations, including the enumeration and evaluation of candidate solutions,
are done in parallel by the multiple available PUs and MPI processes. Consequently,
this algorithm should present a good scalability with increasing numbers of PUs and ma-
chines.

2.2. Load Balancing

With heterogeneous configurations, we need to send task batch sizes according to the
computational capabilities of the available PUs. To achieve such task, we use three tuning
parameters b, v and t. The parameter v defines the number of threads per GPU block
and its value is statically set according to the GPU architecture of the platform. A typical
practice to set this value is to use the number of GPU cores per streaming processor. In its
turn, the variable b defines the number of GPU blocks to be created in each kernel call. We
defined these b and v variables to address the thread configuration in the case of GPUs,

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

200

which is significantly different from the other PUs. To address such a configuration for
the case of CPUs and MICs, i.e., to define the number of threads t to be created on the
CPU or MIC, t is set according to the hyperthreading factor (threads per core) multiplied
by the number of cores of the CPU or MIC. It is important to note that, since the number
of candidate solutions to be evaluated per task batch is defined by the product b · v, the
number of candidate solutions per GPU thread is set to 1, and for CPUs and MICs is set
to b(b · v)/tc.

A simple though efficient heuristic strategy is to generate many small task batches,
which are deployed to the PUs as they become available. In this case, faster PUs will
process more task batches than slower ones. One way to obtain good performance and
keep all the PUs busy is by setting the aforementioned parameter bwith a certain minimum
value (bMin). This value can be empirically determined by executing the whole algorithm
a few times using the same input size, but with increasing values of b. For small values
of b, the MPI communication and kernel/offload launch overheads will dominate, but as b
increases, this overhead decreases, resulting in smaller execution times. We select bMin
as the lowest b value for which the total execution time becomes constant with regard to
b, which means that the overhead becomes negligible.

By performing this process on the fastest PU, we obtain a bMin value that can be
used as the value of b by all PUs in the platform. It’s important to note that this process
needs to be performed only once per cluster, with only a few tests with increasing values
of b and with a small HSP instance. Once the bMin value is set, multiple executions in
the same platform, using different inputs, can be performed using the same bMin value.

3. Exact MIC HSP Algorithm

We now describe the main characteristics of the proposed exact MIC HSP algorithm. As
presented in Section 2.1, the part of our algorithm that is assigned to the processing units
is the checking of the candidate solutions, which in the case of MICs, is executed in
an offload call. Algorithm 3 shows the pseudo-code of the MIC version of the function
EvalSolutionsOnPU.

Algorithm 3 Offload function EvalSolutionsOnPU (MIC version)

Input: Array SeeD, array SortS, solution
vector localH, number of clauses w and
number of candidates per MIC thread κ

Output: solution vector localH where each
subvetor of H represents the subset
H ⊆ X with smallest cardinality, such
that |H| ≤ k and H ∩ S 6= ∅, ∀S ∈ S.

1: tr ← threadId
2: for c = 1 to κ do
3: if c = 1 then
4: Ctr ← SeeDtr

5: else
6: Ctr ← GetSubsequentComb(Ctr)

7: end if
8: solution← true
9: for j = 1 to w do

10: if Ctr and SortSj are disjoint sets
then

11: solution← false
12: end if
13: end for
14: if solution = true then
15: atomically add Ctr in localH
16: end if
17: end for

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

201

Table 1. Cluster Configuration

Number Processor Accelerator Acc. No. Cores
1 2xXeon E5-2620v2 2.1GHz six-core Xeon Phi 3120A 57
1 Core i7-5930K 3.50GHz six-core GTX Titan X 3072

Each thread tr of the MIC is responsible to evaluate κ candidate solutions. The
first candidate solution to be evaluated by each thread is present in the vector SeeD that is
sent to the MIC during offload. This candidate solution is assigned to the variable Ctr and
the next steps is to check if Ctr is not disjoint with all of the clauses present in the vector
SortS. If such condition holds true, Ctr is atomically added to a MIC local solution vector
localH. Once a candidate solution is evaluated, the respective thread of the MIC generates
the subsequent candidate solution to be evaluated, using the previous candidate solution
as base.

One characteristic of the Xeon Phi is the 512-bit vector processors that are
present in each core of the Xeon Phi co-processors, which constitutes a huge advan-
tage [Jeffers and Reinders 2013]. In this regard, the vectorization of the algorithm can
be done automatically by the Intel compiler, hence it is crucial that the most process de-
manding parts of the algorithm are implemented in a way that the vectorization can be
performed by the compiler. As previously mentioned, the checking of the candidate solu-
tions is performed through a disjunction check with the clauses of the HSP input. Since
this disjunction check is the most computationally expensive task, we need to make sure
that the implementation of this disjunction check exploits the 512-bit vector units present
in the MIC. One can notice that we could avoid the execution of the entire loop of the lines
9-13 of the Algorithm 3 once a candidate solution is tagged as false. However, we im-
plemented this loop in a way that we avoid unnecessary conditional deviations and early
loop breaks, which would prevent vectorization. Although it would seem that executing
this loop entirely for every candidate solution is a performance loss, the high vectorization
capabilities of the Xeon Phi outperform the absence of the early loop break.

4. Experimental Results

Here we present the experimental results obtained with our hybrid HSP implementation,
using a two-node heterogeneous cluster described in Table 1. The compilers used are Intel
(icc) 16.0.1, except for the GPU parts, for which we used the NVIDIA compiler (nvcc)
version 7.5. We also adopted Intel MPI version 5.1.2 for multi-node communication and
conjunction of the processing modules. The optimization parameter -O3 was used in all
compilation steps.

For the experiments we generated HSP instances with |X| = 8192 (number of
variables), collection of clauses S with |S| = 1024 and k = 3. These HSP instances
were randomly generated using the rand() function of the C standard library. For each
instance, we generated random clauses with sizes in the interval [dmin range∗|X|e, |X|],
with min range = 0.6. This min range value was empirically determined to permit the
generation of instances with valid solutions. Instances with no solutions were discarded.
In all experiments, we start to measure the total time at the moment the algorithm receives
the HSP instance and finish when the results are returned.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

202

4.1. Load Balance Tuning

To evaluate the algorithm for CPU-GPU-MIC platforms, the first step is to determine
the minimum task batch size, that permitted the application to execute with acceptable
overhead. As discussed in Section 2.2, smaller task batch sizes permit the generation of
more task batches and a better load-distribution with heterogeneous platforms. Figure 2(a)
shows the execution time of a single task batch in a GTX TITAN X. The execution time
increases linearly with task batch size, controlled by the the parameter b (remembering
that b is also the number of GPU blocks to be created in the kernel call). This indicates
that moderate numbers of task batch size are sufficient to fully occupy the accelerator
device. However, Figure 2(b) shows that only for b values above 20000 the total execution
time becomes close to constant, indicating that below this value the overhead of MPI
process communication and task batch launches becomes relevant. Hence, we set the
parameter bMin = 20000 for the heterogeneous configuration of the experiments. We
set the v parameter as 128, which is the number of cores per streaming processor of the
GTX TITAN X [NVIDIA 2016]. Therefore, the number of HSP solution candidates to be
evaluated per each task batch that will be processed in the PUs is bMin·v = 20000∗128 =
2560000.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 10000 20000 30000 40000 50000

T
im

e
 (

s
)

Number of GPU Blocks b

Task Batch Execution Time

(a) Task Batch Execution Time

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10000 20000 30000 40000

T
im

e
 (

s
)

Number of GPU Blocks b

Total Execution Time

(b) Total Execution Time

Figure 2. Task batch execution times and total execution times of our proposed
algorithm in function of the number of GPU blocks parameter b.

4.2. Performance Evaluation

We evaluated the scalability of our hybrid HSP implementation using a heterogeneous
cluster composed of CPUs, GPUs and MICs. Figure 3(a) shows the average execution
time of ten successive executions as a function of the heterogeneous configurations shown
in Table 2. We see a noticeable improvement in the total execution time, from 1.6 hours
to only 3.8 minutes. In this regard, we increased the number of variables |X| from 8192
to 32768 and we were able to solve this HSP instance in only 4.1 hours with the four PUs
(configuration 3 of Table 2. Result not shown in Figure 3(a)). With only two CPUs, the
execution time would take about 25.32 times longer, or 103 hours.

Figure 3(b) shows the obtained speedups, measured as the ratios between the exe-
cution time of the HSP algorithm using a configuration shown in Table 2 and the execution
time of the HSP algorithm using the dual socket CPUs (configuration 1 of Table 2). With

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

203

Table 2. Heterogeneous configuration used in the performance experiments.
Configuration Description
1 2xXeon E5-2690 (dual socket configuration)
2 2xXeon E5-2690 and 1xXeon Phi 3120A (single node)
3 2xXeon E5-2690, 1xXeon Phi 3120A and 1xGTX TITAN X

 128

 256

 512

 1024

 2048

 4096

 8192

1 2 3

T
im

e
 (

s
)

Heterogeneous Configuration

Total Time

(a) Execution Time (log2 scale on y axis)

 1

 2

 4

 8

 16

 32

1 2 3

2.27

25.32

S
p

e
e

d
u

p
Heterogeneous Configuration

Heterogeneous PUs Speedup

(b) Speedup (log2 scale on y axis)

Figure 3. Execution time and consequent speedups of proposed hybrid algorithm
in function of the number of processing units.

the addition of the Xeon Phi 3120A, the speedup jumped to 2.27, which shows that the
Xeon Phi 3120A not only outperformed two Xeon E5-2690 CPUs, but also shows that
the performance of the HSP algorithm can at least double by adding only one Xeon Phi
device, therefore attesting the HPC capabilities of the Xeon Phi in our HSP algorithm.
Another result that cannot be overlooked is the price and the performance delivered by
the processing units. In a recent price survey (May 2017), two Xeon E5-2690 CPUs
would cost around 4000 USD, while one Xeon Phi 3120A would cost around 1500 USD,
showing that the Xeon Phi can be in fact an appealing alternative for high performance
computing.

In its turn, with the addition of a GTX TITAN X, the speedup has further increased
to 25.32. This indicates that the GTX TITAN X had better performance than the Xeon Phi
3120A when processing the task batches. Although the cores of the Xeon Phi 3120A are
more complex than those of the GTX TITAN X, the massive number of cores of the GTX
TITAN X outperforms the Xeon Phi 3120A in our hybrid HSP implementation. Since
we assign one GPU thread per candidate solution, the GTX TITAN X can concurrently
evaluate 3072 candidate solutions. With the Xeon Phi 3120A, however, with four threads
per core, there are only 224 concurrent threads. Therefore, we can notice an advantage
for the GPU in our hybrid HSP implementation. The price and performance delivered
of the GTX TITAN X is also the best of the three configurations we evaluated. In a
recent price survey (May 2017), one GTX TITAN X would cost around 2000 USD and it
delivered an order of magnitude of performance increase in our HSP algorithm. However,
it is important to note that the Xeon Phi 3120A is from the Knights Corner architecture,
which is the first non-prototype architecture of Xeon Phi product line. Hence, the GPU
versus MIC performance difference shown here might be lower with the current Xeon Phi
architectures.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

204

To get a better understanding of these results, we monitored the number of task
batches assigned to each processing unit (Figure 4(a)). We can see that with three pro-
cessing units, the Xeon Phi 3120A received 51% of the tasks, and with four processing
units, the Xeon Phi 3120A and GTX TITAN X received 4.3% and 91.4% of the tasks,
respectively. We also monitored the time that each PU spent with the HSP algorithm.
Figure 4(b) shows the time spent for the four PUs used. As can be seen, with task batch
sizes small enough, all PUs have a tendency of finishing its work at the same time, which
is a good load balance measure. This shows that our hybrid algorithm can in fact handle
heterogeneous CPU-GPU-MIC platforms, adequately balancing the load among the tasks
in function of each processing unit’s performance.

 0

 200

 400

 600

 800

 1000

 1200

 1400

Configuration 1

Configuration 2

Configuration 3

N
u

m
b

e
r

o
f

T
a

s
k
 B

lo
c
k
s 2x Xeon E5-2690

Xeon Phi 3120A
GTX TITAN X

(a) Number of task batches assigned to each PU.

 0

 50

 100

 150

 200

 250

 300

Xeon E5-2690

Xeon E5-2690

Xeon Phi 3120A

G
TX TITAN

 X

Execution Time (s)

(b) Total time that each processing unit has spent
solving HSP.

Figure 4. Load balance evaluation results of our hybrid exact HSP algorithm.

5. Conclusions
In this paper we presented an exact hybrid CPU-GPU-MIC algorithm for the Hitting Set
Problem suited for large input size applications. We solved instances of HSP on the
order of thousands of elements with reasonable time, achieving good performance and
scalability with regard to execution time.

We performed several experiments on a heterogeneous cluster composed of CPUs
Intel Xeon E5-2620v2, a MIC Intel Xeon Phi 3120A and a GTX TITAN X GPU. The
results show that, in our algorithm, each of the accelerator device used has resulted in a
satisfactory performance increase even for early development accelerator devices such as
the Xeon Phi 3120A. Moreover, the results also show that our hybrid HSP algorithm has
good performance and scalability by correctly distributing the tasks among the process-
ing units according to their computational efficiency in processing the task batches. This
enabled speedups of up to 25.32, when using all processing units instead of two six-core
CPUs. Furthermore, with this cluster, we unprecedentedly solved HSP instances in order
of tens of thousands of variables in less than 5 hours, which characterizes a formidable
performance increase with regard to exact HSP algorithms. All of these improvements
also reinforce the statement that the adoption of hybrid CPU-GPU-MIC algorithms can
characterize a performance improvement if each architecture is adequately exploited, the
load balance is properly set and the communication cost is minimized. However it is
important to note that the execution time of our hybrid exact HSP algorithm can still be

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

205

unfeasible if the solutions present very high cardinalities. This problem can only be at-
tenuated by adding more processing units to evaluate the solution candidates. But for
applications where the cardinalities are not usually high, such as gene regulatory net-
works inference [Carastan-Santos et al. 2015, Carastan-Santos et al. 2017], the solution
proposed here is suitable.

For future works, we plan to further optimize our algorithm to increase the effi-
ciency of finding HSP solutions with very high cardinalities. Moreover, we also plan to
provide a full software package for solving HSP, with a friendly interface and an auto-
tuning procedure, capable to automatically discover the best tuning parameters for a spe-
cific cluster.

Acknowledgment
The authors would like to thank UFABC, FAPESP (Procs. n. 2013/26644-1,
2014/50937-1 and 2015/01587-0), CNPq (Procs. n. 559955/2010-3, 302620/2014-1 and
465446/2014-0) and CAPES for the financial support.

References
Andrade, G., Ferreira, R., Teodoro, G., Rocha, L., Saltz, J. H., and Kurc, T. (2014).

Efficient execution of microscopy image analysis on CPU, GPU, and MIC equipped
cluster systems. In Computer Architecture and High Performance Computing (SBAC-
PAD), 2014 IEEE 26th International Symposium on, pages 89–96. IEEE.

Carastan-Santos, D., de Camargo, R. Y., Martins, D. C., Song, S. W., and Rozante, L. C.
(2017). Finding exact hitting set solutions for systems biology applications using het-
erogeneous gpu clusters. Future Generation Computer Systems, 67:418–429.

Carastan-Santos, D., Yokoingawa De Camargo, R., Correa Martins, D., Song, S. W.,
Silva Rozante, L., and Ferreira Borelli, F. (2015). A multi-gpu hitting set algorithm
for grns inference. In Cluster, Cloud and Grid Computing (CCGrid), 2015 15th
IEEE/ACM International Symposium on, pages 313–322.

Cardoso, N. and Abreu, R. (2013). Mhs2: A map-reduce heuristic-driven minimal hitting
set search algorithm. In International Conference on Multicore Software Engineering,
Performance, and Tools, pages 25–36. Springer.

Cendic, B. L. (2014). A genetic algorithm for the minimum hitting set. Scientific Publi-
cations of the State University of Novi Pazar, 6(2):107.

Duran, A. and Klemm, M. (2012). The intel R©many integrated core architecture. In High
Performance Computing and Simulation (HPCS), 2012 International Conference on,
pages 365–366. IEEE.

Gainer-Dewar, A. and Vera-Licona, P. (2017). The minimal hitting set generation prob-
lem: algorithms and computation. SIAM Journal on Discrete Mathematics, 31(1):63–
100.

Garey, M. R. and Johnson, D. S. (1999). Computers and Intractability - A guide to the
Theory of NP-completeness. W. H. Freeman and Company.

Hochbaum, D. S. (1997). Aproximation Algorithms for NP-Hard Problems. PWS Publishi
ng Company.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

206

Hvidsten, T. R., Lægreid, A., and Komorowski, J. (2003). Learning rule-based models of
biological process from gene expression time profiles using gene ontology. Bioinfor-
matics, 19(9):1116–1123.

Ideker, T. E., Thorsson, V., and Karp, R. M. (2000). Discovery of regulatory interac-
tions through perturbation: inference and experimental design. Pacific symposium on
biocomputing, 5:302–313.

Jeffers, J. and Reinders, J. (2013). Intel Xeon Phi coprocessor high-performance pro-
gramming. Newnes.

Knuth, D. E. (2005). The Art of Computer Programming, Fascicle 3: Generating All
Combinations and Partitions, volume 4. Addison-Wesley, Reading.

Kolman, P. and Walen, T. (2007). Reversal distance for strings with duplicates: Lin-
ear time approximation using hitting set. The Electronic Journal of Combinatorics,
14(1):11.

Murakami, K. and Uno, T. (2014). Efficient algorithms for dualizing large-scale hyper-
graphs. Discrete Applied Mathematics, 170:83–94.

NVIDIA (2016). Maxwell: The Most Advanced CUDA GPU Ever
Made. https://devblogs.nvidia.com/parallelforall/
maxwell-most-advanced-cuda-gpu-ever-made/. Online; last ac-
cess 18 july 2016.

Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., and Phillips, J. C. (2008).
GPU computing. Proceedings of the IEEE, 96(5):879–899.

Pearson, W. R., Robins, G., Wrege, D. E., and Zhang, T. (1996). On the primer selection
problem in polymerase chain reaction experiments. Discrete Applied Mathematics,
71(1):231–246.

Reza, H., Aguilar, M., and Jalal, S. F. (2015). Regression testing of gpu/mic systems for
hpcc. In Proceedings of the 2015 International Workshop on Software Engineering for
High Performance Computing in Science, pages 30–37. IEEE Press.

Ruchkys, D. P. and Song, S. W. (2003). A parallel solution to infer genetic network
architectures in gene expression analysis. International Journal of High Performance
Computing Applications, 17(2):163–172.

Shi, L. and Cai, X. (2010). An exact fast algorithm for minimum hitting set. Int. Joint
Conference on Computational Science and Optimization, 1:64–67.

Sı̂rbu, A. and Babaoglu, O. (2016). Power consumption modeling and prediction in a
hybrid cpu-gpu-mic supercomputer. In European Conference on Parallel Processing,
pages 117–130. Springer.

Wolfe, N., Liu, T., Carothers, C., and Xu, X. G. (2014). Heterogeneous concurrent ex-
ecution of monte carlo photon transport on cpu, gpu and mic. In Proceedings of the
4th Workshop on Irregular Applications: Architectures and Algorithms, pages 49–52.
IEEE Press.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

207

