

Multi-Tier Edge-to-Cloud Architecture for Adaptive Video Delivery

Roger Immich, Leandro Villas, Luiz Bittencourt, Edmundo Madeira

FiCloud - August 2019, Istanbul, Turkey

Outline

- Introduction / Motivation
- Edge computing
- Microservices
- Multi-tier video delivery architecture
- Experiment setup and assessment
- Summary

Streaming Devices Are America's Biggest Traffic Hogs

Aggregate amount of data received by all wi-fi households in the U.S. (in billion gigabytes)

Streaming Services Overtake Pay TV In The U.S.

Share of U.S. households with the following subscriptions in 2018

Institute of Computing (IC)

UNICA

Video Wins Subscribers.

Most popular paid subscription service categories in the U.S. 2018*

What is edge computing?

Cloud principles applied at the network edge

- Virtualization (CPU, Storage, Networking)
- On Demand
- API driven
- Automated LCM
- Commodity hardware

Computer Networks Laboratory (LRC) Institute of Computing (IC)

What is edge computing?

Cloud principles applied at the network edge

- Virtualization (CPU, Storage, Networking)
- On Demand
- API driven
- Automated LCM
- Commodity hardware

Convergence of IT and telecom networking

 Allows network operators to open up their networks to new opportunities and value chains

What is edge computing?

Cloud principles applied at the network edge

- Virtualization (CPU, Storage, Networking)
- On Demand
- API driven
- Automated LCM
- Commodity hardware

Convergence of IT and telecom networking

 Allows network operators to open up their networks to new opportunities and value chains New, Innovate, Immersive applications

- Opportunity for:
- Tailored apps to local conditions
- Provide contextualized services
- Low latency, high bandwidth guarantees

Cloud and Edge Computing

- Cloud capabilities at the edge of the network
- Takes advantage of a shared data center infrastructure and the economy of scale to reduce costs
- Emerging application requirements: low latency, high bandwidth
 - Smart cities, Video Services, IoT, Tactile
 Internet, Augmented Reality, etc...

Multi-access edge computing (MEC)

- Cloud-computing capabilities within the RAN in close proximity to mobile subscribers
- Accelerates content, services, and applications so increasing responsiveness
- RAN edge offers:
 - Ultra-low latency and high-bandwidth
 - Direct access to real-time radio network information (subscriber location, cell load, link quality, etc.)
- Essential to offer context-related services

"service-oriented architecture composed of loosely coupled elements that have bounded contexts"

Computer Networks Laboratory (LRC) Institute of Computing (IC)

"service-oriented architecture composed of loosely coupled elements that have bounded contexts"

Services communicate with each other over the network

"service-oriented architecture composed of loosely coupled elements that have

bounded contexts"

Services communicate with each other over the network

You can update the services independently; updating one service doesn't require changing any other services

"service-oriented architecture composed of loosely coupled elements that have bounded contexts"

Services communicate with each other over the network

You can update the services independently; updating one service doesn't require changing any other services

Self-contained; update the code without knowing anything about the internals of other microservices

Multi-tier video delivery architecture

- Aims to advance the idea of multi-tier video delivery using off-the-shelf open-source tools
- Relying upon technologies such as network slices and microservice placement
- Proof-of-concept testbed and real video sequences
- The main goal is to prove that it is possible to build a real multi-tier environment to improve video delivery quality

Experiment setup

Resource management (container)

Docker

Container orchestration

Kubernetes

Application management

Reference Client 2.9.0

Computer Networks Laboratory (LRC) Institute of Computing (IC)

Delivered bitrate without network slices

Delivered bitrate with network slices

Delivered bitrate without network slices

Delivered bitrate with network slices

Delivered bitrate without network slices

Delivered bitrate with network slices

Delivered bitrate **without** network slices

Delivered bitrate with network slices

Slice: lower time taken to increase resolution

Buffer occupancy assessment

• Healthy buffer hides delay/latency/jitter

Buffer occupancy without network slices

Buffer occupancy with network slices

Buffer occupancy assessment

Buffer occupancy without network slices

Buffer occupancy with network slices

Slices: Optimal buffer level achieved earlier

Latency assessment

Latency without network slices

Latency with network slices

Latency assessment

Latency without network slices

Latency with network slices

Slices: latency and standard deviation are considerably smaller

Summary

- The combination of 5G, slices, MEC, containers, and microservices provides a highly distributed computing environment
- Applications, services, store and process content in close proximity to the users
- As future work, applications will benefit from realtime radio and network information
- Provide Personalized and contextualized experience to the subscribers

Thank You !

Computer Networks Laboratory (LRC) Institute of Computing (IC)

CDN Network Test CloudHarme × +								
\leftrightarrow \rightarrow C \odot Not Secure cloudharmony.com/speedtest-latency-for-cdn \Rightarrow Incognito \Rightarrow :								
CloudHarmony	Directory Service Status Network Perf		Network Test					
CloudMatch™ ♥ f in	CDN Netwo Results for latency te	ork Test Ists from your connection to	CDN. For test result details, place the n		e n Catency Sor Status Tests Performed Tests Successful Median	over result bars in the tab Success 12 12 66 ms	Javascript Tag e below. 12 12 5 ms	
			ms	0 68	Fastest		72 340	
	Azure CDN from Ak	amai	51		Slowest 90th Percentile 75th Percentile	203 ms 64.5 ms 65 ms		
	CDN77		50.5	⊪-+	25th Percentile 10th Percentile Standard Deviati			
	QUANTIL		66	1000		J		
	Azure CDN from Verizon		48.5	IH				
	Verizon DELIVER large		46.5	H				
	Highwinds CDN		47	Im-I				
	CloudFlare		75					
	Incapsula		50	IH				
	IBM Cloud CDN - A	kamai	49.5					

PARAMETERS	VALUE		
Display sizes	320x180 up to 3840x2160		
Frame rate	30 fps		
Aspect ratio	16:9		
Video mimeType	video/mp4		
MPEG4 video file	m4v		
Audio mimeType	audio/mp4		
audioSamplingRate	48 kHz		
MPEG4 audio file	m4a		
Dash Player	Reference Client 2.9.0		
Dash Schedule While Paused	Not selected		
Dash Allow Local Storage	Not selected		
Dash Low Latency Mode	Not selected		
Dash Jump Small Gap	Selected		
Dash Fast Switching ABR	Selected		
Dash Fast Switching Strategy	Dynamic ABR		
Segment Size	≈ 2 seconds		
scanType	progressive		
minBufferTime	PT3.00S		
JUJU version	2.4.3		
Kubernetes version	1.11/stable		
Docker version	18.06.1-ce		
NGINX version	1.15.4		
Google Chrome version	68.0.3440.106 (64-bit)		
Client to 3rd-tier (Cloud) link delay	200ms		
Client to 2nd-tier (Fog) link delay	70ms		
Client to 1st-tier (Edge) link delay	22ms		

Computer Networks Laboratory (LRC) Institute of Computing (IC)

Computer Networks Laboratory (LRC) Institute of Computing (IC)

UNICAMP

Cloud and Edge Computing!

Cloud

Big data processing Data warehousing Business logic

Edge

Realtime processing Analytics Data caching, filtering

Objects Heterogeneous devices Multi-access connectivity

atency