
InterSCity: A Scalable Microservice-based Open Source Platform for
Smart Cities

Arthur de M. Del Esposte1, Fabio Kon1, Fabio M. Costa2 and Nelson Lago1

1Department of Computer Science, University of São Paulo, R. do Matão, 1010 - Cidade Universitária, 05508-090, São
Paulo, São Paulo, Brazil

2Institute of Informatics, Federal University of Goiás, Alameda Palmeiras, Quadra D, Câmpus Samambaia, 74690-900,
Goiânia, Goiás, Brazil

{esposte, kon, lago}@ime.usp.br, fmc@inf.ufg.br

Keywords: Smart Cities, Software Platform, Microservices, Scalability, Open Source Software

Abstract: Smart City technologies emerge as a potential solution to tackle common problems in large urban centers
by using city resources efficiently and providing quality services for citizens. Despite the various advances
in middleware technologies to support future smart cities, there are no universally accepted platforms yet.
Most of the existing solutions do not provide the required flexibility to be shared across cities. Moreover,
the extensive use and development of non-open-source software leads to interoperability issues and limits
the collaboration among R&D groups. In this paper, we explore the use of a microservices architecture to
address key practical challenges in smart city platforms. We present InterSCity, a microservice-based open
source smart city platform that aims at supporting collaborative, novel smart city research, development, and
deployment initiatives. We discuss how the microservice approach enables a flexible, extensible, and loosely
coupled architecture and present experimental results demonstrating the scalability of the proposed platform.

1 INTRODUCTION

The rapid growth of cities around the world has cre-
ated large, densely populated urban centers charac-
terized by complex interconnected structural, social
and economic organizations. This urbanization phe-
nomenon imposes several challenges for sustainable
development and quality of life in cities that tra-
ditional management approaches cannot overcome.
Thus, smart cities emerge as a new paradigm aimed
at addressing these problems by using city resources
efficiently and providing quality services for its cit-
izens. As a consequence, several efforts have been
devoted to the study and development of smart city
solutions to address the major problems faced by the
cities of today such as traffic jams, air pollution, and
energy efficiency.

Smart cities are characterized by the adoption of
Information and Communication Technologies (ICT)
as an integral part of the city’s infrastructure to sup-
port multiple solutions for urban challenges (Neirotti

∗This research is part of the INCT of the Future Internet
for Smart Cities funded by CNPq, proc. 465446/2014-0,
CAPES, proc. 88887.136422/2017-00, and FAPESP, proc.
2014/50937-1.

et al., 2014). The Internet of Things (IoT), Big Data,
and Cloud Computing are key enabling technologies
of smart cities that offer a wide range of opportuni-
ties and challenges, both in the academy and industry.
To fully exploit the potential of these enablers, future
smart cities will demand a unified ICT infrastructure
to properly share their resources rather than relying
on non-integrated solutions, or market islands (Vil-
lanueva et al., 2013). The most common approach
still adopted in existing initiatives is to develop ad-
hoc applications for specific domains, such as health
care and urban mobility, which leads to low resource
sharing and the proliferation of non-interoperable ser-
vices.

Many authors advocate that integrated middle-
ware platforms can provide the required infrastructure
to support the construction of sophisticated, cross-
domain smart city applications (Villanueva et al.,
2013; Hernández-Muñoz et al., 2011; Fazio et al.,
2012). Such platforms must include facilities for ap-
plication development, for enabling interoperability
between the different systems of a city, for managing
large amounts of data, and for dealing with a hetero-
geneous number of distributed devices and services at
city scale, to cite only a few requirements (Santana

fabio.kon
Typewritten Text
Published at 6th International Conference on Smart Cities and Green ICT Systems, 2017.

fabio.kon
Typewritten Text
(Best Student Paper Award)



et al., 2016).
Despite the various advances in middleware tech-

nologies, protocols, and standards, many aspects re-
lated to the design, development, deployment, and
management of smart city platforms still challenge
the research community. Consequently, there are no
universally accepted platforms yet, and existing so-
lutions do not provide the required flexibility to be
shared across cities (PCAST, 2016). In the following,
we highlight three key factors that contribute to the
lack of practical and reusable solutions in the field.

First, in addition to traditional functional capabili-
ties, smart city platforms must meet a number of non-
functional requirements to enable their use in differ-
ent environments and applications. Security and pri-
vacy policies may change according to the laws and
regulations of the city, impacting design decisions re-
garding storage and availability of the data in the plat-
form. Different contexts may expose a great diversity
of requirements, which may dynamically evolve over
time. Thus, smart city platforms must provide a flex-
ible architecture to adopt new technologies and sup-
port new functional and non-functional requirements
to suit the diversity of the multiple and constantly
evolving city environments where they are deployed.
Similarly, a smart city platform must scale up to han-
dle the increasingly large number of users, devices,
and services as well as their associated data, which
will grow with the evolution of urban environments.
In particular, these platforms must offer different scal-
ability strategies by design to meet the diverse scala-
bility demands. Therefore, the dynamism and con-
tinuous evolution of urban environments require the
use of new approaches to develop flexible, evolvable,
maintainable, and scalable architectures for smart city
platforms (Krylovskiy et al., 2015).

The second point is related to the lack of prac-
tical and scientific validation to evaluate the differ-
ent aspects of smart city solutions, such as social and
economic impact, internal and external quality, per-
formance, scalability, and feasibility, to cite a few.
In (Sanchez et al., 2011), the authors observed that
although many IoT projects present concrete solu-
tions, validation of the developed technologies and
architectural models are limited to proofs-of-concept,
not allowing conclusive results. Therefore, we still
need more comprehensive studies with experiments
and tests that allow the comparison of different smart
city technologies. For this purpose, significant effort
should be devoted to (1) deploying existing solutions
in real production scenarios, (2) developing meth-
ods and tools for more sophisticated simulation-based
evaluations, and (3) developing well-defined bench-
mark strategies for cross-platform evaluation.

Lastly, the extensive use and development of non-
open-source software in the core of smart city plat-
forms jeopardize their widespread adoption as it leads
to interoperability difficulties and limits the collabora-
tion among R&D groups, often forcing them to “rein-
vent the wheel”. The use of open technologies is cru-
cial to the sustainability and development of future
smart cities, since they prevent vendor lock-in, enable
collaborative development, market opportunities, and
sharing of solutions.

To address the above-mentioned challenges, we
propose InterSCity, an open source microservices-
based platform for smart cities. Its objective is to pro-
vide a high-quality, modular, highly scalable middle-
ware infrastructure to support smart city solutions that
can be reused across cities and R&D groups, as well
as governments and companies.

Microservice architectures emerged from the soft-
ware industry’s best practices in building large-scale
distributed applications composed of small, intercon-
nected components (microservices), supporting scal-
ability, evolvability, maintainability, and modularity.
InterSCity leverages the microservice approach to im-
plement the fundamental modules described by the
reference architecture proposed in (Santana et al.,
2016), conceived from the analysis of 23 smart city
projects. This reference architecture describes the
building blocks needed to meet the main functional
and non-functional requirements to guide the devel-
opment of next-generation platforms for smart cities.
Thus, the platform provides high-level services to
manage heterogeneous IoT resources, data storage
and processing, and context-aware resource discov-
ery. In this paper, we discuss the design and imple-
mentation details of the InterSCity platform to ad-
dress the design challenges in smart city systems.

This paper brings two key contributions to smart
cities platforms research: (I) the InterSCity platform
as an open-source project to enable novel smart city
research, development, and deployment initiatives;
(II) an analysis of the impact of its microservice ar-
chitecture to address key research challenges related
to scalability and evolvability in smart city platforms
based on experimental results and our early experi-
ence. Section 2 presents a discussion of related work.
Section 3 describes in detail the InterSCity microser-
vice architecture, design principles, and an example
application. Section 4 presents a scalability evalua-
tion of the platform within a scenario of data stream-
ing from sensors spread across a city. Lastly, we
present the concluding remarks and future work in
Section 5.



2 RELATED WORK

Several efforts have been devoted to the study and
development of platforms that address the key chal-
lenges of smart cities. In particular, projects that aim
at addressing the practical problems related to the de-
velopment, deployment, and maintenance of smart
city services and applications are the most relevant in
the context of this work.

Perhaps the most notable project that targets the
realistic deployment and validation of smart city so-
lutions is SmartSantander, which provides a smart
city testbed with research facilities composed of more
than 20,000 IoT devices deployed in urban envi-
ronments (Sanchez et al., 2014). The SmartSan-
tander testbed aims at supporting experimentation
with smart city services in a realistic setting at a large
scale. Despite the relevance of this project to enable
experiments in real scenarios, it is not clear whether
it meets important requirements that would allow its
applicability in other contexts (e.g., in cities with dif-
ferent characteristics), such as adaptability, flexibility,
and extensibility. We advocate that an open source
smart city platform based on a scalable microservices
architecture is an effective way to achieve such re-
quirements.

A number of middleware platforms were devel-
oped in recent years to address multiple requirements
towards the construction of cross-domain smart city
solutions, as opposed to traditional approaches based
on vertical silos. The Civitas middleware (Villanueva
et al., 2013) fulfills the main functional requirements
by proposing a set of essential standards and tools to
enable smart city ecosystems. The Gambas (Apoli-
narski et al., 2014) project offers tools to facilitate the
development and deployment of smart city applica-
tions, including a runtime environment and an SDK.
However, it is not clear whether these platforms ad-
dress some of the key non-functional requirements,
such as scalability, extensibility and evolvability.

OpenIoT1 is one of the most relevant projects han-
dling the main requirements of smart city platforms.
It is an open source layered middleware platform that
aims at enabling semantic interoperability across IoT
applications, including smart cities (Soldatos et al.,
2015). The platform provides visual tools to facili-
tate the administration and implementation of appli-
cations directly on top of it. Although OpenIoT pro-
vides several facilities to support IoT applications, it
is not clear how its architecture deals with important
aspects related to scalability, adaptability, and exten-
sibility.

Krylovskiy et al. (Krylovskiy et al., 2015) present

1https://github.com/OpenIotOrg/openiot

the DIMMER project, a microservice-based IoT plat-
form to support applications that aim at improving
energy efficiency and management in cities. This is
the only previous work we have found that explores
the use of a microservices architecture to build smart
city platforms. The authors described their early ex-
perience in adopting microservices, covering their im-
pact on organizational and design aspects. However,
their work leaves several open questions that demand
further experimental and empirical studies to obtain
more conclusive results on the adoption of microser-
vices in the design of smart city platforms, such as
on issues related to scalability and perfomance. Our
work has a broader scope, as the InterSCity platform
is designed to support smart city applications from
multiple domains and is fully developed as an open
source project, as opposed to the DIMMER platform.

3 THE INTERSCITY PLATFORM

InterSCity is a project aiming at developing multi-
disciplinary, high-quality scientific and technological
research to address the key challenges related to the
software infrastructure of smart cities (Batista et al.,
2016). One of the main goals of InterSCity is to de-
velop reusable open source technologies and methods
to support future Smart Cities. In this context, the In-
terSCity platform is a concrete result from the initial
research efforts in the project.

The InterSCity platform has been developed in-
crementally as an open source microservices-based
platform to enable collaborative research, develop-
ment, and experiments in smart cities. The platform
was designed from the outset following the refer-
ence architecture for smart city platforms proposed
in (Santana et al., 2016). This reference architecture
aims at guiding the development of next-generation
smart city platforms by describing and organizing the
major building-blocks that are required to meet a wide
range of functional and non-functional requirements
elicited from the analysis of a large number of existing
smart city projects. By implementing key building-
blocks of this architecture, the InterSCity Platform
covers the major features required to support inte-
grated smart city applications in different domains,
such as public transportation, public safety, and envi-
ronmental monitoring. Currently, the InterSCity Plat-
form provides a set of high-level cloud-based services
to manage heterogeneous IoT resources, data storage
and processing, and context-aware resource discov-
ery.

We follow agile software development methods
aligned with practices of open-source project com-



munities to provide a high-quality platform that can
be shared and collaboratively developed among cities,
research groups and development communities. The
source code is available online 2.

3.1 Design Principles

Smart cities emerge from advances in tools and tech-
niques developed both in the industry and academia,
such as the Internet of Things, Big Data, and Cloud
Computing. However, the integration of these tools
and technologies is not straightforward, as these ar-
eas evolve rapidly and their combination raises com-
plex issues. This brings new challenges, approaches,
and dynamics that result in the constant emergence
of novel technologies, standards, and services. Smart
city applications further enhance the dynamism of the
involved technologies, since they encompass com-
plex environments composed of several intercon-
nected subsystems which are constantly evolving and
presenting new challenges. Such dynamism impacts
several design decisions in smart city platform archi-
tectures.

To provide a high-quality, practical smart city
platform to support future smart city projects, we
must address two key design issues that jeopardize the
wide adoption of existing solutions in different smart
city initiatives: scalability and evolvability

Scalability - A platform must scale well in mul-
tiple dimensions to properly support a smart city.
Among others, smart city platforms must handle: (I)
a large number of devices that compose the city IoT
infrastructure; (II) millions of users and components
that use the platform services; (III) a very large vol-
ume of city-related data that must be stored and pro-
cessed; (IV) a potentiality large set of new services
that can interact with the platform to offer comple-
mentary capabilities. The scalability requirements
may vary depending on the context and should be ad-
dressed since the beginning of any smart city project.

Evolvability - Urban environments are very dy-
namic and tend to change constantly in terms of or-
ganization, regulations, problems, opportunities, and
challenges. Therefore, smart city platforms must be
adaptable to meet changing requirements in a cost-
effective way. Evolvability is the system’s capability
to evolve over time by supporting rapid modification
and enhancement with low cost and small architec-
tural impact, and is a fundamental element for the
success and economic value of long-lived software
(Breivold et al., 2012)

Our strategy to address scalability and evolvability
issues and to provide the required services to support

2https://gitlab.com/smart-city-software-platform

smart cities is to adopt a microservices architecture
for the platform. The microservices model emerged
from the software industry efforts to build large-scale
distributed systems refining SOA guidelines through
the adoption of DevOps and Agile principles, tools,
and techniques. Although there are efforts to under-
stand the impact of this architecture on other research
areas (Le et al., 2015; Gopu et al., 2016), very few
works explore the potential of microservices in the
context of smart cities.

Here we present the design principles adopted
in the InterSCity Platform which are aligned with
microservices patterns, which are critical for the
wide adoption of the platform in different smart city
projects.

• Modularity via Services. Modularity is a key
concept used in software architecture to divide
systems into smaller functional units. Microser-
vice architectures achieve modularity through
single-purpose, small services that communicate
through lightweight mechanisms to achieve a
common goal.

• Distributed Models and Data. In monolithic
architectures and even in traditional service-
oriented systems, it is fairly common to create a
unified domain model and a centralized storage
backend. With microservices, each service has its
own database and models, which may evolve in-
dependently of external services. Decentralized
data management and the possibility to use dif-
ferent technologies that best fit each context are
relevant advantages. On the other hand, increased
operational complexity is the main drawback.

• Decentralized Evolution. Microservices must
be autonomous, providing well-defined bound-
aries and communication APIs so that they can
evolve and be maintained independently. More-
over, this principle ensures that each service may
implement its functionalities using the most ap-
propriate technology, provoking positive technol-
ogy heterogeneity. Similarly, each microservice
may scale independently using different strate-
gies, since scalability requirements vary across
services. Finally, this design principle should re-
flect on the configuration and deployment proce-
dures, which may be performed independently as
well.

• Reuse of Open Source Projects. Reusing soft-
ware components is a fundamental practice of
software engineering to achieve productivity, cost
effectiveness and software reliability. We always
give preference to the use of existing robust open-
source tools, libraries, and frameworks instead of



implementing components from scratch, since the
quality of popular open-source packages is admit-
tedly good as already empirically observed (Taibi,
2013). Moreover, we adopt a rigorous technol-
ogy selection criteria and only incorporate open
source components that have an active developer
community, stable release support, and appropri-
ate documentation to guide usage, development,
and deployment.

• Adoption of Open Standards. As important as
the reuse of open-source projects is the adop-
tion of open, well-accepted standards that are de-
signed to provide interoperability at different lev-
els. This prevents technology and vendor lock-in.
The use of open Internet and web standards is es-
sential to enable the true Internet of Things, being
widely used in related projects found in the lit-
erature (Fazio et al., 2012; Amaral et al., 2015;
Hernández-Muñoz et al., 2011).

• Asynchronous versus Synchronous. Although
most services provide RESTful APIs, they must
implement asynchronous messaging as much
as possible to avoid blocking in synchronous
request-reply interactions. Asynchronicity should
be achieved by using notifications, the pub-
lish/subscribe design pattern, and event-based
communication strategies to support low latency
and scalability. Besides, the platform must rely on
a lightweight message bus with the single purpose
of providing a reliable messaging service rather
than traditional SOA approaches that use sophis-
ticated, heavy middleware such as an Enterprise
Service Bus (ESB).

• Stateless Services. This design principle supports
scalability by advocating that services should be
stateless to enable any service instance to re-
spond to any request, facilitating load distribution
and elasticity. Thus, the design of microservices
should separate state data, such as context and ses-
sion data, to be managed by an external compo-
nent whenever possible.

3.2 Platform Architecture

The InterSCity microservices architecture is shown
in Figure 1, addressing important aspects of IoT and
Data management, providing high-level RESTful ser-
vices to support the development of smart city appli-
cations, services and tools for different purposes. The
underlying IoT Gateways can register new devices to
the platform and send sensor data through a REST
API. InterSCity abstracts the complexity involved in
the communication between smart city applications

and IoT devices, as well as the complexity of city-
scale data management.

Figure 1: The InterSCity Platform Architecture.

InterSCity provides well-defined boundaries to
communicate with both IoT devices and smart city ap-
plications. Currently, the platform is composed of six
different microservices that provide features for the
integration of IoT devices (Resource Adaptor), data
and resource management (Resource Catalog, Data
Collector and Actuator Controller), resource discovery
through context data (Resource Discovery) and visu-
alization (Resource Viewer). Although all microser-
vices expose REST APIs for synchronous messaging
over HTTP, most of the communication for the com-
position of services is done through asynchronous
calls, relying on the lightweight message bus Rab-
bitMQ3 for asynchronous messaging through the Ad-
vanced Message Queuing Protocol (AMQP).

Interactions between the platform and its clients
involve the manipulation of city resources. A city re-
source is a logical concept that encapsulates a physi-
cal entity that makes up the city, such as cars, buses,
traffic lights, and lampposts. Resources comprise at-
tributes (e.g., location and description) and functional
capabilities to provide data and receive commands,
which are respectively supported by sensors and ac-
tuators coupled to the resource. This approach facili-
tates the interaction of client applications with a real
city environment, since it grants an abstraction com-
posed of city concepts rather than the cyber-physical
particulars, that comprise the underlying IoT layers
of Smart City ecosystems. As a consequence, for in-
stance, two buses registered in the platform are ac-
cessed through the same standardized API regard-

3www.rabbitmq.com



less of their devices and communication technologies.
Likewise, two physical sensor or actuator devices
with similar purposes are encapsulated as a common
capability, abstracting all the specific details related to
data representation and deployment of these devices.

The InterSCity architecture supports a decentral-
ized management of city resources dividing func-
tional responsibilities and data persistence across the
microservices. The Resource Adaptor microservice
works as a stateless proxy that allows external ser-
vices, such as IoT gateways, to register and update re-
sources on the platform, post sensed data from those
resources, and subscribe to events that indicate actua-
tor commands. All city resources are registered in the
Resource Catalog microservice which is responsible
for providing universally unique identifiers (UUIDs)
(Leach et al., 2005) and for asynchronously notifying
the event of resource creation to other microservices.

The Data Collector microservice stores sensor data
collected by city resources. Sensor data consist of
context information or an event linked to a resource
capability which is observed at a particular time. Data
Collector provides an API to allow access to both cur-
rent and historical context data of city resources using
a rich set o filters that can be accessed in search end-
points. The Actuator Controller microservice, in turn,
provides standardized services to intermediate all ac-
tuation requests to city resources with actuator capa-
bilities. Moreover, Actuator Controller records the his-
tory of actuation requests so that they can be accessed
in the future, e.g., for auditing purposes.

Both the Resource Discovery and the Resource
Viewer microservices provide more sophisticated ser-
vices by orchestrating Data Collector and Resource
Catalog. Resource Viewer is a web visualization mi-
croservice for presenting city resources information
graphically based on Resource Catalog and Data Col-
lector back-end services. The purpose of Resource
Viewer is to present general and administrative visu-
alizations of city resources, including location, real
time context data, and representative charts of histor-
ical data. The Resource Discovery microservice pro-
vides a context-aware search API that may be used
by client applications to discover available city re-
sources. This API provides filters that can be com-
bined to discover resources. For instance, filters can
combine information such as location data, interval
rules for current context data, and other types of meta-
data.

Scalability is a key non-functional requirement
for smart city platforms. InterSCity was primarily
designed to support smart city projects with a large
amount of users, data, and services. Its microservices
architecture supports scalability at the functional de-

composition level in both application and database
tiers by splitting the processing responsibilities across
several services, dividing the amount of data into de-
centralized databases, and isolating services through
fine-grained interfaces. However, each microservice
will be required to scale at different paces depend-
ing on both the specificities of the urban and tech-
nological context and the continuously increasing de-
mands. Although the loosely coupled architecture al-
lows microservices to scale out independently, dif-
ferent design strategies must be applied to overcome
their own traits in order to achieve horizontal scala-
bility. Table 1 summarizes the scalability strategies
currently supported by InterSCity microservices, de-
noted by and points out new strategies that will be
supported in the near future, denoted by NF.

A deployment of the InterSCity platform may
have several instances of each of its microservices
behind Load Balancers to handle higher loads trans-
parently for customers. Services that receive asyn-
chronous messaging, such as Data Collector, Actua-
tor Controller, and Resource Adaptor, are designed to
support the addition of more background workers to
handle highly intensive demands for event-based jobs.
Data Collector also uses database caching supported
by Redis4 to provide low-latency readings of the lat-
est data collected by city resources. Resource Dis-
covery caches static resource meta-data provided by
the Resource Catalog, since they do not change very
often. Initially, we adopted PostgreSQL5 in all mi-
croservices as it is widely adopted in the software in-
dustry and it supports georeferenced queries, which
are important in the smart city domain. However, we
intend to move towards plurality of database systems
in a near future to better fit the scope of each microser-
vice and to properly support horizontal scalability so
that the database layer does not become a bottleneck.

The loosely coupled message-oriented communi-
cation approach favors the continuous development of
the platform, enabling the extension of existing fea-
tures through service composition and the addition
of new microservices to meet the constantly evolving
smart city requirements. Moreover, decoupled com-
munication interfaces allow us to maintain microser-
vices in separate code repositories enabling: decen-
tralized version and dependency management, inde-
pendent, faster tests, safe refactoring, evolution of ex-
isting features, and the adoption of the most appropri-
ate technologies in each context. The lower boundary
provided by Resource Adaptor enables InterSCity to
continuously integrate heterogeneous IoT technolo-
gies without affecting other services. It can also be

4www.redis.io
5www.postgresql.org



Table 1: Scalability strategies supported by InterSCity microservices

Microservice HTTP Load Balancer Background Workers Caching Database Sharding
Resource Adaptor
Resource Catalog NF

Data Collector NF
Actuator Controller
Resource Discovery

Resource Viewer NF

used to integrate the existing legacy ICT infrastruc-
ture of cities, such as open data initiatives. It is worth
noting that InterSCity’ upper API isolates client ap-
plications from the modification or addition of new
technologies in the smart city infrastructure.

InterSCity microservices architecture requires
DevOps methods to support both an agile develop-
ment life cycle and consistent, automated, indepen-
dent deployments. Thus, we encapsulated microser-
vices into individual Docker 6 lightweight containers
which can be deployed and maintained independently.
Continuous integration tools play an important role
in the automated execution of both individual and in-
tegration tests, and to ensure that container images
are built correctly along the development of microser-
vices. To perform automated, consistent, remote de-
ployments, we adopted the Ansible7 automation en-
gine, which provides a set of configuration manage-
ment tools and scripts, facilitating the deployment of
the InterSCity platform and associated applications.

3.3 Application Life-cycle

To demonstrate the aforementioned approaches, here
we illustrate how applications can be built over the In-
terSCity services to interact with city resources. For
this purpose, we exemplify the use case of the Smart
Parking App, an experimental smart city application
developed on top of the platform by University of São
Paulo students during a graduate course and whose
source code is available in the platform distribution.
The Smart Parking application aims to help the diffi-
cult task of finding available parking spots in a large
city, by offering a map with geolocated real-time in-
formation of parking spaces. The system is based on
both static and sensor data of individual parking spots
equipped with embedded sensors to notify the pres-
ence of a parked car. As can be seen in Figure 2, the
Smart Parking App allows drivers to discover close
parking spaces by offering visualization filters related
to their availability, prices, and operating hours. One
can check the details of a parking spot and view the

6www.docker.com
7www.ansible.com

route from the user’s current location, as shown in
Figure 3. The hardware part of this example was sim-
ulated via a specific software component that mim-
icked the behavior of physical sensors.

Figure 4 illustrates a message flow that resulted
from the use of the Smart Parking application sup-
ported by the InterSCity platform hosted in a cloud in-
frastructure. This example considers a smart parking
infrastructure supported by cyber-physical systems to
detect the presence of cars in parking spaces based on
technologies that are commonly used in smart parking
solutions, such as Wireless Sensor Networks (WSN),
Light Dependable Resistor (LDR) sensors, Infra-Red
(IR) sensors, and magnetic sensors (Bachani et al.,
2016). These sensors send data continuously to a
remote IoT Gateway via wireless protocols, such as
ZigBee or Bluetooth, as illustrated in Step 1. The
responsibilities of the IoT Gateway are two-fold: (I)
registering each connected parking spot as a city re-
source with the “availability” sensor capability (Step
2) and (II) notifying the platform when a parking
space becomes available or unavailable (Step 3). For
these purposes, the IoT Gateway must track resource
UUIDs provided by InterSCity to be able to send con-
text data through the Resource Adaptor API upon
state change events. We highlight that the concepts
of city resource and capability abstract the implemen-
tation details of the underlying WSN infrastructure.

To use The Smart Parking application, one must
define a target location or automatically use his/her
current GPS data in addition to setting custom param-
eters to filter parking spaces according to the desired
characteristics (Step 4). As an example, the applica-
tion may query the platform for all the parking space
resources that match the selected parameters within a
500 meters radius of the target location through the
Resource Discovery API (Step 5). As a result, the
Smart Parking application renders the current state of
the returned parking resources on the map, as shown
in Figure 2. Users can set the update time interval
to get the current state of the returned resources as
well as to modify the parameters, which will result
in new requests such as the one performed in Step 5.
Additional requests may be performed to get detailed



Figure 2: Screenshot of the Smart Parking application.

Figure 3: Parking spot details in the Smart Parking applica-
tion.

information about a specific parking spot from the Re-
source Catalog API, such as presented in Figure 3, or
even to obtain its availability history through the Data
Collector microservice (Step 6).

4 PERFORMANCE AND
SCALABILITY ANALYSIS

To evaluate the proposed platform, we conducted two
preliminary experiments. First, we evaluated how the

performance of the InterSCity platform degrades with
the increase in the number of concurrent IoT gateways
(clients) sending sensor data continuously over a long
period of time. The main objective of this experiment
was to evaluate the individual behavior and consump-
tion of hardware resources of each microservice so
that we could identify potential bottlenecks. The sec-
ond experiment aimed at assessing the scalability of
the platform by applying supported scalability strate-
gies to the bottlenecks we identified.

To conduct the experiments, we ran a production-
like instance of the InterSCity platform in the Digital
Ocean 8 cloud. Both InterSCity microservices and
external services, such as PostgreSQL, RabbitMQ,
and Redis, were deployed within Docker containers.
However, each service instance was hosted on its own
virtual machine for isolation purposes, guaranteeing a
fixed amount of machine resources per service. In the
experiments, we consider a common smart city sce-
nario where distributed sensors continuously collect
observations from the city and send the sensed data
to IoT gateways. The source code of the scripts used
in the experiment are available in the repository for
reproducibility 9.

8www.digitalocean.com
9https://github.com/LSS-USP/smart-city-platform-



Figure 4: Smart Parking application life cycle.

4.1 Degradation Analysis

For the first experiment, we used a total of four single-
core GNU/Linux Debian 8.6 machines with 512MB
RAM having 2.0GHz of clock speed in the same pri-
vate network hosting one single instance of the Re-
source Adaptor, Resource Catalog, Data Collector,
and RabbitMQ services, without any replication. We
performed the degradation analysis by benchmark-
ing the platform against 11 different workloads sup-
ported by the Funkload10 load testing tool. Workloads
were characterized by the number of concurrent em-
ulated IoT Gateways that continuously send sensor
data from city resources to the platform. Each client
(the IoT Gateways) runs a loop sending synchronous
requests to the platform throughout the experiment as
fast as it can. We ran each of the load tests for four
minutes, with a 30-second interval between them, col-
lecting both response time and throughput metrics,
while keeping the same capacity and configuration of
the platform during all workload tests. We repeated
each run of the experiment 20 times.

Figure 5 shows the performance degradation of
the platform as the number of concurrent IoT Gate-
ways increases. The best average response time oc-

experiments
10funkload.nuxeo.org

curs for a workload of 50 concurrent clients, which
was less than 60 milliseconds.

The average response time remained below 1 sec-
ond with a workload of up to 350 parallel clients.
However, the tests with 250 or more clients in parallel
start to have requests with latency above 1 second; for
this particular application, this is not a problem, but
this is an interesting indication of the limitations of
the platform in case of applications with more strin-
gent real-time requirements. It is important to note
that the number of failed requests (returned with an
error code or with a timeout) varied from 0.01% for
350 concurrent clients to 0.16% for 600 concurrent
clients. With up to 250 concurrent IoT Gateways,
100% of the requests were successful.

Figure 5: Response time degradation.

In addition to evaluating the degradation in the
overall performance, we also monitored the use of
hardware resources on each machine to identify po-
tential bottlenecks. For this purpose, we used the
Linux-based Collectl 11 tool, as it can be used to mon-
itor a broad set of subsystems such as CPU, disk,
memory, processes, and network. Among the four
machines used to deploy the platform in the experi-
ment, the one that hosted the Resource Adaptor mi-
croservice presented the highest load in CPU and
memory usage, both close to 100% during the entire
duration of the experiment, being identified as the first
bottleneck in the tested scenario. The Data Collector
host machine also maintained a high level of CPU us-
age, as well as an intensive use of I/O operations to
store the sensed data. The other two machines did not
characterize bottlenecks.

11collectl.sourceforge.net



4.2 Scalability Analysis

The objective of the second experiment was to evalu-
ate the scalability of the InterSCity platform, as well
as to demonstrate the flexibility of our architecture
to address scalability issues. The same smart city
scenario was considered, with concurrent IoT gate-
ways continuously sending sensor data from city re-
sources to the platform. For this experiment we kept
a fixed workload with 500 concurrent clients to evalu-
ate the platform’s speedup and scale-up metrics. The
speedup metric measures how the performance im-
proves with the addition of new resources to the sys-
tem, while the scale-up metric measures the through-
put gain.

The loosely coupled microservices architecture al-
lows us to increase only the resources of the identi-
fied bottleneck microservices. We benchmarked the
platform with the fixed workload during six 4-minute
cycles applying a round-robin load balancing strat-
egy by adding a replica of the Resource Adaptor mi-
croservice for each new cycle. The first cycle used
exactly the same deployment setup of the first experi-
ment described before. Both the Load Balancer (NG-
INX12) and the new Resource Adaptor instances were
deployed on Docker containers hosted by separate
single core, GNU/Linux Debian 8.6, 512MB RAM,
2.6GHz machines. These tests were performed using
the Apache Benchmark13 Linux tool.

As a result of the scaling strategy, the average re-
sponse time decreased from 1725 milliseconds (with
1 instance) to 320 milliseconds (with 6 instances).
Figure 6 shows the performance improvement mea-
sured in the experiment. We can observe a signifi-
cant performance gain when scaling horizontally only
one of the microservices that make up the platform;
the speedup is very close to optimal. Since all mes-
sages received by Resource Adaptors are published
through the RabbitMQ message service, the use of
CPU by this service increases considerably, indicating
another possibility for improving the speedup even a
little more. RabbitMQ offers horizontal scalability
natively and we plan to enhance the platform making
use of this feature, further improving its scalability.

As can be seen in Figure 7, the mean through-
put of the platform increased substantially by hori-
zontally scaling the Resource Adaptor in the tested
scenario. With 6 instances, the platform answered an
average of 1546 requests per second, 5.5 times more
than when using the configuration with a single Re-
source Adaptor. Similarly to the speedup metric, the
scale-up value increases almost at the same rate at

12https://www.nginx.com/
13httpd.apache.org/docs/2.4/programs/ab.html

Figure 6: Speedup - performance improvement varying the
number of Resource Adaptors.

which new instances are added, which is an excellent
result.

Figure 7: Throughput improvement varying the number of
Resource Adaptors.

5 CONCLUSION AND FUTURE
WORK

Smart city platforms play a key role in the devel-
opment of future smart cities as they support cross-
domain solutions, interoperability among multiple
city systems, and resource and data sharing. How-
ever, due to various technical, practical, and method-
ological challenges, the community still lacks robust
solutions that can be shared across smart city initia-
tives, as well as production environments to support
scientific validation of existing proposals. This pa-
per presents two key contributions: (I) advances in
the state-of-art by exploring the impact of a microser-
vices architecture in the design, development and de-
ployment of scalable smart city platforms; and (II) a
novel microservice-based open source smart city plat-
form that provides facilities to build next-generation



scalable smart city solutions and to integrate hetero-
geneous IoT systems.

Our early experience with the development of In-
terSCity shows that microservices can be properly
used to build smart city solutions that provide finer-
grained, single purpose building blocks that can be
more easily and independently evolved compared to
traditional SOA approaches. However, it also intro-
duces new challenges due to an increase in the overall
complexity. We highlight that the use of industry stan-
dards, such as DevOps techniques and open source
tools, automated tests, and design patterns, is essential
for the successful implementation of our project. In
the near future, we intend to investigate more deeply
the impact of applying microservices design princi-
ples to achieve a loosely coupled, evolvable architec-
ture, demonstrating that InterSCity can be adapted for
different smart city environments, can easily integrate
new services, and can be modified to meet the con-
stantly evolving city requirements.

Experimental results point towards the applicabil-
ity of our approach in the context of smart cities, since
the platform can support different scalability demands
while keeping acceptable performance. These results
also show that microservices can be deployed and
scaled independently. Further comprehensive exper-
iments should be performed to evaluate all the ser-
vices provided by the platform. More specifically,
we intend to conduct experiments to evaluate the per-
formance and scalability of the InterSCity platform
within more realistic scenarios of smart cities, with
devices, data, and users at a larger city scale.

Our ongoing work includes several features still
needed to meet the constantly evolving requirements
of urban environments. This includes more sophisti-
cated Big Data processing and analytics (Al Nuaimi
et al., 2015) as well as improved data visualization.

The adopted open source model encourages the
community to take advantage of our contribution, as
well as to contribute to the InterSCity platform evolu-
tion. We expect to enable future smart city initiatives
and research from other groups on new approaches to
build open, high-quality, practical solutions that can
be extended, reused, collaboratively evolved, and de-
ployed in real smart city environments.

ACKNOWLEDGEMENTS

We acknowledge the student members of the Smart
Parking App group who develop the application on
top of the InterSCity platform: Débora Setton, Hans
Harley, Jefferson Silva, Nury Arosquipa, and Thiago
Petrone.

We also acknowledge the following developers for
their contributions to the InterSCity platform source
code: Alander Marques, Ariel Palmeira, Arthur Del
Esposte, Athos Ribeiro, Cadu Elmadjian, Caio Sal-
gado, Caroline Satye, Danilo Caetano, Débora Setton,
Fernando Freire, Henrique Potter, Igor Lima, João
Brito, Leonardo Pereira, Lucas Kanashiro, Macartur
Sousa, Marisol Solis, Rodolfo Scotolo, Rodrigo Faria,
Rodrigo Siqueira, Rogerio Cardoso, Thiago Petrone,
and Wilson Kazuo.

REFERENCES

Al Nuaimi, E., Al Neyadi, H., Mohamed, N., and Al-
Jaroodi, J. (2015). Applications of big data to smart
cities. Journal of Internet Services and Applications,
6(1).

Amaral, L. A., Tiburski, R. T., de Matos, E., and Hessel, F.
(2015). Cooperative middleware platform as a service
for internet of things applications. In Proceedings of
the 30th Annual ACM Symposium on Applied Comput-
ing, SAC ’15, pages 488–493, New York, NY, USA.
ACM.

Apolinarski, W., Iqbal, U., and Parreira, J. X. (2014). The
gambas middleware and sdk for smart city applica-
tions. In 2014 IEEE International Conference on
Pervasive Computing and Communication Workshops
(PERCOM WORKSHOPS), pages 117–122.

Bachani, M., Qureshi, U. M., and Shaikh, F. K. (2016). Per-
formance analysis of proximity and light sensors for
smart parking. Procedia Computer Science, 83:385
– 392. The 7th International Conference on Ambient
Systems, Networks and Technologies (ANT 2016) /
The 6th International Conference on Sustainable En-
ergy Information Technology (SEIT-2016) / Affiliated
Workshops.

Batista, D. M., Goldman, A., Hirata Jr., R., Kon, F., Costa,
F. M., and Endler, M. (2016). Interscity: Addressing
future internet research challenges for smart cities. In
7th International Conference on the Network of the
Future. IEEE.

Breivold, H. P., Crnkovic, I., and Larsson, M. (2012).
A systematic review of software architecture evolu-
tion research. Information and Software Technology,
54(1):16 – 40.

Fazio, M., Paone, M., Puliafito, A., and Villari, M. (2012).
Heterogeneous sensors become homogeneous things
in smart cities. In Innovative Mobile and Internet Ser-
vices in Ubiquitous Computing (IMIS), 2012 Sixth In-
ternational Conference on, pages 775–780.

Gopu, A., Hayashi, S., Young, M. D., Kotulla, R., Henschel,
R., and Harbeck, D. (2016). Trident: scalable com-
pute archives: workflows, visualization, and analysis.
volume 9913, pages 99131H–99131H–12.

Hernández-Muñoz, J. M., Vercher, J. B., Muñoz, L.,
Galache, J. A., Presser, M., Gómez, L. A. H., and Pet-
tersson, J. (2011). The future internet. chapter Smart



Cities at the Forefront of the Future Internet, pages
447–462. Springer-Verlag, Berlin, Heidelberg.

Krylovskiy, A., Jahn, M., and Patti, E. (2015). Designing
a smart city internet of things platform with microser-
vice architecture. In Future Internet of Things and
Cloud (FiCloud), 2015 3rd International Conference
on, pages 25–30.

Le, V. D., Neff, M. M., Stewart, R. V., Kelley, R.,
Fritzinger, E., Dascalu, S. M., and Harris, F. C. (2015).
Microservice-based architecture for the nrdc. In 2015
IEEE 13th International Conference on Industrial In-
formatics (INDIN), pages 1659–1664.

Leach, P. J., Mealling, M., and Salz, R. (2005). A uni-
versally unique identifier (uuid) urn namespace. RFC
4122, RFC Editor. http://www.rfc-editor.org/
rfc/rfc4122.txt.

Neirotti, P., Marco, A. D., Cagliano, A. C., Mangano, G.,
and Scorrano, F. (2014). Current trends in smart city
initiatives: Some stylised facts. Cities, 38:25–36.

PCAST (2016). Technology and the future of cities, report
to the president. Technical report, Executive Office of
the President, United States.

Sanchez, L., Galache, J. A., Gutierrez, V., Hernandez, J. M.,
Bernat, J., Gluhak, A., and Garcia, T. (2011). Smart-
santander: The meeting point between future internet
research and experimentation and the smart cities. In
2011 Future Network Mobile Summit, pages 1–8.

Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., San-
tana, J. R., Gutierrez, V., Ramdhany, R., Gluhak, A.,
Krco, S., Theodoridis, E., and Pfisterer, D. (2014).
Smartsantander: Iot experimentation over a smart city
testbed. Computer Networks, 61:217 – 238. Special
issue on Future Internet Testbeds – Part I.

Santana, E. F. Z., Chaves, A. P., Gerosa, M. A., Kon, F., and
Milojicic, D. S. (2016). Software platforms for smart
cities: Concepts, requirements, challenges, and a uni-
fied reference architecture. CoRR, abs/1609.08089.

Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M.,
Calbimonte, J.-P., Riahi, M., Aberer, K., Jayaraman,
P. P., Zaslavsky, A., Žarko, I. P., Skorin-Kapov, L., and
Herzog, R. (2015). OpenIoT: Open Source Internet-
of-Things in the Cloud, pages 13–25. Springer Inter-
national Publishing, Cham.

Taibi, F. (2013). Reusability of open-source program code:
A conceptual model and empirical investigation. SIG-
SOFT Softw. Eng. Notes, 38(4):1–5.

Villanueva, F. J., Santofimia, M. J., Barba, J., and Lópes,
J. C. (2013). Civitas: The smart city middleware, from
sensors to big data. In Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), pages 445–
450.




