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Abstract— Many real systems can be naturally modeled by
complex networks. A complex network represents an abstrac-
tion of the system regarding its components and their respective
interactions. Thus, by scrutinizing the network, interesting
properties of the system can be revealed. Among them, the
presence of communities, which consists of groups of densely
connected nodes, is a significant one. For instance, a community
might reveal patterns, such as the functional units of the system,
or even groups correlated people in social networks. Albeit
important, the community detection process is not a simple
computational task, in special when the network is dynamic.
Thus, several researchers have addressed this problem pro-
viding distinct methods, especially to deal with static networks.
Recently, a new algorithm was introduced to solve this problem.
The approach consists of modeling the network as a set of
particles inspired by a N-body problem. Besides delivering sim-
ilar results to state-of-the-art community detection algorithm,
the proposed model is dynamic in nature; thus, it can be
straightforwardly applied to time-varying complex networks.
However, the Particle Model still has a major drawback. Its
computational cost is quadratic per cycle, which restricts its
application to mid-scale networks. To overcome this limitation,
here, we present a novel parallel algorithm using many-core
high-performance resources. Through the implementation of
a new data structure, named distance matrix, was allowed a
massive parallelization of the particle’s interactions. Simulation
results show that our parallel approach, running both tradi-
tional CPUs and hardware accelerators based on multicore
CPUs and GPUs, can speed up the method permitting its
application to large-scale networks.

Keywords: community detection, massively parallel algo-
rithm, high-performance computing on hardware accelerators

I. INTRODUCTION

Real systems, such as the Internet, social networks, fast
food chains, biological networks, transport networks, and
others, can be modeled via complex networks or graphs [1].
For instance, to represent a transport network, nodes can
represent cities and links the paths between neighbor cities.
In a second example, the Web, nodes can denote websites
and links, ways of targeting such sites to other web addresses
[2], [3].

Among several features and measurements that can be
extracted from complex networks (see [1]), one important
feature is the network modular structure named communities
[4].

Community detection is a very active research topic.

The community structure might reveal valuable information
regarding the topology and the dynamics of the system, e.g.,
Internet, social networks, biological networks, among others
[4], [5], [6].

Although there is no universally accepted definition for
communities, most papers found in the literature consider
that groups of well-connected nodes are characterized by the
existence of a greater number of edges within the group than
with the other network groups [6]. The Figure 1 illustrates
a network with three communities. Nodes with same colors
constitute the communities.

According to Danon et al. [7], community detection is
a NP-Complete problem. Thus, instead of using only exact
algorithms, researchers have considered a variety of ap-
proaches to tackle this task [6], [8], [9], [10]. However,
dealing with large-scale networks and time-varying networks
is still a significant challenge that needs to be overcome.

Fig. 1. A example of communities in a complex network.

Recently, a new community detection algorithm, based on
a simple particle dynamic model, was proposed by Quiles
et al. [10]. In their approach, each node is represented by a
particle embedded in a 3D Euclidean space. The motion of
particles is governed by a dynamics that takes the particles’
position and the links of the graph into account. If two
particles are connected through a link, they attract each other,
on the contrary, they repel inversely proportional to their
distance in the space. After a transient, the system reaches
an equilibrium state in which particles representing densely
connected nodes, or communities, are represented by clusters
into the Euclidean space. Thus, by using a simple clustering
algorithm, the communities are detected.



Albeit providing accurate results in both static and dy-
namic scenarios, owning to its high computational cost,
this algorithm cannot be straight applied to large-scale net-
works. In this sense, high-performance computing (HPC)
techniques, used in the parallelization of CPU algorithms,
via OpenMP directives, and GPU, with the assistance of the
CUDA platform, emerge as real alternatives in overcoming
these limitations [11], [12], [13].

Here, we show that HPC techniques, via CPU and GPU,
used as parallelization mechanisms for the particle commu-
nity detection algorithm, allowed an escalation of the original
algorithm to a higher level. Our results demonstrated that the
parallel algorithm delivery results up to 50 times faster than
its serial version.

The rest of this paper is organized as it follows. Section
II revisits the algorithm proposed by Quiles et al. [10].
Our proposed parallel algorithm is described in Section
III. Experimental results are depicted in Section IV. Some
concluding remarks are drawn in Section V.

II. COMMUNITY DETECTION ALGORITHM
INSPIRED ON PARTICLE DYNAMICS

In this section, we provide a detailed description of the
community detection model proposed by Quiles et al. [10].
This model maps the graph nodes into a new space, named
Particle Space. The model considers a straightforward and
efficient dynamics, which govern the system of particles to
an equilibrium state in which the cluster (or communities)
are revealed when the system reaches the equilibrium.

Formally, lets assume a graph G = {V, E}, in which V
and E define the set of nodes and links, respectively. The i-
th node in the network (i = 1, . . . , N ) is then associated
to a particle’s position, ~xi(t) = (xi, yi, zi), that evolves
according to

~̇xi = α ~F
(A)
i + β ~F

(R)
i , (1)

where ~F
(A)
i and ~F

(R)
i are the attractive and repulsive

interactions acting upon particle i and α > 0 and β > 0
are the strengths for these interactions, respectively. Initially,
each particle assumes a random initial position into the PS.

When particles i and j represent adjacent nodes in the
graph, it means, the adjacency matrix ij-th entry is Aij = 1,
these particles are mutually attracted. On the other hand,
particles representing unlinked nodes (Aij = 0) repel each
other.

These interactions were designed to conduct the system of
particles to a stable configuration in which the clusters in the
PS reveal the communities of the network. If the network has
a modular structure, nodes belonging to the same community
have a higher probability of sharing an edge in comparison
to nodes of distinct communities. As a consequence, nodes
of the same community will have a stronger attractive
interaction. On the contrary, the repulsive interaction will be
strong between nodes of distinct communities, or between
communities. The following interaction are considered in
[10]

~F
(A)
i = −

N∑
j=1

Aij
ki

(~xi − ~xj)
‖~xi − ~xj‖

, (2)

~F
(R)
i =

N∑
j=1

1−Aij
ki

(~xi − ~xj)
‖~xi − ~xj‖

e−γ ‖~xi−~xj‖, (3)

where γ > 0 is the decay rate for the repulsive interaction
as a function of the distance between particles, Aij is the
adjacency matrix of the graph, and ki is the node’s degree.

As stated earlier, the Particle model provides a novel and
interesting approach to the community detection problem.
Besides, the model can be straightforwardly applied to time-
varying, or dynamic, networks.

However, a drawback of the particle system it is high
computational cost. Each iteration demands the computation
of the distances between every pair of particles (nodes).
Thus, assuming a transient T to reach an equilibrium state,
the computational complexity of the algorithm is O(T×N2),
in which N is the number of nodes.

Although having a high computational cost, the algorithm
proposed by Quiles et al. has an intrinsic parallel nature.
Thus, here, we have scrutinized their model to come up with
a parallel equivalent algorithm.

It is worth noting that the parallelization of particle-like
systems has been studied elsewhere, albeit with distinct pur-
poses. For example, the Barnes-Hut algorithm [14], the Fast
Multipole Method (FMN) [15], and the Parallel Multipole
Tree Algorithm (PMTA) [16]. These approaches, to reduce
the complexity cost of the integration method, have ignored
the existence of interactions that might be essential in the
context of community detection methods. The scrutinization
of these faster integration methods to solve the Quiles et al.
community detection method will be carried out in future
investigations.

Next section introduces our parallel approach.

III. MASSIVELY PARALLEL ALGORITHM

As mentioned before, the community detection algorithm
based on particle dynamics has a high computational cost
when computing the distances between the system particles
pairs. The strategy adopted here consists of developing a
portable parallel algorithm to achieve a massive parallelism
in the execution of this task, both for the CPU’s and GPU’s.
To ensure the algorithm portability, we have created an
auxiliary data structure consisting of an array of order N×N ,
here called the distance matrix. This structure stores in the
ij-th entry the distance between the pair of particles (i, j).

The algorithm depicted in Alg. 1 illustrate the basic steps
taken into account in our parallelization approach.



Algorithm 1 Parallel Algorithm Based on Particle Dynamics
Input: G = {V, E}
Output: set Ci=1···nc/∪

nc
i=1Ci = V e ∩nc

i=1Ci = ∅
1: initializePS();
2: ∀ particle ∈ V
3: initializeDistancesParallel();
4: ∀ particles pair (i, j)/ i, j ∈ V
5: computePairDistancesParallel();
6: computeGlobalDistancesParallel();
7: updatePositionsParticlesParallel();

The Algorithm 1 take as input an undirected and un-
weighted graph, and outputs a set of communities C. In line
1, the serial routine initializePS() assigns a random position
to each particle of the system. In line 3 the parallel routine
assign zero values to the distance parameters of each particle.
The computePairDistancesParallel() procedure, shown in
line 5, is responsible for evaluating the distance matrix. The
computeDistancesParallel() (line 6) runs N parallel tasks,
each one reducing a line in distance matrix to a value
representing the attraction or repulsion between particles.
Lastly, the upPositionsParticlesParallel() routine parallely
updates the particle’s positions.

IV. RESULTS
The community detection algorithm based on particle

Dynamics is coded in C++, using the SNAP system libraries
(Stanford Network Analysis Platform [17]) to deal with
graph data structures. The parallelism for CPU cores uses
OpenMP [18] and for GPUs uses CUDA [19] routines. The
experiments were conducted on 5 different computational
systems: a) a single CPU node with 20 cores shared memory
configured with 2 sockets Intel Xeon E5-2630v4 2.20 GHz
and 64GB for main memory; b) the same single node with a
GPU NVIDIA Titan Black, 2880 Cuda cores at 889 MHz and
6GB for global memory; c) a single node with Intel Xeon
Phi 7250 wich contains 68 cores at 1.40 GHz and 128GB for
main memory, MCDRAM configured as cache mode; and d)
a single node with IBM Power System S822LC (8335-GTB)
based on POWER 8 (16 cores at 3.259 GHz with 3.857 GHz
turbo performance) e) the same single node with NVIDIA
NVLink connecting a GPU NVIDIA Tesla P100 (3584 Cuda
cores at 1.328 GHz and 16GB for global memory).

The parallel algorithm was validated by comparing the
solution obtained for different datasets with the serial pro-
gram, showing a complete match between the original and
parallel version. In order to check the parallel approach
performance six datasets representing different networks was
used, named neti, with i ∈ 1, 2, ..., 6. The networks net1
and net4 have 2000 nodes/vertices, the networks net2 and
net5 have 3000 nodes and the networks net3 and net6
have 4000 nodes. The networks net1, net2 and net3 have
approximately n × 20 edges, and the datasets net4, net5
and net6 have approximately n × 10 edges. The first three
networks (net1/2/3) have a few number of communities with
large amounts of vertices for each one, while the last ones,
in contrast, have many communities, but with a few nodes.

Table I shows the elapsed time (wall-clock time) for the
six networks used running on two different CPUs. The first
6 rows on table shows the performance over a single x86
node (Intel Xeon E5-2630) and the last 6 rows shows the
performance over a single node with IBM Power8. Both
use the same source-code implemented on C language with
OpenMP. It is possible to see the worst performance using
the parallel version with just one thread when comparing
to the original algorithm, due to the new procedure respon-
sible for computing the distances between adjacent nodes,
according to describe in section IV. This new routine is
worst than the former and serial one, however, it allows code
parallelization, usually limited in a naive parallelism over
the original version. Thus enabling desirable high scalability,
possible to check by the time decay considering the parallel
computational time from one thread elapsed time. The time
decay occurs in a similar way for all datasets tested.

TABLE I
COMPUTATIONAL WALL TIME ON TWO DIFFERENT CPUS (INTEL XEON

E5-2630V4 AND IBM POWER8) - ARTIFICIAL NETWORKS

net1 net2 net3 net4 net5 net6

Serial 12.51 35.9 77.61 22.09 71.15 174.08
1 23.91 67.77 139.95 37.31 117.22 268.35
2 12.5 34.96 74.59 19.75 62.47 156.98
4 8.84 29.01 53.33 12.51 50.38 99.95
8 3.65 16.5 31.07 6.41 26.89 60.23
16 2.43 6.23 16.42 3.61 10.91 29.92

Serial 6.44 18.71 39.33 10.79 33.67 81.31
1 18.52 54.01 114.99 26.90 81.99 186.50
2 9.42 27.03 71.27 14.51 47.63 123.44
4 4.92 14.00 44.90 7.21 25.85 26.84
8 2.94 7.79 22.17 4.92 14.97 13.77
16 2.14 5.34 11.13 3.87 12.81 7.87

Table II shows the elapsed time evaluated on hardware
accelerators for the same set of networks (except net6). The
first 7 rows shows performance running natively on a single
Intel Xeon-Phi node (Intel Xeon Phi 7250) using the same C
source-code with OpenMP used for CPUs. The last two rows
shows the elapsed time over GPUs running a CUDA source-
code, where GPU1 means the NVIDIA Titan Black and
GPU2 the NVIDIA P100. The wall-clock times show similar
pattern decay and scalability for Xeon Phi comparing to
CPUs on table I. The GPU algorithm version shows the best
overall performance in both GPUs, especially in NVIDIA
P100.

Figure 2 shows the speedup over net1 and net4 (both
with 2000 vertices) for all different computational resources
used over the serial version (original version) running on the
Intel Xeon E5-2630 as reference value. The X axis varies
with 2i, where i = 0 to 6. It is possible to check the
scalability for all datasets, showing best performance for Intel
Xeon E5-2630 than Intel Xeon Phi for same processor/core
count, due to clock speed processor. The GPU shows best
overall performance achieving a speedup up to 54.01 for
the best case using GPU2 (NVIDIA Tesla P100) with net4.
The best performance obtained with the parallel version



TABLE II
COMPUTATIONAL WALL TIME FOR HARDWARE ACCELERATORS (INTEL

XEON-PHI, NVIDIA TITAN BLACK AND P100) - ARTIFICIAL

NETWORKS

Threads net1 net2 net3 net4 net5

1 63.72 184.73 379.77 98.68 312.96
2 32.11 94.55 197.71 50.61 158.98
4 17.43 50.97 103.52 27.57 88.56
8 8.64 25.82 52.20 14.04 43.49
16 4.46 13.19 26.49 7.17 22.46
32 2.48 6.97 13.55 3.81 11.34
64 1.37 3.68 7.31 2.16 6.11

GPU1 0.55 1.27 2.62 0.84 2.16
GPU2 0.34 0.56 1.01 0.41 0.92

running on Intel Xeon or Xeon-Phi is below a desirable
linear speedup, as it is possible to check on the same figure.
Furthermore, similar results occurs for datasets net2 and
net5 in figure 3, where GPU runs achieves a speedup 77.76
as best performance, with net5 using GPU2. In figure 4
the best speedup performance for net3 is 77.14 also using
GPU2. The results show that larger data sets produce better
performance gains on GPU. The speedup on the Power8
single node was not shown to improve the figure visibility,
since the scalability is similar comparing to Intel-Xeon.

By comparing the two types of datasets (with small or
large communities), it is possible to check that the results
with smaller communities achieved a better performance.
These behaviors are noted to a less extent for CPU multi
thread runs, i.e., larger data sets with smaller communities
have shown just a slight improvement on the speedup for the
CPU parallel version.

Fig. 2. Speedup values found (Tserial/Tn)

Is remarkable how the same parallel algorithm strategy
produces a performance gain in different computational
resources. However, the CPU parallel version needs future
effort to improve vectorization on AVX-512, especially for
Xeon Phi, to improve speedups. Furthermore, the GPU paral-
lel version needs better effort to improve coalescent memory
access and a new optimization in reduction procedures.

Fig. 3. Speedup values found (Tserial/Tn)

Fig. 4. Speedup values found (Tserial/Tn) for network net3

The GPU parallel version takes about 98% of the time
in computing routines and 2% in data transfers between the
host and the device memory (and vice-versa). There are four
CUDA kernel implemented, all of them are called by the host
for each iterative loop until convergence: a) initParticlesGPU:
responsible for initiating the distances between all vertices
to zero (O(N)); b) coreGPUa: evaluates the distance matrix
O(N2); c) coreGPUb: a reduction procedure performed in all
vertices. It summarizes the distance matrix by computing the
attraction and repulsion between adjacent and non-adjacent
nodes, respectively (O(N2)); and, d) upPositionsGPU: up-
dates particle positions according to attraction and repulsion,
adding distance factor on the three-dimensional particle
coordinates (O(N)).

Table III shows instrumentation data results over GPU
kernels evaluated on NVIDIA Titan Black (GPU1). The
most demanding kernel task (coreGPUb) is O(N), in which
N is the number of particles/nodes. In the procedures all
tasks evaluate an inner loop over N . Thus, the complete
routine is also O(N2). The small number of tasks (N ) in
contrast to the CoreGPUa routine is clearly a bottleneck for
this procedure, especially when using an accelerator device



which works better with massive parallelization like GPUs.
This possible problem causes a small number of Instructions
Per Cycle (IPC) metric and a flat rate for achieved occupancy.
Future improvements to overcome this limitation are under
investigation. The second demanding kernel (coreGPU2a)
performs NxN concurrent tasks, each one evaluating a dis-
tance between two nodes. There are one order more tasks,
performing less complex computation, which is desirable
for a GPU device. The IPC and occupancy show the best
performance. However, both routines show similar ratios for
Streaming Multiprocessor (SM) activity.

TABLE III
GPU PERFORMANCE EVALUATION OVER ARTIFICIAL NETWORKS - MEAN

VALUES

Kernel ID Time(%) SM
activity(%) IPC Achieved

Occupancy
coreGPUb 68.98 92.5 0.084 17.7
coreGPUa 27.8 99.9 0.554 46.7

upPositionsGPU 0.1 42.4 0.175 14.2
initParticlesGPU 0.02 34.8 0.113 16.9

In order to check only the scalability over an incremental
number of threads, the elapsed time for parallel CPU version
with just one thread was taken as a speedup reference.
Figures 5 and 6 show the scalability for the datasets with
larger communities and small communities evaluated on
the Intel Xeon E5-2630 and the Intel Xeon Phi 7250. The
results indicate better scalability for Intel accelerator Xeon
Phi than the traditional dual multi-core CPU. The MCDRAM
configured as a speed cache memory probably is the primary
cause for the best scalability. A linear speedup line is also
shown for comparative purposes. For figures 5 and 6 the
results with Power8 was not shown again, since the speedup
is very similar to Intel-Xeon, and the corresponding lines on
the figure could be very difficult to visualize.

Fig. 5. Scalability for few communities datasets

V. CONCLUSIONS
In this paper, we proposed and evaluated parallel al-

gorithms for community detection. Specifically, we have

Fig. 6. Scalability for many communities datasets

designed CPU and GPU versions of the community detection
method proposed in [10]. Results showed that the parallel
algorithms are equivalent to the original particle method re-
garding their outcome. As stated before, the particle method
in its original formulation cannot be straight applied to large-
scale networks owning to its high computational cost. Here,
this main drawback was overcome by designing a novel
parallel algorithm.

The new algorithm replaced the main procedure responsi-
ble for evaluating the distances between all nodes to each
other, which was a source of concurrent race conditions,
requiring critical sections to avoid it. The new matrix in-
troduced to evaluate the distances allowed a massive paral-
lelism, albeit decreasing the performance in a serial run.

The new parallel version has shown good scalability with
a speedup near to 10 for 16 threads in a traditional dual
multicore CPU and up to 50 times for 64 threads in a Intel
Xeon-Phi hardware accelerator, taking the parallel version
with one thread as base value for speedup evaluations. In
comparison to the serial version, as the baseline value,
the speedups are more modest reaching a speedup of 6.5
with dual multicore CPU using 16 threads and about 10.6
for 64 threads with a Intel Xeon Phi. One single core
in Intel Xeon-Phi has less computing power than a single
core in the Xeon E5-2630 v4, where the serial version was
evaluated, which could explain the modest speedup even with
64 threads. Both CPU versions could improve performance
with vectorization using AVX vector units. A same source-
code was evaluated on a single node IBM Power8 with
similar results comparing to Intel-Xeon. The GPU version,
with same parallelism strategy, achieved a speedup range
between 22.6 to 33.0 for the worst and best case on NVidia
Titan Black and 33.6 and 77.8 on NVidia P100. Thus,
according to our experiments, it is the best solution to be used
in the code optimization, considering the cost/performance
obtained, especially compared with Xeon-Phi.

These initial optimization experiments show the viability
of the portable parallel strategy developed to create the
massively concurrent tasks for different parallel computing



resources. Future improvements on this parallel code are
expected to improve even more the performance for similar
shared memory machines. The main issues rely on improve
SIMD vectorization for AVX vector units, and also improve
a reduction procedure for GPU routine which summarizes
the distance matrix (named CoreGPUb) and improves a
coalescent memory access.

Future developments also include a distributed memory
version using distinct hardware like Intel accelerators and
GPUs, and new features like a parallel graph partition
algorithm adapted to the same hardware used to compute the
particle dynamics. The extension of the model to deal with
directed and weighted graphs are also planned. Finally, the
integration of the equations using lower-cost computational
methods for N-body problem, which is commonly used in
molecular dynamics problems, will also be scrutinized in our
specific community detection scenario.
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