Enabling the Future Internet for Smart Cities

Enabling the Future Internet for Smart Cities

Multi-Object Segmentation by Hierarchical Layered Oriented Image Foresting Transform

This paper introduces a new method for multi-object segmentation in images, named as Hierarchical Layered Oriented Image Foresting Transform (HLOIFT). As input, we have an image, a tree of relations between image objects, with the individual high-level priors of each object coded in its nodes, and the objects’ seeds. Each node of the tree defines a weighted digraph, named as layer. The layers are then integrated by the geometric interactions, such as inclusion and exclusion relations, extracted from the given tree into a unique weighted digraph, named as hierarchical layered digraph. A single energy optimization is performed in the hierarchical layered weighted digraph by Oriented Image Foresting Transform (OIFT) leading to globally optimal results satisfying all the high-level priors. We evaluate our framework in the multi-object segmentation of medical and synthetic images, obtaining results comparable to the state-of-the-art methods, but with low computational complexity. Compared to multi-object segmentation by min-cut/max-flow algorithm, our approach is less restrictive, leading to globally optimal results in more general scenarios.