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Urban Data: What is the Big deal?

e (Cities are the loci of economic activity

e 50% of the world population lives in cities, by 2050 the
number will grow to 70%

e Growth leads to problems, e.g., transportation, environment
and pollution, housing, infrastructure

e Good news: Lots of data being collected from traditional and
unsuspecting sensors
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Data Exhaust from Cities

Infrastructure Environment People
t60rology, poIIutlon Relatlonshlps
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Urban Data: Success Stories

e Real-time arrival predictions

e 94% reported increased or
greatly increased satisfaction
with public transit

sSs e Significant decrease in actual
wait time per user, and an
oneBUSAway even greater decrease in

Serving up fresh real-time transit information for the , o
| region. perceived wait time

e /8% of riders reported
iIncreased walking — a
significant public health benefit

http://onebusaway.org

Benefit residents . v . oo
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Urban Data: Success Stories

e NYC gets 25,000 illegal-conversion
complaints a year and only 200
Inspectors to handle them...

e Data-driven approach

1. Integrated information from 19 different agencies
that provided indication of issues in buildings,
e.g., late taxes, foreclosure proceedings, service
cuts, ambulance visits, rodent infestation, crime

2. Compared with 5 years of fire data
3. Created a prediction system

e Result: hit rate for inspections went from
13% to 70%

Make City more efficient
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Urban Data: Success Stories

e The NYU Furman Center http://furmancenter.org/
e Analysis of the impact and benefits ;
of subsidized housing on the i [URMAN CENIES
surrounding neighborhoods = Bﬁﬁ NEW YORK UNIV

influenced City spending decisions

e Assessment of crime data and
property-level foreclosure data led A e
to the finding that neighborhoods o Hcendlomures/lhcresse it 1
with concentrated foreclosures see
an uptick in crime for each
foreclosure notice issued =2

updates to policing strategies

Affect policy

W TANDON SCHOOL IMAGING AND
NYU | poessioo: S




Urban Data: What is hard?

Infrastructure Environment

Meteorology, pollution,

e City components interact in Fwikke  nutition, opinions, ...
complex ways 03~D ATA OV

e Need to analyze the city data
exhaust to understand these YPF!

Interactions
e | ots of heterogeneous and dirty

data data.gov &
[ PrOcesseS OCCUr over time and Open Government Data Platform India @ w3

spdace Montréal 3 E .
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Urban Data: What is hard?

e Scalability for batch computations is not the biggest problem
e | ots of work on distributed systems, parallel databases, cloud computing...
e FElasticity: Add more nodes!

e Scalability for people is!
regardless of whether data are big or small

. provenance machine learning
algorithms

data discovery data integration

visual encodings interaction modes

statistics

data curation data management
math

dataﬂfun%n/\ knowledge
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Urban Data Analysis: Common Practice

1. Domain experts and policy makers formulate hypotheses

2. Data scientists select data sets and slices, perform
analyses, and derive plots

3. Domain experts examine the plots, goto 1.

Issues:
e Dependency on data scientists distances domain experts from the data

e Batch-oriented analysis pipeline hampers exploration — analyses are mostly
confirmatory [Tukey, 1977]

e Data are complex — often multivariate spatio-temporal
e Analysis often limited to samples or small number of data slices
e Finding relevant data among the many data sets available
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Urban Data Analysis: Desiderata

e Scalable tools and technigues that help domain experts
find, clean, integrate, interactively explore and explain data

e Cater to different kinds of users with little or no CS training
e Automate tedious tasks as much as possible
e (Guide users in the exploration process

Data analysis for all!
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Sounds of New York City
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NYC 2015

SONYC - Sounds Of New York City

F NEWYORK CITY, 77+
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https//www.youtube.com/watch?v=d-JMtVLUSEg
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Outline for Today

e \WVhat does the data look like?
e Big Problems

e Data Cleaning

e QOverview and Challenges
e (Cleaning the NYC Taxi Data: A Case Study

e Exploring Urban Data: Usability and Interactivity
e Finding Interesting Features
e Using Data to Discover and Explain Data

IIIIIIIIIIIII

W TANDONSCHOoOL N7 )1™ A rGNGaND
NYU | poessioo: S




Opportunity: Lots of Open Data

NYE OpenData

Home Data About ~ Leam ~ Alerts Contact Us Blcg

Open Data for
All New
Yorkers

As of December 2016, over
1,600 data sets are available
on the NYC Open Data

catalog.
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Open Urban Data (as of 2014

Sa=@ REVIEW

e Study: 20 cities in e

i

ah

on_mondara”

STRUCTURED
¢ OPEN URBAN
DATA:

Understanding the Landscape

North America, 9,000
data sets

Investigated
e Nature of the data

AAar

stainab

thie

Luciano Barbosa,’ Kien Pham,’ Claudio Silva,>>
Marcos R. Vieira,' and Juliana Freire>>

Abstract

A growing number of cities are now making urban data freely available to the public. Besides promoting trans-
parency, these data can have a transformative effect in social science research as well as in how citizens participate
in governance. These initiatives, however, are fairly recent and the landscape of open urban data is not well known.
In this study, we try to shed some light on this through a detailed study of over 9,000 open data sets from 20 cities
in North America. We start by presenting general statistics about the content, size, nature, and popularity of the
different data sets, and then examine in more detail structured data sets that contain tabular data. Since a key
benefit of having a large number of data sets available is the ability to fuse information, we investigate oppor-
tunities for data integration. We also study data quality issues and time-related aspects, namely, recency and
change frequency. Our findings are encouraging in that most of the data are structured and published in standard
formats that are easy to parse; there is ample opportunity to integrate different data sets; and the volume of data is
increasing steadily. But they also uncovered a number of challenges that need to be addressed to enable these data
to be fully leveraged. We discuss both our findings and issues involved in using open urban data.

e Opportunities for integration

:144-154.
3.241

“People are tribal, but data
doesn’t care”

Big Data 2014

ency, many cities in the United States and around the world
are publishing data collected by their governments (see, e.g.,

Introduction

Mike Flowers

[Barbosa et al., Big Data 2014]

2:144-
Downloaded from online.liebertpub.com by 108.29.63.241 on 09/20/14. For perso

FOR THE FIRST TIME IN HISTORY, more than half of the
world’s population lives in urban areas'; in a few decades, the
world’s population will exceed 9 billion, 70% of whom will
live in cities. The exploration of urban data will be essential to
inform both policy and administration, and enable cities to
deliver services effectively, efficiently, and sustainably while
keeping their citizens safe, healthy, prosperous, and well-in-
formed.*™

While in the past, policymakers and scientists faced signifi-
cant constraints in obtaining the data needed to evaluate their
policies and practices, recently there has been an explosion in
the volume of open data. In an effort to promote transpar-

refs.”™®).

Having these data available creates many new opportunities.
In particular, while individual data sets are valuable, by in-
tegrating data from multiple sources, the integrated data are
often more valuable than the sum of their parts. The benefits
of integrating city data have already led to many success
stories. In New York City (NYC), by combining data from
multiple agencies and using predictive analytics, the city in-
creased the rate of detecting dangerous buildings, as well as
improved the return on the time of building inspectors
looking for illegal apartments.” Policy changes have also been
triggered by studies that, for example, showed correlations

"IBM Research, Rio de Janiero, Brazil.

2Department of Computer Science and Engineering, NYU School of Engineering, Brooklyn, New York.

*NYU Center for Urban Science and Progress, Brooklyn, New York.

144BD

BIG DATA  SEPTEMBER 2014 « DOI: 10.1089/big.2014.0020
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Some Findings

e /5% of the data sets are available in tabular formats, e.g.
CSV: ability to pose ‘complex’ queries and re-use data
cleaning/integration techniques

e Many topics are covered
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Some Findings

e Most data are available in tabular formats, e.g., CSV
e Many topics are covered

e Number of data sets is growing
e |n 2013, more data sets were added than in the 3 previous years combined

e Data is small: 70GB for all cities
e Compare against 1 year of taxi data: 50GB/year

e [here are big and small tables

>800M trips (5 years)

No. of records Percentage of total
0-1K 65.3
1K-10K 17.0
10K-100K 11.7
100K-1M 5.5
IM-10M 0.3
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Some Findings

e Most data are available in tabular formats, e.g., CSV
e Many topics are covered
e Number of data sets is growing
e |n 2013, more data sets were added than in the 3 previous years combined

e Data is small: 70GB for all cities
e Compare against 1 year of taxi data: 50GB/year

e [here are big and small tables
e | ots of spatio-temporal data:

e Over 50% of the tables have lat+long and over 40% have date

e There is ample opportunity for integration — significant overlap
across tables: schema and spatial!
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Integration Opportunities

! -. —0.0
.I -.. 05
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(a) Boston (b) 4 largest NYC clusters  (c¢) NYC without 311 data set (d) Similarity Scale
Attribute overlap among tables
« Potential for joining tables
« Hints about horizontally partitioned tables
v

NYU
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Integration Opportunities

I8 41 Aslanets
42 55 Gatwuety
5465 ety
18 B) dalarets
49 Gatasery
#5111 Swtenets
132 12% atasaty
126100 setaamty
1463-15) datnsaty
» LN0 Al avetny

Frequency of references to the zip codes
 |dentify potentially missing data

* Quantify coverage

« Potential for spatial joins

Geographical coverage and overlap
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It’s not all roses...
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Big Problems: Opportunities for Research

e Finding the Data

e Data spread in many different repositories, e.g., NYC Open Data, Chicago
Open Data, NYC MTA, ...

e |ncomplete metadata

e Using the Data

e Hard for domain experts without training in computing

Data search engine

e Need to re-structure and integrate data

e [or Big Data, need advanced techniques, including the cloud and associated
software stack

e Data Quality
e (Can we trust the data”? No provenance is provided!
e | ots of dirt...
e Data cleaning and curation require sulbstantial human intervention

Usable tools

VISUALIZATION

W TANDON SCHOOL IMAGING AND
NYU | poessioo: S




Quality Issues in Urban Data
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Challenge: Data Quality Issues

DOHMH New York City Restaurant Inspection Results

DBA STREET BUILDING

MADANGSUI WEST 35 STREET 35
@NINE 9 AVENUE 592
TACO HUT BROADWAY 3210

https://data.cityotnewyork.us/Health' DOHMH-New-York-City-Restaurant-Inspection-Results/43nn-pn§;
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Challenge: Data Quality Issues

DOHMH New York City Restaurant Inspection Results

DBA STREET BUILDING

MADANGSUI WEST 35 STREET 35

@NINE 9 AVENUE 592

TACO HUT BROADWAY 3210
TERROIR AT THE W 15th Street @ HIGHLINE
PORCH 10th Ave

https://data.cityotnewyork.us/Health' DOHMH-New-York-City-Restaurant-Inspection-Results/43nn-pn§;

NYU
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Challenge: Data Quality Issues

DOHMH New York City Restaurant Inspection Results

DBA STREET BUILDING

MADANGSUI WEST 35 STREET 35

@NINE 9 AVENUE 592

TACO HUT BROADWAY 3210
TERROIR AT THE W 15th Street @ HIGHLINE
PORCH 10th Ave

People that generate data get ‘creative’ to fit information to data
models.

Lack of provenance information means we have to attempt to
understand their decisions and the data generation process.

https://data.cityotnewyork.us/Health' DOHMH-New-York-City-Restaurant-Inspection-Results/43nn-pn§;

NYU
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Challenge: Data Quality Issues

e Columns containing Telephone Numbers in NYC Open Data
e Think of a (simple) way to distinguish the ‘Good’ from the ‘Bad’ and to

transform the bad into good.

0
212 NEW YORK
311
511
911
0000000000
1111111
1111111111
1212669311
2012162746
2015954606
2033631907
9737924762
9737924769
Fax7189801021
Fax:7189187823

TANDON SCHOOL
OF ENGINEERING

NYU

(000) 000-0000

(201) 368-1000

(201) 373-9599

(718) 206-1088

(718) 206-1121

(718) 206-1420

(718) 206-4420

(718) 206-4481

(914) 681-6200

(718) 868-2300 x206
(718) 206-0545/(718) 298-0117
(718) 262-9072/(718) 658-1537
(718) 297-4708/c: (347) 806-4588

(888) 8NYC-TRS

(888) -VETS-NYS

1-800-CUNY-YES

800-624-4143
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Challenge: Data Quality Issues

e Columns containing Boroughs, Cities, Neighborhoods in NYC Open

Data

e (Cities, neighborhoods and boroughs all mixed: how to fix this?

NYU

TANDON SCHOOL
OF ENGINEERING

BRONX
BROOKLYN
MANHATTAN
QUEENS

STATEN
ISLAND

ASTORIA
BRONX
BROOKLYN
CHELSEA
CLINTON
FLUSHING
HARLEM

JAMAICA
QUEENS

MANHATTAN
NEW YORK

STATEN
ISLAND

CHELSEA
CHINATOWN
CLINTON
HARLEM
SOHO
TRIBECA
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Challenge: Data Quality Issues

e Assumption about valid values in a column, i.e., the domain
Data Type (INT, DECIMAL, TEXT, DATE)

e Semantic constraints often not explicitly documented

ZIP Code is a 5 digit number between 10000 and 99999
Monetary value in US$

Date in format YYYY-MM-DD

Name in format <first> <last>

Attribute:
illegal and
missing values

e Pairs of records that contradict each other or violate a functional

dependency ZIP — City
zp oty
10003 NYC
10003 Chicago

e Uniqueness violations, conflicting values, missing records
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Data Quality

ALL OF OUR DATA

IS GROSSLY INACCU-
RATE...BUT I NEED
DATA IN ORDER TO
MANAGE .

IF T CONCENTRATE
HARD ENOUGH I

CAN FORGET THAT THE
DATA IS BAD, THEN

I CAN USE IT.

ate, Inc

I HAVE TO GIVE HIM
CREDIT; MANAGING
IS HARDER THAN

IT LOOKS.

7{(0"0[@ 2001 United Feature Syndic

www.dilbert.com scottadams@aol.com

e Data is a critical resource that supports analytics and
decision making

e As data volumes increase, so does the complexity of
managing it and the risks of poor data quality.

Modified from H. Muller
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The Impact of Data Quality

Because of poor data quality ..

Bad Data Costs the U.S. $3 Trillion
Per Year

e 88% of data integration projects f =
budgets To—

e 75% of organizations have additic f &
e 33% of organizations delayed or ¢
e $611bn per year is lost in the US

Corsider this figuce: $236 Nllion per yoar That's the sesearch fum IDCS estimate of the size of the Bg data market
worldwide, i 2016, This figure should surpetie 80 one with an imecest in big data

s knother sessnber: $3.1 miilion, IBM S en o of the yeatly cost of poot guality data, in the US alone, in 2016
|n [MarSh 2005] SummarlZIng reports by Gartner Group most people who deal is dat pry day know that bad data is costly, this figure stuss,
Warehousing Insi

While the sumbers are rally compazable, and theoe & considerabie vasiation arund each, one can caly conchade that
nght now, mproving data quality sepresents the fa ¢ data opportunity. Leaders are well-advised to develop a deeper
appeeciation for the cpportunities impeoving data qualxy present and take fuller advantage than they do today
The reason bad data costs so much saker M@d rﬂe@j\ fr@«m H Mu Herr
acconunodate it in thelr everyday work. And dos ped bas plen

TANDON SCHOOL IMAGING AND
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Are you excited about data cleaning?

MAS IZ 0TI AN 15078 vwurws

Cleaning Big Data: Most Time-Consuming, Least Enjoyable Datal
Science Task, Survey Says

(=1 ¢ Dolinl <)

GH Press. <onuios
FURL IO
Teere s ee vt by Tt Tarvy B s e $ar -

TWEET THIS

What's the least enjoyable part of data science?

W data scentists found tat they spend most of thelr time Mmassageng rather than mning or modeing data

W 70% of data sclentists view data preparation as the least enjoyable part of thelr work

A new survey of data scientists found that they spend most of their time massaging rather than mining

or modeling data. ¥ Still, most are happy with having the sexiest job of the 21" century. The survey
of about 80 data sclentists was conducted for the second year in a row by CrowdFlower, provider of a
“data enrichment” platform for data scientists. Here are the highlights:

e [east enjoyable part of Data Science?
e (Collecting data (21%)

e (leaning and organizing data (57%)

° S p en d mo St t / me do / n g https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-

consuming-least-enjoyable-data-science-task-survey-says
e Collecting data (19%)

e Cleaning and organizing data (60%) Modified from H. Miller

NYU
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Cleaning Small Data

e [0 extract value from data we must
e Remove errors
e Fill in missing information
e [ransform units and formats
e Map and align columns
e Remove duplicates records
e [ix integrity constraint violations

e Specify all domain knowledge as integrity constraints
e Reject updates that violate constraints

e Very rich literature and many tutorials

e Some tools are available

e hittps://www.tamr.com, https://www.trifacta.com/products/wrangler,
http://openrefine.org Modified from Chu & llyas
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Big Data + Data Quality: Challenges

e (Constraints are not know a priori...

e Size: huge volume of data from multiple sources Cpm,o/ete
o C lexity: | otv of data and domain knowledge
omplexity: large variety of data and sources infeasible
e Speed: dynamic data, collected and analyzed at |
high velocity Domain knowledge
becomes

e Evolution: considerable variability of data, semantics

. obsolete
over time

e Active area of research
e Learn/infer models (semantics) from the data
e Automatically identify data glitches

e Need (semi) automated methods and toolkits
e (et ready to build your own!

Modified from D. Srivastava
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Toolbox of a Data Cleaner

o External (High Quality) Data Sources

e E.g., lookup tables for city names and ZIP codes
e Integrity Constraints

e Define and enforce constraints that high quality data adhere to
e Reqular Expressions

e Define format of values
e String Similarity Functions

e |dentify typos at data entry

e Find records that represent the same entity (duplicates)

e Conflict Resolution Functions
e Resolve contradicting information (in data integration)

Modified from H. Muller
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Find Attribute Outlier Values

e Sort attribute values in alphabetical order
e ‘Interesting’ values often appear at the beginning and end of list

The following examples are from the DOB Permit Issuance dataset
in NYC Open Data
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owner_s_business_name

(JOANNE H. SIEGMUN 2ND OWNER)
(PERSONAL RESIDENCE)

(PRIVATE RESIDENCE)

(TENANT IN COMMON)

(TENANTS IN COMMON)

kkhkkhkkkkhkkhkhkkkkkhkhkhkkhkhkhkkkhkhkkkkx

kkhkkkkkkhkhkkkhkkhkkhkkkkhkkhkhkkkhkhkkhkkkhkhkhkkkhkk

*khkkkkkkkkkhkhkkhkkhkhkkhkhkhkhkkhkhkhkkhkhkhkhkkhkhkhkkik

e

___N/A

altered state restoration
c/o Bowery Hotel

c/o0 Cooper Square Realty
c/0 Leibovitz Studio
individual

mtp investment

n/a

na

new hempstead home for the adult
none

not applcable

owner

renaissanc

same

sierra realty corp.

wm maidmanfamily Ip



Outliers in Alphabetical Order

A large number of quality problems are

(646)4396000 a result of ‘parsing errors’ or invalid file
formats (e.g., to0 many or missing

, FLORAL PARK e . .
column delimiters in CSV file).

,ELMSFORD

10012
10013
10452
10462
+ 105

QUEENS |4144683|147-57 |78 AVE |421156046|01|A1)]06688|00040
140811367 |1|YES| | | PL|ISSUED |RENEWAL|PL|02| | |NOT APPLICABLE
111/06/2016]11/06/2016]11/06/2017|11/10/2015 | CONSTANTINE |KOUMPAROULIS
| ARIANA CONTRACTING INC |7187215018 |MASTER PLUMBER |0001101| | | | | |
| | |INDIVIDUAL ||N/A |ARTUR |KHAIMOV |147-57 |78TH AVENUE |KEW

GARDENS |NY|11367 |6464022132|11/07/2016 .
NYU
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Find Attribute Outlier Values

e Sort attribute values in alphabetical order

e ‘Interesting’ values often appear at the beginning or end of list.

e frequency outliers

e NULL values sometimes have significantly different frequency (high or low) compared to other
column values.
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Frequency Outliers

DOE High School Directory 2013-2014

NYC Open Data

school_sports

140
120
100
80
60
40

20
0 ]
N/A Cheerleading Basketball Intramural Sports Baseball
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Frequency Outliers (cont.)

e Values that frequently occur as high frequency outliers

e Values that occur with frequency >50% in + 15,000 columns of NYC Open Data datasets

0 (x 262)
N/A (x 71)
UNSPECIFIED (x ©67)
S (x 57)
- (x 50)
0.00 (x_47)
NY (x 38)
1 (x 25)
0.0 (x 20)
IND (x 12)
CLOSED (x 10)
100 (x 8)

NOT AVAILABLE (x 8)

0O UNSPECIFIED (X 0)

NONE (X 9)
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Find Attribute Outlier Values

e Sort attribute values in alphabetical order

e ‘Interesting’ values often appear at the beginning or end of list

e frequency outliers

e NULL values sometimes have significantly different frequency (high or low) compared to other
column values

e Reqular expressions

e Find values that do not match the expected format of a column

e QOften identify outliers and potential problems during data exploration
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Exploring Urban Data:
A Look into Quality issues in
Taxi Trips
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NYC Taxis

Number of Trips for the years of 2011, and 2012

" Taxis are sensors that can provide unprecedented insight into
city life: economic activity, human behavior, mobility patterns

“What is the average trip time from Midtown to the airports during
weekdays?"’

“‘How was traffic affected during the Macy’s Parade?"

“Where are the popular night spots?”

“Which neighborhoods are being gentrified?”

AN o i0am  R#PCho-115m

e e BT 7y e B
- 'O_g. e . * »
U 7-8am 80 89am oS
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Taxi Data: What to Clean and not to Clean

Dataset | Statistic | Trip Duration (min) | Trip Distance (mi) | Fare Amount (US$) | Tip Amount (US$)
Min 0.00 0.00 0.00 0.00

2008 Avg 16.74 2.71 0.09 0.10
Max 1440.00 50.00 10.00 8.75

Min 0.00 0.00 2.50 0.00

2009 Avg 7.75 6.22 6.04 0.38
Max 180.00 180.00 200.00 200.00

Min -1,760.00 -21,474,834.00 -21,474,808.00 -1,677,720.10

2010 Avg 0./6 J.8Y 9.54 2.11
Max 1,322.00 16,201,631.40 93,960.07 938.02

Min 0.00 0.00 2.50 0.00

2011 Avg 12.35 2.80 10.25 2.22
Max 180.00 100.00 500.00 200.00

Min 0.00 0.00 2.50 0.00

2012 Avg 12.32 2.88 10.96 2.32
Max 180.00 100.00 500.00 200.00

NYU

Negative values are clearly errors.
But high tip may not be an error...

Different processes were used to process data in different years,
but no provenance information is provided

TANDON SCHOOL
OF ENGINEERING

[Freire et al., IEEE DEB 2016]
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Taxi Data: What to Clean and not to Clean

(b)

()

Need to consider spatial constraints:
Trips in rivers, ocean and Central America

v VISUALIZATION
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Taxi Data:; What to Clean and not to Clean

900K ~

40K -
2 35K-
=
¥ 30K-
%)
& 25K- [
6 20K
¥ 15K

No trips at 2am Missing data Missing data

in 2008 in 2009
Daylight savings: Big spike on Sept 19, 2010
March 13, 2011
March 11, 2012 Unusually large number

of consecutive and
extremely short trips
(lasting less than a
minute)
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Taxi Data:; What to Clean and not to Clean

e Ghost trips

e QOverlapping trips for the same taxi, i.e., for a given taxi, a new trip starts
before the previous trip has ended

e Speed too high or too low

e |ncorrect values can negatively impact predictive models, e.g., which rely on
average speeds

10

e Speed = 0, easily an error

—

e But what about high speeds?

Number of Trips (10')

—
—
=

QO1% 001% 001%

0 10 20 30 40 S50 60 70 & 90 100
Average Speed (mph)
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Takeaway: Big Urban Data Cleaning

e Data cleaning has been performed as a pre-processing step
Dirty Data = Clean Data

e Cleaning is an integral part of data exploration: constraints that
should be checked in the cleaning function, and which might
not be evident at first, are naturally discovered

e Different question/analyses require different cleaning strategies
DirtyDatax UserlTask - (CleanData, Explanation)

IIIIIIIIIIIII
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Takeaway: Big Urban Data Cleaning (cont.)

e Spatio-temporal data adds a new set of constraints and
Issues that need to be considered

e Visualization is essential!

e [raditional cleaning techniques are useful

e |t is not always clear what is dirt and what is a feature
e Need domain knowledge

e Promising research direction: New techniques that leverage
multiple data sets

e Holistic data cleaning and integration

e Use data to explain data (more soon!)

IIIIIIIIIIIII
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Data Cleaning References

e Tutorial: Data Cleaning: Overview and Emerging Challenges
http://sigmod2016.org/sigmod_tutoriall.shtml

e [utorial: Knowledge curation and knowledge fusion:
challenges, models, and applications (SIGMOD 2015)
http://lunadong.com/talks/KF Tutorial_sigmod.pptx

e Profiling relational data: a survey. VLDB J. 24(4): 557-
581 (2015)
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Exploring Urban Data:
Usability and Interactivity
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Exploring Taxi Data: Challenges

e Data: ~500k trips/day; 868 million trips in 5 years
e spatio-temporal: pick up + drop off
e [rip attributes: e.qg., distance traveled, fare, tip

e Government, policy makers and scientists are unable to
interactively explore the whole data

e T00 many data slices to examine

e Our goal: Design a usable interface, efficiently support
interactive + exploratory queries

VISUALIZATION
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Exploring Taxi Data

NYU | meon scaoos http://www.taxivis.or VIDA
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Usability through Visual Operations

Users select a data slice by specifying spatial, temporal
and attribute constraints

SELECT ” B
FROM trips L ol
WHERE pickup_time in|(5/1/11,5/7/11)

AND dropoff_loc in|[“Times Square” /

AND pickup_loc in ['Gramercy”

Data selection and result N '
exploration are unified \ e

NYU

TANDON SCHOOL
OF ENGINEERING
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Visual Query Model

Expressiveness:

e when + where = what: “What is the
average trip time from Midtown to
the airports during weekdays?"’

attribute

What

e when + what = where: “Where are
the hot spots in Manhattan in
weekends?”

e where + what > when: “When were  Where < > When
activities restored in Lower spatial temporal
Manhattan after the Sandy

hurricane?” Peuquet’s Triad

Model is also able to express other types of queries, including
when - what + where, where - when + what, and what -
where + when

VISUALIZATION
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Selecting Regions — Spatial Constraints

Free
> selection

.....
\\\\\\\

L

Predefined polygons, e.g.,

zip, neighborhoods, etc regions
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Selecting Time — Temporal Constraints

Time interval

Start Time Step Size End Time

(4 )sun05/01/1100:00 = 1hour  §5]sun05/01/1101:00 =l » )

Dec.
Sun.

Nov

[

Oct.
Sat.

23

Recurrent time patterns

v VISUALIZATION
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When + Where - What

“What is the average trip time from Midtown to the airports during weekdays?

800 NYC Taxd Visyalization
faNnn A The 04/28/11 07.00 PM 10 Thu 04/28/11 08.00 PM
e I
| . I 2ou ]
TJaa Frbl"a' Apr. | Vay. lﬂllu'y ML%LLOH Nov. | Dec. Query o~
Mo Tot Wed. | T T Sun
011121374 ]S 6T7[3]9 10} H[l?]ﬁ 14] lS 16]1)‘]1! 9[20[21”2 ¢3 Explore...
'
@
. [
“ New York T
@
m
- 3 g ou e ot U
BTN Histogram  Scatterfiot
Attribute:  Duratice 3 Num Bins: )
¢ Duration Per Trip per time
3
3 1AV,E
c lokk
1048 §
§ isf
§ ot )
; 19% 190 (13} nn 193¢ "y ne ne ny
8 sl Ao 28 ("3 Ao 28 Ao 28 Ao 28 Ase 2y Age 2 Ao 28
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NYU

When + Where - What

“What is the average trip time from Midtown to the airports during weekdays?

TANDON SCHOOL
OF ENGINEERING

Duration in minutes

NYC Taxi Vispallzation.

15 periods from Mon 05/02/11 12:00 AM to Tue 05/31/11 1159 PM

Query
Explore.
il 4
()
New York —
iy "
®
m
- > vy Tews
m Histogram  ScatterPot
Attribute:  Duratice Num Bins: )
Duration Per Trip per time
4
|
[
i
L)
! L L L s
1090 o8 " 190 "2 1y 194 I 1
Ao 18 n Axe 18 Aor 28 Age 24 (3] Apr 24 A 2

v
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When + Where - What

“What is the average trip time from Midtown to the airports during weekdays?

800 NYC Taxd Visyalization

fNnn 15 periods from Mon 05/02/11 12:00 AM to Tue 05/31/11 1159 PM

Whenl— . g

Query
Explore.
il 4
&
. | @
l—‘% New York m
Where! 5
@
"
- . Taa of L
BTN Histogram  Scatterfiot
Attribute:  Duratice 3 Num Bins: )
¢ Duration Per Trip per time
{ aul
¥l
= s}
e W&
S i}
N G n i i
3 013 o 020 1500 0390 100
<] A 29 Aer 29 A 30 A 0 May 0 y 03
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When + Where - What

“What is the average trip time from Midtown to the airports during weekdays?

8nn NYC Taxd Visyalization

fNnn 15 periods from Mon 05/02/11 12:00 AM to Tue 05/31/11 1159 PM

2012 ]
Sept. | Oct. | Nov. | Dec. Query
; Su 1 S |
1617819 10001]12] 1341181617 TI8T 13 20 211221 &8 Exploce...

il 4
. , =]
Mewnrk » )
New York —_
Wherel— 3
@
m
'y 2
BTN Histogram  Scatterfiot
Attribute:  Duration 3 Num Bins: 2
W h at Duration Per Trip per time
£
“
e
€
3415! lb‘.‘l 0% 0 ?Al! ISA)I -\‘A‘O
vy 1 May 07 1 n iy 14 May 38
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Composing Queries

A query is associated with the cmmcmesnsiian
set of trips contained in its ' =
results — queries can be
COMPOSed.

SRS A AR R

Different visualizations
can be applied to query Uz
results . e

Lines in plot are linked to the
queries by their color.
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TaxiVis: Studying Mobility

Talalal N _Lakels borm
Coysior @iwr e [Ta—— [— -
‘..“'\4,. Xu, l“. V'Y‘”) TR ‘4 e b- Queey | W hh. Ua ; ERE T ‘i\;n .- Oy w
] .
eI T T e T TN T S nm.m‘.. T ! T . STty T SR
o 3\
4 L 4
» ’ » ’
- ’ ’ - o
"o ——~
" -
~ ) = ; —
Tome Mivw  Magrass Mabees
Aot | | b of Ouy 84 AT I Durstan Y] &)
ol 129 a
. ol oo |
P ol o}
2 ...; ll i b:%
b= = lll ll‘ "
P 4 o _ba ’ -
.-mumll |N' ’ -l .lll ! A
t!( s s T e -
9 ‘\'u Fe L |\\
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TaxiVis: Comparing Neighborhoods

dropoffs

pickups
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Exploring the Effect of Major Events: Sandy

Sun 1v2e/12 Mon 1 Viz i Tue 10630712 Wed 10/31/12 Thu 1012 Fri 13802712 Sal TU0E12
4 B
New Y . New York New Yo New ¥ . ’ New TO Niw Yors Newn York
L oS OGN Lw-ddon JONI2 1o Tow JODON2 Loy Wed JONIVN2 oape-Tha JL0ON2 2 Gwn-Fn XLRVI2 L ooy JLUO2
L]
|
I - - ‘ —— )
| ; e | -
: T&L” “war | .  OF + / "
g— ] P p— (—_ ~7
| g |
) | i X ) )
£ s s s . ] b
- - ' c.\_ e o -
Jort ’ - g ’ -
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Night Life in NYC: Saturday vs. Monday

Nawlasr oF Liips pur Line Ny oF 1rps por Liew

IIIIIIIIIIIII

W TANDONSCHoOL N7 1™ A vaeGanD
NYU | poessioo: S




Challenge: Interactive Query Evaluation

e [ypical query:
Find all trips that occurred between

lower Manhattan and the two airports,
JFK and LGA,

during all Sundays in May 2011

HeY94YNe s

Query time | PostgreSQL | ComDB e —
(sec) 503.9 20.6

s !
. L B
$ o}

n

: '..'.....' ".
t

a5 » 5 ' 225

Hinr of San

“increased latency reduces the rate at which users
make observations, draw generalizations and generate
hypotheses”

TANDON SCHOOL [Liu and Heer, IEEETVCG 2014] V|_)A
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Challenge: Interactive Query Evaluation

e Typical query:
Find all trips that occurred between

lower Manhattan and the two airports,
JFK and LGA,

during all Sundays in May 2011

Goal: Support interactive
Query time spatio-temporal queries

(sec) | OUS.Y | 2U.0 T

5 w0k
1 | n
o "'lll“‘"”“l"- ?
t
a5 ] 5 ’ 215
Howr of Zan

HY¥94% %S &

sl

“Increased latency reduces the rate at which users
make observations, draw generalizations and generate
hypotheses”
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Find all trips that occurred Select
between lower Manhattan and T

Linear filtering!

the two airports, JFK and LGA,
during all Sundays in May 201 I.

T # polygon tests performed:
5 years vs 5 days!

Need to join AND

/ Pickup = Lower Manhattan

Expensive

Drop-off = JFK \Drop-off =LGA T

t

Trips Trips

4 VISUALIZATION
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Design Goals

e Avoid joins
e Filter simultaneously over multiple attributes
e Need a multi-dimensional data structure

e Speed-up polygon containment tests

e Each test is independent of another
e GPUs are optimized for such operations
e Make use of GPUs

e |ndex structure should be GPU-compatible
e Minimize data transfer
e Maximize occupancy
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Choice of Data Structure

R*-Tree KD-Tree

Update does not maintain
balance

Sibling nodes intersect

N
W TANDONSCHOOL N7 1™ A vaenGanD
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Choice of Data Structure

Kd-tree vs. R*-tree

10000 :
Yek Kd-tree
A=A R*-tree
8000} ]
w 6000} |
£
(O]
£
= 4000} i
2000} i
0 | |
0 2 4 6 8 10 12

Result Size (millions of records)
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Supporting Interactive Queries

Solution: Spatio-temporal index based on out-of-core kd-tree
using GPUs (STIG)

e (Can index and simultaneously filter multiple attributes: avoid joins and reduce
the number of point-in-polygon (PIP) tests

e [ree nodes store kd-tree

e | eaf nodes represent a set of k-dimensional nodes
e Point to a leaf block containing records that satisfy the path constraints
e Store the bounding box for the records

Internal Node  Leaf Node

Mcodiss cunlizg
oy
/ |

\
Tree Nodes / % '

Koagtn Loal
(e [
ay i . Wy

VISUALIZATION

./
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Leaf Blocks ‘

Leaf Block
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KD-Tree
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KD-Tree

e Polygon containment query
e Search based on Bounding Box
e Test with query polygon

,__5____|____§_
:3? o é:
:vc 4 7;50
L_Z__E____é_c__é_l
re
: O
) >
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PIP Tests are Expensive

-
6.5 million such tests have to be :
performed even though the query x
returns only around 13,000 records '
NYU | srooiscon: VIDA




The STG Tree

NYU
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Stg Tree
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Stg Tree
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STIG Query

e TwoO steps

e Search tree nodes

>
>
>

OOOOé—QO\:...;’/

000 0 ' Rp s
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STIG Query

e TWO steps

e Search tree nodes — in memory
e Search leaf blocks — in GPU

TANDON SCHOOL
OF ENGINEERING
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Supporting Interactive Queries

Solution: Spatio-temporal index based on out-of-core kd-tree
using GPUs

e (Can index and simultaneously filter multiple attributes: avoid joins and reduce
the number of point-in-polygon (PIP) tests

Tree nodes store kd-tree

e | eaf nodes represent a set of k-dimensional nodes

e Point to a leaf block containing records that satisfy the path constraints
e Store the bounding box for the records

Create big blocks — tree is small and fits in memory

Use GPU to search the blocks in parallel — speeds up PIP tests

e Source code available at
https://github.com/harishd10/mongodb
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Performance Evaluation

Setup:

e 12-code Xeon processor @2.4 GHz
e 3 B storage

e 256 GB memory

e 3 x NVIDIA GeForce TITAN
e 6 GB memory
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Performance: Taxi Data

Find all trips between Lower Manhattan and
the two airports, |FK and LGA, during all
Sundays in May 201 1.

Query MongoDB PostgreSQL ComDB
Time Time Speed up Time Speed up
1 503.9 20.6
2 501.9 23.3
3 437.8 21.6
4 437.1 32.6

Time in Seconds
868 million trips; ~ |3k results/query
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Performance: Taxi Data

Find all trips between Lower Manhattan and
the two airports, JFK and LGA, during all
Sundays in May 201 1.

Query MongoDB PostgreSQL ComDB
Time Time Speed up Time Speed up
1 0.075 503.9 6718 20.6 274
2 0.080 501.9 6273 23.3 291
3 0.067 437.8 6534 21.6 322
4 0.070 437.1 6244 32.6 465

Time in Seconds
868 million trips; ~ |3k results/query

VISUALIZATION
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Performance: Twitter Data

Query MongoDB PostgreSQL ComDB
Time Time Speed up Time Speed up
1 0.246 161.2 655 109.6 445
2 0.288 151.2 525 157.7 547
3 0.558 286.0 512 216.8 388

Time in Seconds

|1 billion tweets; | 30k-370k results/query

TANDON SCHOOL
OF ENGINEERING
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What Next: Urbane

https://www.youtube.com/watch?v=_B35vxCgDw4&feature=youtu.be
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Finding Interesting Features
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Taxi Data: Too Many Slices

e 36524 1-hour slices in one year
e \Which slices are interesting?
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Reducing the Number of Slices

Aggregate over space

~ Number of Trips

Aggregate over time
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Miss Interesting Slices
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Finding Interesting Slices

Goal: guide users towards interesting data slices

e Desiderata: automatically identify events with arbitrary spatial
structure and at multiple temporal scales

e Our solution:

e Use computational topology techniques to efficiently discover
events

e Simple visual interface to explore and query the events of
Interest

[Doraiswamy et al., [IEEETVCG 2014]
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Identifying Potential Events

e Model data as a time-varying scalar function defined on
a graph
e F:G->R
e Taxi data: Graph = road network; Function = density of taxis
e Subway data: Graph = track network; Function = delay of trains
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ldentifying Potential Events

e Use Merge Trees to efficiently identify events in each time step

e Compute the regions corresponding to the set of maxima and
minima — the set of potential events

e |ntuition: a region is interesting if its behavior differs from that of its
neighborhood

e Unimportant events can be simplified

i 11T
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ldentifying Potential Events

e Join (and Split tree) can be used to efficiently represent
regions
e Topological changes occur at critical points
e Trees can be simplified to remove noise
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e Minima: lack of taxis
e Regions where density is lower than local neighborhood
e (Could denote road blocks, e.g., Macy’s parade

NYU

Taxi Data: Potential Events

TANDON SCHOOL
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16251

Scalar function corresponding
to the time step 10 am-11 am
on 24 November 2011
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Taxi Data: Potential Events

e Minima: lack of taxis

e Regions where density is lower than local neighborhood
e (Could denote road blocks, e.g., Macy’s parade

e Maxima: popular taxi locations

e Regions where density is higher than local neighbborhood
e (Could denote tourist locations, train stations
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Grouping and Exploring Events

e T00O many events!

e Group similar events and create an index
e (Geometric and topological similarity

e \isual interface to guide users
e Filter based on group size, event size,
event time, spatial region

Macy’s parade

0.15 0.3 0.45 0.6 0.75 0.9
Density
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Querying Events
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Tour 2011
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Using Data to Explain Data
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Explaining Events

NYC Taxi
Data
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e Are these big drops data quality issues in the data”?
e Or do they correspond to real events?
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Explaining Events

NYC Taxi
T ;g | | | | Data
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e Are these big drops data quality issues in the data”?
e Or do they correspond to real events?
Find all data sets related to the Taxi data set
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Using Data to Explain Events
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Using Data to Explain and Predict NYC

1. Would a reduction in traffic speed reduce the number of
accidents? What other factors contribute to accidents?

2. Why it is so hard to find a taxi when it is raining”

http://nymag.com/daily/intelligencer/2014/11/why-you-cant-get-a-taxi-when-its-

NYU
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raining.html|

Intelligencer

Why You Can’t Get a Taxi When It’s Raining

owrey W

It's pouring rain. You're running late. You desperately want to take a cab
to the office, But, of course, there are none to be found. Happens all the

time, right? Right, says science = or, to be specific, a new and exhaustive ECD)N
economic analysis of New York City taxi rides and Central Park LYSIS

meteorological data.



Urban Data Interactions

By uncovering relationships between data sets, we can

e Better understand a city and how its different components
Interact

e Discover important attributes that can inform the construction
of predictive models

IIIIIIIIIIIII

W TANDONSCHOoOL N7 )1™ A rGNGaND
NYU | poessioo: S




Where to start?

e Data are available!

e Answers are likely in the data

e But there are too many data sets, and even
more attributes to consider

NVYE OpenData 1,200 data sets 8 attributes
(and counting) per data set

- > 200 attributes

weather

Which data sets to analyze?
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The Data Polygamy Framework

e Discover relationships between data sets to better
understand urban data and how the different components of
city interact

e Fach data set can be related to zero or more data sets
through several attributes

Data sets are polygamous!

e (Guide users in data discovery and analysis by allowing
them to pose relationship queries

Find all data sets related to a given data set

e Support both hypothesis generation and testing
[Chirigati et al., ACM SIGMOD 2016]
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Hypothesis Generation
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Visually Exploring Relationships

DPer:A Deeper Dive into
Polygamous Relationships in Urban Data

https://vgc.poly.edu/~juliana/videos/dper2.mov
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Takeaway: Urban Data Exploration

e Usabillity is of paramount importance
e Need to empower domain experts to explore their data

e EXploration requires interactivity — improve the rate at which
users make observations, draw generalizations and generate
hypotheses

e \isualization must meet data management!

e |t already is at HILDA (Workshop on Human-In-the-Loop Data Analytics)
http://hilda.io/2017

e Growing number of papers in DB and Vis conferences
e By talking to and collaborating with domain experts, we can

e Find many interesting research problems, and
e Have practical impact
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Conclusions

e New opportunities to better understand how cities work by
analyzing their data exhaust

e Data has been democratized, now we need tools that
empower domain experts to explore and extract
knowledge from data

e Some steps towards democratizing data exploration:
e \isual and interactive analysis of spatio-temporal data
e Automatic event detection: point users to interesting features

e Data Polygamy: discover relationships in data by leveraging a large
collection of data sets

e Data Polygamy is also useful for data discovery, model
construction, and explaining features
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Conclusions

e Need interdisciplinary teams
e \/isualization, data management, computational topology
e Collaboration with domain experts
e Many open problems around urlbban spatio-temporal data
e (Cleaning, integration, querying, modeling, streaming (ongoing work)

e Database community is well positioned to have tremendous
practical impact

e [et’s collaborate and build open-source tools!
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