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Why do visualization?

• Pictures help us think

• substitute perception for cognition

• free up “working memory”

[Munzner,  “Visualization Chapter” in 
Shirley and Marshner’s textbook]



Set A Set B Set C Set D 
X" Y" X" Y" X" Y" X" Y"

10" 8.04" 10" 9.14" 10" 7.46" 8" 6.58"

8" 6.95" 8" 8.14" 8" 6.77" 8" 5.76"

13" 7.58" 13" 8.74" 13" 12.74" 8" 7.71"

9" 8.81" 9" 8.77" 9" 7.11" 8" 8.84"

11" 8.33" 11" 9.26" 11" 7.81" 8" 8.47"

14" 9.96" 14" 8.1" 14" 8.84" 8" 7.04"

6" 7.24" 6" 6.13" 6" 6.08" 8" 5.25"

4" 4.26" 4" 3.1" 4" 5.39" 19" 12.5"

12" 10.84" 12" 9.11" 12" 8.15" 8" 5.56"

7" 4.82" 7" 7.26" 7" 6.42" 8" 7.91"

5" 5.68" 5" 4.74" 5" 5.73" 8" 6.89"

Anscombe 1973 

Summary Statistics  Linear Regression 

uX = 9.0 σX = 3.317  Y2 = 3 + 0.5 X 

uY = 7.5 σY = 2.03   R2 = 0.67 
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"the science of analytical reasoning facilitated by visual 
interactive interfaces." - [Thomas and Cook, 2005]

Interdisciplinary:

• Visualization (both InfoVis and SciVis)

• Interactive data analysis

• Data management

• Analytic reasoning

- Machine learning, cognitive science, etc.

Visual Analytics



Juliana Freire 3IPAW 2006

Data Exploration through Visualization

! Hard to make sense out of large volumes of raw 
data, e.g., sensor feeds, simulations, MRI scans

! Insightful visualizations help analyze and validate 
various hypothesis

! But creating a visualization is a complex, iterative 
process

Data Image

Specification

KnowledgeVisualization
Perception &

Cognition

Exploration

Data Visualization User

J. van Wijk, IEEE Vis 2005
Juliana Freire 3IPAW 2006

Data Exploration through Visualization

! Insightful visualizations help analyze and validate
various hypothesis

! But creating a visualization is a complex, iterative
process

Data Image
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VisTrails Freire et al, 2006

Anderson et al, 2008



Maximum Intensity Projection (MIP) Full Volume Rendering

Visualization is a quickly 
evolving field!



Claudio Silva

BirdVIS

9

[D. Fink et al., Cornell Lab of Ornithology; N. Ferreira et al., U. of Utah]
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BirdVis Ferreira et al, 2011
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Freshwater Plume

3D detail of the freshwater plume during the ebb tide, 

showing a sharp density front (right side of the image).
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Freshwater Plume

3D detail of the freshwater plume during the ebb tide, 

showing a sharp density front (right side of the image).

Jimenez et al, 2003
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Fig. 1. Streaming simplification performed on a tetrahedral mesh ordered from bottom to top. The portion of the mesh that is in-core at
each step is shown in green.

tetrahedral simplification.

• We provide a new solver for quadric-based simplifi-
cation that improves stability and speed of existing
algorithms. We also provide both stability and error
analysis of the results generated using this tech-
nique.

• We show that our streaming algorithm can suc-
cessfully simplify a data set consisting of over
one billion tetrahedra on a commodity PC with
negligible error.

The remainder of this paper is organized as follows.
We summarize related work in Section I-A. In Sec-
tion II, we describe our algorithm for arranging the
data in a coherent, streaming mesh. Section III provides
details on our out-of-core simplification, Section IV
contains our stability and error analysis followed by
performance measures, Section V discusses the benefits
of our approach over previous algorithms, and Section VI
provides final remarks and directions for future work.

A. Related Work
A common result from scientific computations is a

scalar field f in R3. This scalar field f can be represented
over a domain D as a tetrahedral mesh. When it is
not possible to achieve interactive visualization of f ,
it is common to find a tetrahedral mesh with fewer
elements and an associated scalar field f ⇤ such that
the approximation error ⌅ f ⇤ � f⌅ is minimized. Many
algorithms have been proposed in an attempt to compute
f ⇤ quickly and with little error.

Trotts et al. [1], [2] developed a technique that
collapses one edge at a time, deciding which edge to
collapse next based on an error bound calculated at each
step. They provide a bound on the maximum deviation
of the field data in the simplified mesh from the original.

Several techniques for simplification have recently
been proposed that act on the vertices. Van Gelder et
al. [3] remove vertices based on mass and data error
metrics. Uesu et al. [4] provide a fast point-based
method which works directly on the underlying scalar

field. These techniques are more memory efficient than
edge collapse methods, but require the addition of Steiner
points to handle non-convex meshes. This requirement
makes them difficult to modify for streaming algorithms.

The idea of a progressive mesh for surface level
of detail control was proposed by Hoppe [5] and
later extended to simplicial complexes by Popović and
Hoppe [6]. Staadt and Gross [7] define appropriate cost
functions to account for volume preservation, gradient
estimation, and scalar data with progressive tetrahedral
meshes. Chopra and Meyer [8] propose a fast progressive
mesh decimation scheme that is based on the scalar field
of the mesh.

Many algorithms have been developed that use differ-
ent error metrics to perform the simplification via edge
collapses. Cignoni et al. [9] use domain and field (i.e.,
range) error metrics to approximate the original mesh.
The use of a quadric error metric for surface simpli-
fication was introduced by Garland and Heckbert [10].
Their method uses iterative contractions on vertex pairs
and calculates the error approximations using quadric
matrices. Natarajan and Edelsbrunner [11] extend the
quadric error metric to preserve topological features.
Garland and Zhou [12] recently generalized the quadric
error metric for simplifying simplicial elements in any
dimension.

As model size has continued to increase faster than
main memory size in commodity PCs, techniques have
been developed to simplify these data sets out-of-core.
Lindstrom [13] proposed an algorithm that simplifies
triangle meshes of arbitrary size. This algorithm im-
proves upon Rossignac and Borel’s [14] vertex-clustering
method by using the quadric error metric. The mesh is
stored as a redundant list of three vertex positions per
triangle. This “triangle soup” is read one triangle at a
time and a simplified mesh is constructed incrementally
and kept in-core. Lindstrom and Silva [15] improve upon
the quality of this algorithm while making the method
more memory efficient by storing the simplified mesh
out-of-core during processing. They handle boundaries
separately to preserve the overall shape of the mesh.

www.vistrails.org

Unstructured Volume Rendering
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LOD (Camera C, Node R, PriorityFunction P, int MaxTri)
PriorityQueue Q;
R.Selected = true;
Q.Push(P(C,R),R);
Total = 0;
while !(Q.Empty())

Node N = Q.Pop();
if N.HasChildren

TC = the total number of triangles in N’s children
if (Total�N.NumberO f Triangles+TC) < MaxTri

Total = Total�N.NumberO f Triangles+TC;
N.Selected = false;
for i = 0 to 7

if N.Children[i] is not empty or culled
N.Children[i].Selected = true;
Q.Push(P(C,N.Children[i]),N.Children[i]);

SORT (Camera C, Node R, List SortedNodes)
if R is not culled

if R.Selected
SortedNodes.Push(R);

else if R.HasChildren
SC = R’s children sorted ascendingly by distances to C
for each node N in SC

SORT(C, N, SortedNodes);

Figure 3: Pseudo-code for the octree traversal algorithm.

cial care needs to be taken when rendering multiple octree nodes
to ensure proper compositing. At each frame, our algorithm re-
solves the compositing issue by sorting the active set of octree
nodes that are in memory in visibility order (front-to-back). When
octree nodes of different sizes are in the active set, we sort by the
largest common parent of the nodes. The original HAVS algorithm
has also been modified to iterate over the active set of nodes in vis-
ibility order and perform the object-space and image-space sort on
each piece. To ensure a smooth transition between octree nodes, the
k-buffer is not flushed until the last node is rendered.

3.3 Out-of-Core Dataset Traversal

iRun uses an out-of-core traversal algorithm that has been exten-
sively optimized for volume rendering (Figure 1). For each camera
received from the user interface, we apply frustum-culling on the
octree to find all nodes that are visible in this view and mark them
as visible nodes. Depending on whether or not the user is interact-
ing with iRun, the LOD will decide which nodes are to be rendered
next. Next, everything is passed to the visibility sorter and only
those that have been cached in the geometry cache are sent to HAVS
for rendering while the others are put onto the fetching queue. iRun
also does camera prediction for each frame by linearly extrapolat-
ing previous camera parameters. All of the nodes selected in the
predicted camera will also be put on the fetching queue.

The LOD management of iRun is a top-down approach work-
ing in a priority-driven manner. Given a priority function P(C,N)
which assigns priority for every node N of the octree with respect to
the camera C, the LOD process starts by adding the root R to a pri-
ority queue with the key of P(C,R). Next, iterations of replacing the
highest priority node of the queue with its children are repeatedly
executed until such refinement will exceed a predefined number of
triangles (Figure 3).

In our experiments, we use two different priority functions
to control the LOD of iRun. The first is a Bread-First-Search
(BFS) based function that is used during user’s interactions:

Figure 4: A snapshot of iRun refining the LOD: The image on the left is
rendered as the user would see it from the current camera position. On
the right is a bird’s-eye view of the same set of visible nodes. Different colors
indicate different levels-of-detail. The geometry cache is limited to only 64MB
of RAM in this case.

PBFS(C,N) =< l,d >, where l is the depth of N and d is the dis-
tance of the bounding box of N to the camera C. In this case, each
node’s priority is primarily determined by how far it is from the
root and subsequently by its distance to the camera when the nodes
are on the same level. Briefly, our goal is to evenly distribute data
of the octree on the screen to improve the overall visualization of
the dataset. While interacting with iRun, the target frame rate can
be achieved by setting a limit on the maximum number of triangles
rendered in the current frame. This number is calculated based on
the number of triangles that were rendered, and the rendering time,
for the previous frame.

For increased image quality at a given view, iRun will automat-
ically adjust itself to increase the LOD using as much memory as
possible when interaction stops. Since we want to cover as much
of the screen as possible, a priority function reflecting the projected
screen area is necessary for the LOD. We define Parea(C,N) = A,
where A is the projected area of the bounding box of N onto the
screen. However, this function can be easily replaced by any other
heuristic approaches, such as those reflecting nodes scalar ranges,
transfer functions, etc., to achieve the best image quality. The maxi-
mum number of triangles to be rendered at this higher image quality
is limited to the amount of memory that has been dedicated to the
geometry cache.

This approach, however, could raise a problem when the user
begins interaction again and the geometry cache is already full. Our
next frame would be displayed incompletely since a lower LOD is
not available and the higher LOD is too large to be rendered at an
interactive rate. To overcome this problem, before increasing the
LOD, the current data on the screen will be locked; i.e., it will not
be flushed by the geometry cache while fetching new data from
disk. When the camera is changed, the previous locked nodes will
be unlocked. The trade-off in image quality is insignificant because
the amount of memory used by this data is usually very small (e.g.,
1%) when compared to the total memory of the geometry cache.

The node visibility sorter ensures everything is in the correct or-
der before compositing in HAVS. In fact, it only takes a single pass
through the whole octree to sort all of these nodes (see Figure 3).

iRun separates the fetching from the building of sets of visible
nodes. If the fetching queue is empty, the fetching thread will wait
until new requests arrive. Otherwise, it will read the requested node
from disk and move it to the geometry cache. If the geometry cache
is full, the least recently used node will be flushed to provide space
for the new request. It also ensures that nodes currently being dis-
played will not be flushed. As a result, the target frame rate of iRun
is guaranteed to stay the same throughout user-interaction since the
rendering process will never stall while waiting for nodes to be read
in from disk. This improves interaction and does not introduce
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Vector Field K-Means

“Vector Field k-Means: Clustering Trajectories by Fitting Multiple 
Vector Fields,” N Ferreira, JT Klosowski, C Scheidegger, C Silva, 
Computer Graphics Forum, 2013. Best Paper Honorable 
Mention.



Trajectory Analysis 
VFKM: General Idea



Trajectories with 
“missing data”



TraClus Results



Observation: trajectories 
have tangent vectors



Vector Field k-Means

• Use vector field for clustering

• Natural way to encode direction and speed

• Handle partial trajectories through 
“trajectory modeling”

• Pattern “summaries” for free



Derive k nice vector fields and an 
assignment of trajectories to one of the 
vector fields such that each vf “approximates” 
the trajectories assigned to it 
 
 
 

Problem Formalization
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Synthetic Dataset

• 2000 Trajectories

• Extracted from two 
center patterns

• Colors Represent 
Direction: From Blue  
to Orange 



Algorithm Execution



Algorithm Execution



Geolife Dataset

• GPS tracks of 
MSR employees

• 12833 trajectories



GeoLife



CDR Dataset / AT&T cell 
network



Urbane: first-of-a-kind UrbanGIS
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Urbane: A 3D Framework to Support Data Driven

Decision Making in Urban Development

Category: Research

Fig. 1. Urbane provides architects, developers, and planners with a new, data and analysis rich way of reading the city ultimately

facilitating better decision making. Users can explore properties of neighborhoods and buildings using the data exploration view to

identify underdeveloped sites for potential development. Then, using the visual interface together with the map view, they can simulate

the affect of such development. For example, the views to the freedom tower (highlighted in green) of the buildings highlighted in

red would be adversely impacted if the new constructions (colored purple) are built. The supplemental video gives an overview of

different features and visualizations supported by Urbane.

Abstract—Architects working with developers and city planners typically rely on experience, precedent and data analyzed in isolation

when making decisions that impact the character of a city. These decisions are critical in enabling vibrant, sustainable environments

but must also negotiate a range of complex political and social forces. This requires those shaping the built environment to balance

maximizing the value of new development with the impact on the character of a neighborhood. As a result architects are focused on

two issues throughout the decision making process: a) what defines the character of an existing neighborhood? and b) how will new

development change the existing neighborhood? In the first, character can be influenced by a variety of factors and understanding

the interplay between diverse data sets is crucial; including safety, transportation access, school quality and access to entertainment.

In the second, the impact of new development is measured, for example, by how it impacts the view from the buildings that surround

it. In this paper, we work collaboratively with architects to design, Urbane, a 3-dimensional multi-resolution framework that enables

a data-driven approach for decision making in the design of new urban development. This is accomplished by integrating multiple

data layers and spatial analysis techniques facilitating architects to explore and assess the effect of these attributes on the character

and value of a neighborhood. This results in more informed decisions that can be made faster. Several of these data layers, as

well as spatial impact analysis, involve working in 3-dimensions and operating in real time. Efficient computation and visualization is

accomplished through the use of techniques from computer graphics. We demonstrate the effectiveness of Urbane through a case

study of development in Manhattan depicting how a data-driven understanding of the value and impact of speculative buildings can

benefit the design-development process between architects, planners and developers.

Index Terms—Urban data analysis; GIS; impact analysis; visual analytics; architecture; city development

1 INTRODUCTION

Why do two neighborhoods feel similar? Or different? Why does
a new building change the quality of a neighborhood and another
doesn’t? While the experience of a city is inherently subjective, the
characteristics that shape the quality of it are not. These character-
istics can be difficult to obtain, measure or analyze by those shap-
ing the future of a city. Architects working with developers and city
planners typically rely on experience, precedent and data analyzed in
isolation when making decisions that impact the character of a city.

These decisions while being critical in enabling vibrant and sustain-
able environments, must also negotiate a range of complex political
and social forces. This requires those shaping the built environment
to balance maximizing the value of new development with the impact
on the character of a neighborhood. As a result architects are focused
on two issues throughout the design process: a) what defines the char-
acter of an existing neighborhood? and b) how will new development
change the existing neighborhood?

1
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Fig. 2. The different components of Urbane and how they interact. The
data management component supports the use of both 2D and 3D data
layers. The impact analysis component enables the assessment of how
new buildings affect their surroundings. The visual interface component
supports the exploration of the data layers in the system.

would not be possible in 2D.
2. Ability to explore the city at different resolutions, in particular,
across neighborhoods and buildings within a neighborhood. This al-
lows multiple stakeholders to explore different aspects based on their
specific objectives. A developer, for example, would want to better
understand the characteristics that drive value within a neighborhood
to maximize the value of a new building. On the other hand, planners
would want to understand differences across neighborhoods and what
affects their value in order to plan for future development.
3. Ability to replace existing buildings in a city with new buildings.
This task allows all stakeholders to evaluate different design options
for the a particular project.
4. Compute the impact of a new building on other buildings. This task
helps users understand the impact of a new building on the surround-
ing ones. In this scenario, architects are interested in measuring the
impact of a new building on the views from existing buildings. In
particular, landmark visibility from buildings is very important in the
development process and is of interest not just to architects (views can
inform design), but also to developers (generates value [4]) and city
planners (defines neighborhood character).
5. Compute the impact of a new building on the neighborhood. This
task helps users understand the impact of a new building on the at-
tributes of a neighborhood. In particular architects are interested in
measuring the impact of a new building on the sky exposure of the sur-
rounding streets. Sky exposure is a critical attribute to measure as it is
directly related to available light at the street and thus is closely linked
to the perceived quality of a neighborhood.

4 URBANE FRAMEWORK

We now briefly describe the components of Urbane, shown in Fig. 2,
which were designed to support the various tasks of the architects.
Urbane consists primarily of three components.
Data Management. Task 1 requires our framework to have the ability
to support exploration of different kinds of urban data. We accomplish
this through the use of a custom data management component that
enables efficient data usage throughout our system. This component
supports different types of 2D and 3D data layers that model physical
and qualitative aspects of the city. Physical aspects correspond to city
infrastructure such as buildings and road-networks, while qualitative
ones correspond to measurements associated with quality of life in
the city, such as presence of restaurants, noise complaints, and crime,
etc. We explain the different data layers supported by our system in
detail in Section 5. In order to enable fast retrieval of the data for the
rendering as well as computation purposes, we index the data layers
using the kd-tree data structure [5].
Impact Analysis. This is the computational component of our frame-
work. Its purpose is to assess the impact of new buildings both on
other buildings (Task 4) as well as on the neighborhood (Task 5). To
do so, our framework allows users to replace existing building geome-
tries by new ones (Task 3) and compute the change in the sky exposure
and landmark visibility caused by this change. In order to perform this
computation interactively, we use a rasterization strategy coupled with
the use of OpenGL compute shaders, which allow general computa-
tions as part of the rendering pipeline. The produced impact measures
are then mapped to data layers so they can be visualized. Section 6
describes this component in detail.

Fig. 3. Visibility. The white building occludes a portion of the landmark
as seen from the black building (top diagram). By changing the white
building with the dashed one, the visibility is now totally occluded and the
impact is represented by the red rays (bottom diagram). Sky Exposure.

Dashed rays represent the view directions that can see the sky, while
the solid rays represent occluded directions. The resulting impact of
changing the white building by the dashed one is represented by the
red ray. Visibility Computation. The process of computing the visibility
to the Freedom Tower (landmark of interest) consists of rendering the
scene and marking the buildings that are visible from view points that
are uniformly distributed around that landmark at different heights.

Visual Interface. This component consists of two main widgets that
facilitate visual exploration and analysis of the data layers in our sys-
tem. The first widget is the Map View, which is a 3D map environment
that enables the spatial visualization of the data layers loaded in sys-
tem. In order to achieve interactive rendering, this widget makes use
of a number of strategies such as view frustum culling and tessella-
tion shaders [17]. The second widget is the Data Exploration View,
which consists of a parallel coordinates [15] based view whose main
purpose is to support visual exploration and filtering across different
data attributes. As we explain in Section 7, these widgets allows users
to explore the data at multiple resolutions (Task 2).

5 DATA LAYERS

In this section we describe the data layers supported in Urbane and
how they can be used to model physical and qualitative aspects of a
city. We classify the data layers as 2D and 3D layers, which can be
either pre-computed or dynamically derived.
2D Data Layers. We support four types of 2D data layers – point
layer, line layer, polygon layer, and grid layer.
Point layer. This layer is used to represent physical aspects of a city
associated with locations such as positions of subways stations, as well
as, qualitative aspects like noise complaints and crime occurrences.
Line layer. Many physical aspects of a city such as the road or the
subway networks are represented as a set of lines. Furthermore, quali-
tative aspects can be mapped to these lines. For example, as described
later in Section 6, the sky exposure measure is computed and visual-
ized along the roads of the city.
Polygon layer. This layer is used to represent regions of interest in
a city such as city neighborhoods, parks, and zip codes. It is also
possible to associate values to each of these polygonal regions by ag-
gregating point data. For example, the number of crime occurrences
can be aggregated for each city neighborhood.
Grid layer. This layer is used to represent data aggregated over a fine
grained grid that covers the city. This layer can be seen as a more
detailed aggregation compared to polygon layers. For example, noise
complaints and crime occurrence densities across the city are examples
of useful grid layers.
3D Data Layers. The use of 3D data in the context of a city is critical
in the workflow of architects. For example, as mentioned in Section 3,
they are not only interested in visualizing buildings’ geometries, but
are also interested in measuring the impact caused by changes in these
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Why do two neighborhoods feel similar? Or different? Why does
a new building change the quality of a neighborhood and another
doesn’t? While the experience of a city is inherently subjective, the
characteristics that shape the quality of it are not. These character-
istics can be difficult to obtain, measure or analyze by those shap-
ing the future of a city. Architects working with developers and city
planners typically rely on experience, precedent and data analyzed in
isolation when making decisions that impact the character of a city.

These decisions while being critical in enabling vibrant and sustain-
able environments, must also negotiate a range of complex political
and social forces. This requires those shaping the built environment
to balance maximizing the value of new development with the impact
on the character of a neighborhood. As a result architects are focused
on two issues throughout the design process: a) what defines the char-
acter of an existing neighborhood? and b) how will new development
change the existing neighborhood?
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Fig. 5. Exploring the city at multiple scales using the data exploration view. (a) The user first selects only buildings close to a park using the PCC
(the value corresponds to the area of park space weighted by distance). (b) The buildings satisfying the constraints are highlighted in the map view.
(c) The user now selects only those sites having a high density of subway near them. (d) The buildings remaining after this filter is applied.

hundreds of cores that are available on modern GPUs.
In order to have an idea of the speed-up obtained by the use of com-

pute shaders, we compare the performance of using a CPU with that
of a GPU in the second phase. In our experiments, the scene is ren-
dered to a 256x256 image. Using this setup, computing sky exposure
at 650 locations takes 8.4 s using the CPU. Using the compute shader,
we accomplish the same task in 75 ms, providing two orders of mag-
nitude (112x) speed-up. All experiments were run on a desktop with
an Intel Xeon E5-2650 CPU, 32 GB RAM, and a Nvidia GTX 680
graphics card.

7 VISUAL EXPLORATION INTERFACE

We worked closely with the architects in the design of Urbane’s user
interface in order to support the tasks described in Section 3 and pro-
vide an intuitive user experience. The visual interface of Urbane is
composed of two components, Map view and Data Exploration view,
illustrated in Fig. 1.
Map view. This view is composed of a 3D map rendering component.
Overlaid menus and panels are used in order to maximize the map ren-
dering area of the screen real estate. We support two possible states of
map rendering – 2D and 3D. In the 2D state (Figs. 4 (a) and 4 (b)), a
top view of the map is shown similar to conventional GIS map inter-
faces. This state is used to visualize the 2D data layers. The 3D state
visualizes both 2D and 3D data layers. For example, in Fig. 4 (c) the
2D layers representing physical aspects of the city are shown together
with a heat-map denoting the sky exposure over the road network and
a 3D layer representing the geometry of the buildings. As shown in
Fig. 4 (d), transparency on the 3D layers can be used to avoid occlu-
sion. The level of transparency can be adjusted by using the opacity
slider (top left of map view in Fig. 1). Navigation and operations on
Map view such as panning, zooming, and rotating the view are accom-
plished through mouse interactions. The main menu (right side of map
view in Fig. 1) allows users to control all the functionalities of the sys-
tem including that of activating the different data layers, performing
impact analysis, and toggling the Data Exploration View.
Data Exploration View. The main goal of Data Exploration View is
to support the analyses of urban data representing qualitative aspects
of the city in two resolutions – at neighborhood and building levels.
This view is composed of two components – a parallel coordinates
chart (PCC) and a data table. While the PCC allows users to ana-
lyze and compare multiple entities (neighborhoods or buildings) with
respect to each other, the data table helps them view the precise val-
ues corresponding to entities of interest. The value for each building
is computed by using the weighted sum approach described in Sec-
tion. 8.1. The records corresponding to the different neighborhoods
are obtained by computing the average value for each data dimension
over all buildings in the neighborhood. Urban planners and developers
use analyses at the neighborhood resolution to understand the charac-
teristics of both a single neighborhood, as well as differences between
neighborhoods. Once they decide on neighborhood(s) of interest, they
can then perform the analysis at the resolution of buildings. This is
done by selecting the Buildings option on the top of the widget.

Each qualitative 2D data layer corresponds to one dimension in the
PCC. Users can interactively toggle on or off data layers of interest.
Users can also modify the properties of the PCC such as reorder the
dimensions (to explore correlations among the different dimensions),
color code different lines based on a data set, and flip range of the axes.
Each line that is visualized corresponds to either a single neighborhood
or building, depending on the resolution. In addition, for comparison
purposes, we also visualize the attributes corresponding to the average
of the items being shown (which is highlighted in blue in the PCC).
The PCC in Fig. 1 visualizes the data at the neighborhood resolution,
while the ones in Fig. 5 visualizes the data at a building resolution.
Interacting with the data. The main exploration workflow supported
in Urbane consists first in exploring the urban data at the neighborhood
level and later drilling-down to the building level to identify possible
development locations. In order to do so, the Data Exploration View
can be used to select and filter entities having the required range of
values along different data sets. The filtered entities are listed in the
data table and are also highlighted on the map view. Either the selected
neighborhoods (Fig. 4 (a)) or the selected buildings are highlighted
depending on the resolution. Consider the example in Fig. 5. Here
the user first filters buildings that are distant from parks (Fig. 5(a)).
The result of this filtering is shown in Fig. 5(b), where the buildings
close to a park are highlighted. Additional filtering to remove regions
having a lower density of subways (Fig. 5(c)), results in selecting only
buildings close to the two subway stations highlighted in Fig. 5(d).
Testing new developments. Once a building of interest is chosen, the
user can replace it with a new mesh using the Change button (Fig. 1).
Users can pre-load a set of pre-defined meshes among which one is
chosen as a replacement. This operation will trigger the impact analy-
sis computation. The resulting impact on landmark visibility is shown
by appropriately coloring the affected buildings, as shown in Fig. 1.
Buildings which have the landmark visibility decreased are colored
red, while buildings for which the landmark visibility improves are
colored blue. Similarly, the impact in sky exposure is shown by color-
ing the affected portions of the streets as shown in Fig. 7.

8 USE CASE SCENARIOS

To demonstrate the capacity of Urbane we present a use case in which
we, the architects, assist a developer in identifying a site in New York
City as well as evaluate different buildings designs according to the
impact measures previously defined. We start by describing the data
sets used in this use case.

8.1 Data Setup
We used a diverse collection of urban data sets from New York City
that support decision making in the design and development process.
In a pre-processing step, these data sets are converted into a set of
layers that can be loaded into Urbane.
Physical data layers. For the physical aspects of the city, such as
the geometry of land, streets, parks, water bodies we currently use
data from Open Street Maps [37]. For important buildings, such as
landmarks, we generated and used high resolution meshes, represented
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Fig. 6. Using Urbane to identify development sites in Financial District. The data exploration view of Urbane is used to study the characteristics of
Financial District with respect to other neighborhoods in Manhattan (a). This is then used to filter (b) and identify potential development sites (c).
Further filtering based on the site properties isolates three sites (d) that have high development potential.

as triangle meshes. For the rest of the buildings, we use the parametric
meshes also obtained from Open Street Map.
Qualitative data layers. Data sets describing qualitative aspects of
Manhattan span all the data layers types supported in Urbane.
Point data. Data corresponding to locations of crime occurrences, taxi
activity, subway stations, noise complaints, and restaurants (obtained
from [20, 21]) are available as point data.
Line data. The sky exposure along the streets of Manhattan is pre-
computed and represented as a line layer. It is computed at 10-meters
intervals along all the streets of the city.
Polygon data. Population density, jobs density, building density [20],
and average price of properties [30] are available as values for each
neighborhood in New York City. Other polygonal data used in our
analysis are hurricane evacuation zones [21], parks, and elementary
school zones [21] with the corresponding school quality report [20].
Grid data. Point data was used to derive grid layers as follows. Man-
hattan was first partitioned into a grid of square cells having width
164 ft (50 meters). Then, given a data set, for each cell, we add up the
values obtained by applying a Gaussian Kernel to the cell center and
each point in a radius of 0.25 miles (5 min walking distance) from the
cell center. Intuitively, this counts the occurrences of the entity in the
point data, and thus provides a proximity function for that entity.
Impact layers. The impact of landmark visibility (Fig. 1) and sky
exposure (Figs. 4 (c) and 4 (d)) are computed in real time when the
user changes the configuration of the city.

8.2 Use Case Overview
In this use case we focus on the Financial District neighborhood (high-
lighted in Fig. 4 (a)) to identify and develop a residential building. It
is one of the oldest neighborhoods in New York, is extremely dense
and has an irregular street grid creating many unique and difficult to
develop sites. Given this complexity an architect will need strong un-
derstanding of the neighborhood characteristics to help identify sites
for development and eventually, facilitate the negotiation process with
the city planner, who cares about maintaining the quality of the neigh-
borhood. The developer wants to maximize the value of a development
while a city planner wants to mitigate the negative impact of new de-
velopments. The architect must reconcile these competing objectives.

8.3 City Scale: Understanding Financial District
First, we use Urbane to understand the Financial District neighbor-
hood in the broader context of other neighborhoods in Manhattan. By
comparing with other neighborhoods we can understand its strengths
and weaknesses and establish performance thresholds from other well-
known and well performing neighborhoods.

The attributes of Financial District, the orange line in Fig. 6(a), are
surprisingly close to Manhattan averages with a few exceptions. The
values for job density and subway access (see Fig. 4 (b)) are better
than the average, while sky exposure is much lower. This illustrates

strengths in job and transit access and a need to be sensitive by not re-
ducing sky exposure with new development. Note that neighborhoods
having high crime typically have a low job density. However, there is
high crime in Financial District even though it has a high job density,
perhaps indicating that a lack of 24 hour activity (all jobs and little
residential) is linked to crime. Midtown, the other primary business
district, is the neighborhood having the most similar characteristics
across data sets (green line in Fig. 6(a)).

While no neighborhood performs better than the Manhattan average
on all the attributes, Chelsea has the best overall performance (pink
colored line in Fig. 6(a)). This supports our expectations as Chelsea
is generally understood as a desirable and quintessential New York
neighborhood. We use it as reference for neighborhood performance.

The above analysis of neighborhood characteristics suggests that
when looking for sites to develop in Financial District, transit access
is not an issue, but crime is, and any new development needs to be
sensitive to sky exposure impact.

8.4 Neighborhood Scale: Filtering Sites
The next step in our process is to use the understanding of Financial
District attributes and how they relate to other neighborhoods in Man-
hattan to identify sites that have development potential. In order to
identify such sites, we developed the following criteria for filtering
different attributes.

For all attributes, except for Built (FAR) and Year (which refers
to year of construction), we filter for sites that are better than the
neighborhood average. Built (FAR) is the percentage of the maximum
allowed area for the site that is actually built. We select sites with
Built (FAR) 55% of allowed capacity or less because it is unlikely
that a building having a higher capacity will be torn down for new de-
velopment. The Built (FAR) range exceeds 100% because many of
the buildings in the Financial district were built before area was regu-
lated. We filter Year to include only buildings older than 2000 as newer
buildings are unlikely to be redeveloped. We do not consider food and
parks attributes (i.e., density of restaurants and parks respectively) in
the filtering step because a new building can address these by adding a
grocery store or public space. All of the applied filters are illustrated in
Fig. 6(b). This results in 15 potential sites for development primarily
concentrated south of the Freedom Tower. These locations are shown
in Fig. 6(c).

8.5 Building Scale: Testing Development
For the fifteen sites identified it is important to understand the trade-
offs between the value of potential development and the impact on the
surrounding context. Twelve of the sites are too small to fully utilize
the maximum allowed area or to have commercially viable floor plate
size and can be eliminated from consideration. We next use Urbane
to study the potential development of the three remaining sites, shown
in Fig. 6(d), as residential buildings with ground floor retail. For each
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Fig. 7. Understanding the impact of different building designs. The view (a) and sky exposure (b) impact when using a 80⇥120 floor plate vs. the
impact when using a 65⇥65 floor plate (c & d) for the proposed buildings.

#
Neighborhood Impact

Area Floor % Sky Landmark Visibility
(sq ft) Plate Exposure % +ve -ve

1 109,890 80⇥120 -0.56 -0.38 1 8
65⇥65 -0.65 -0.36 1 9

2 268,000 80⇥120 +0.52 -0.19 1 15
65⇥65 +0.12 -0.47 1 30

3 114,700 80⇥120 -0.75 -0.32 0 6
65⇥65 -0.87 -0.27 0 6

Table 1. Results of the analysis from the three identified sites. A positive
impact value implies that the building improves the neighborhood. The
+ve column of view denotes the number of buildings for which the view
has increased, while the -ve column denotes the number of buildings for
which the view decreased. The change in sky exposure is computed as
the average relative change in the sky exposure measure in the neigh-
borhood. The change in landmark visibility is computed as the average
relative change in the view (in terms of pixel count) to the landmark over
all impacted buildings.

of these sites, we load meshes with two different tower floor plate
sizes – a 65ft⇥65ft floor plate for a slender tower and a more typical
80ft⇥120ft floor plate.

Table 1 summarizes the results of the impact analysis and illus-
trates the trade-offs between the sites. Site 1 has a modest impact on
the neighborhood, while Site 3 performs poorly across all measures
and can be eliminated from consideration. Both building scenarios
on Site 2 are promising with high performance relative to different
attributes. While the 80ft⇥120ft option impacts the view of 15 build-
ings, the average view percentage impacted is the smallest (Fig. 7(a)).
This might seem counter intuitive since this option has the largest floor
area among all the sites, and thus demonstrates the utility of Urbane.
The 65ft⇥65ft option has a low impact on sky exposure (Fig. 7(d)),
but the worst impact on other buildings’ views (Fig. 7(c)).

The impact analysis therefore reveals that no single site is clearly
the best, but that each has strengths and weakness that must be con-
sidered. Understanding the trades-offs between various options will

allow us (architects) to explain and reconcile the objectives of the de-
veloper and city planner. As demonstrated in this use case, using real
constraints and a real world context, Urbane provides an effective vi-
sual analytic platform for stakeholders of a project to understand the
trade-offs between various development scenarios. This results in a
better development process as each side can make more informed and
defensible decisions rather than arguing a position without knowing
the true impact of a development.

9 EXPERT FEEDBACK

Architects using Urbane have identified several benefits. First, the vi-
sualization and responsiveness of the interface allows the architect to
pose and test many different questions quickly. Normally this type of
analysis requires the use of many tools over several days, rather than in
a single tool and in a matter of minutes as with Urbane. The integration
of data sets, analysis and multiple scales allows for insights on com-
plex problems that otherwise would not have been possible. Architects
pointed out that Urbane allowed them to easily establish assumptions
and select criteria to test quickly and get meaningful results. In par-
ticular, they found the use of parallel coordinates extremely intuitive
and powerful for their needs, which is reflected in the following com-
ment: Filtering of the parallel coordinates chart allows for easy iden-
tification of direct and indirect correlations between data sets that can
provide insights into neighborhood characteristics that is not possible
with other softwares. Additionally, the ability to visualize the neigh-
borhood and buildings being filtered in real time makes a connection
between the data and the city that can better inform the filtering and
analysis process.

The value of Urbane to architects is reflected in the following com-
ment made when working on the use case in Section 8: “Urbane is
extremely fast considering it is displaying and analyzing large 2D and
3D urban data sets, allowing us to test many scenarios seamlessly in
multiple scales. The clear and intuitive interface had us engaged very
quickly and we believe that anybody, even those without design expe-
rience or fluency with analysis programs, can easily use and benefit
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Figure 1: The topology-based catalogue framework identifies building designs that have good performance with respect to outward views. In
their conceptual design phase, architects use the catalogue to identify a few high performing designs, which are then further refined to satisfy
client objectives and government regulations into a final building design.

Abstract

There is a growing expectation for high performance design in ar-
chitecture which negotiates between the requirements of the client
and the physical constraints of a building site. Clients for build-
ing projects often challenge architects to maximize view quality
since it can significantly increase real estate value. To pursue this
challenge, architects typically move through several design revision
cycles to identify a set of design options which satisfy these view
quality expectations in coordination with other goals of the project.
However, reviewing a large quantity of design options within the
practical time constraints is challenging due to the limitations of
existing tools for view performance evaluation. These challenges
include flexibility in the definition of view quality and the ability
to handle the expensive computation involved in assessing both the
view quality and the exploration of a large number of possible de-
sign options. To address these challenges, we propose a topology-
based approach that enables the interactive exploration of concep-
tual building design options based on adjustable view preferences.
We achieve this by integrating a flexible mechanism to combine
different view measures with an indexing scheme for view compu-
tation that achieves high performance and precision. Furthermore,
the combined view measures are then used to model the building
design space as a high dimensional scalar function. The topological
features of this function are then used as candidate building designs.
Finally, we propose an interactive design catalogue for the explo-
ration of potential building designs based on the given view prefer-
ences. We demonstrate the effectiveness of our approach through
two use case scenarios to assess view potential and explore concep-
tual building designs on sites with high development likelihood in
Manhattan, New York City.

Keywords: computational topology;visualization;architectural

design;performance based design;

1 Introduction

There is a growing necessity for high performance design in archi-
tecture which negotiates between the requirements of the client and
the physical constraints of a building site. Architects are interested
in exploring and identifying building design variations from a de-
sign parameter space that satisfy their needs at an early stage in
their design process. This helps them mitigate the cost and impact
of backtracking within the process that is caused due to subopti-
mal choices. These choices are typically made based on multiple
performance measures. Fast revision cycles during this stage can
help maximize the coverage of the set of design choices or design
space, while balancing the trade-off between physical constraints
and performance measures.

One such performance measure is the quality of outward views (or
views) from the dwelling units of a building. Desirable views are
known to have value in the real estate market as they can signifi-
cantly impact sale and rental prices [Benson et al. 1998]. However,
in spite of their importance, considering view quality in building
design is challenging current architectural workflows. This is espe-
cially true in dense urban environments where views are increas-
ingly limited by the surrounding context and challenging to de-

(a) Unobstructed View (b) Landmark Building View (c) Landscape View (d) Building Variation View

Figure 3: Illustration of the different view types that are used to evaluate the views from a building.

2 Related Work

Performance driven design has received a lot of attention recently
in the field of architecture. It consists of applying a different set
of (usually conflicting) metrics to evaluate and select the best ar-
chitectural designs for a given project [Zheng et al. 2014]. A
recent trend is the consideration of these criteria in early stages
of design [Keough and Benjamin 2010] to help better inform im-
portant design decisions and avoid expensive backtracking further
along the design process. The ability to quickly explore and eval-
uate design choices is critical at this early stage. As discussed by
Tsigkri et al. [Tsigkari et al. 2013], widely used off-the-shelf soft-
ware do not achieve these requirements and customized solutions
are needed in this case.

The criteria analyzed in this work are in the context of tower design
based on views. The quality of views have been shown to highly
influence property prices, and are therefore considered as an impor-
tant design goal in tower projects [Benson et al. 1998]. The quality
of a view is an ill defined concept often being very subjective and
location dependent [Tsigkari et al. 2013] with different studies in-
volving different measures such as landmark visibility, water visi-
bility, view distance among others. As we describe later we use a
combination of such set of measures to quantify view quality.

Orthogonal to our work, there has been a lot of research on proce-
dural modeling for architecture [Wonka et al. 2003; Müller et al.
2006; Wonka et al. 2011; Demir et al. 2014; Schwarz and Müller
2015] in which the goal was to ease the generation of varied build-
ing designs without any particular focus on performance metrics.

The use of multi-objective optimization techniques have been used
as a way to explore parametric design spaces, but it has only re-
cently been adopted in the architecture community as a way to
guide initial phases of design [Keough and Benjamin 2010]. Vane-
gas et al. [Vanegas et al. 2012] proposed a technique using Monte
Carlo Markov Chains to identify procedural models to create urban
environments based on user preferences. They model a new city
within an abstract context (or an approximation of a real context)
in the sense that the modeling is performed within an idealized set-
ting. On the other hand, our focus is on identifying good building
designs within a real context. As shown later, we explore build-
ing designs within the context of Manhattan using high resolution
meshes to represent the current state of the city.

Topology-based techniques have been frequently used in mesh
analyses and processing including topology-based shape match-
ing [Hilaga et al. 2001; Dey et al. 2010], topological simplifica-
tion and cleaning [Chiang and Lu 2003; Wood et al. 2004; Pascucci
et al. 2007], surface segmentation and parametrization [Zhang et al.
2005; Dey et al. 2013]. They are also common in the field of sci-
entific visualization (see e.g. [Weber et al. 2007a; Zhou and Takat-
suka 2009; Pascucci et al. 2010]). More recently, topology-based
methods ave also been used to explore and analyze high dimen-
sional data [Weber et al. 2007b; Harvey and Wang 2010; Gerber
et al. 2010; Oesterling et al. 2011]. By providing a succinct rep-

resentation of the data (or functions), these techniques helps not
only in the visualization of the data, but also in their efficient pro-
cessing. We decided to adapt topology-based techniques for the
problem at hand due to two main reasons – (i) the set of high per-
forming buildings are naturally represented as the set of maxima in
a high-dimensional space; and (ii) these topological features can be
computed efficiently.

3 View Analysis Framework

As mentioned in Section 1, the quality of views is a critical com-
ponent in the design of a building especially in a dense urban envi-
ronment. In order to do effectively measure view quality, we first
identify four different perspectives, or view types (described in Sec-
tion 3.1) that capture different qualitative aspects of the view from
a given location and look at direction. We then use a rasteriza-
tion approach to compute the view metrics (associated with each
view type) from the visible scene. As described later, these metrics
can be combined to derive view scores that capture multiple qual-
itative view preferences. This allows calibration and adjustment
of the view analysis through subjective evaluation of actual views.
Finally, to support the efficient computation of view metrics for a
large number of location-direction pairs, we propose a simple yet
effective indexing scheme (Section 3.3).

3.1 View Types

We have identified the following four view types for our analysis:
Unobstructed View, Landmark View, Landscape View and Building
Variation View.

Unobstructed View captures the notion of how far a viewer can
see from a given location and is illustrated in Figure 3(a). The view
metric associated with this view type is the average distance from a
viewpoint to obstructions within a human field of view.

Landmark View quantifies how much of select landmarks, such
as the Brooklyn Bridge or the Empire State Building, are visible.
For example, the highlighted floor level of the building icon in Fig-
ure 3(b) is able to view the top portion of the Statue of Liberty.

Landscape View similar to Landmark View, quantifies how
much of certain landscape elements are visible. This is illustrated in
Figure 3(c). Since preference for landscape type can vary based on
location, such as open space or water bodies, the Landscape View
has been optionally subdivided into these two view subcategories.

Building Variation View quantifies the amount of variation in
aesthetic building character within a view. The intuition here is
the following: achieving a broad diversity of buildings in a single
view is more visually interesting, and potentially more desirable
(as illustrated in Figure 3(d)). In order to define such variations,



Figure 9: The views obtainable from different height zones (20 floors each) from the two sites in Financial district and Midtown. The buildings
highlighted in red indicate the reach from these zones. The inset shows the typical view from a representative window.

the absolute error for the different view metrics. Note that the error
is less than 0.05 for over 90% of the points for all view metrics. In
fact, for metrics other than the building variation view, the error is
less than 0.01 for close to 90% of the time. This is because, the
building variation view is highly dependant on the number of dif-
ferent buildings that are visible, and even a slight deviation would
have greater impact on the score when compared to other metrics.

The view function is computed on a building scale, where the view
score of the building is the average of the view scores over its win-
dows. Thus, the impact of the above errors is even less when con-
sidering them at a building scale. For example, the scatter plots in
Figure 8(b) assess the accuracy of the index at a building scale for
the unobstructed and building variation views respectively, which
had the highest error margin in Figure 8(a). This experiment was
performed for a random set of 100 building designs, and the max-
imum absolute error for these two view metrics was 7⇥ 10�3 and
10�2 respectively.

Comparison with existing architectural workflow. Currently,
view computation and optimization in the architectural design pro-
cess is extremely uncommon. When it does occur, architects are
using off-the-shelf software to create custom view analysis tools
and run optimizations. Due to limitations of these software in con-
junction with the time constraints of the project, not only is the
view analysis performed at an artificially low resolution, but only a
small number of single objective optimizations are performed, re-
sulting in only a small part of the parameter space being covered.
Even with this reduced resolution, evaluating a single design takes
around 15 seconds. On the contrary, design variations across dif-
ferent categories can be explored in real time using our framework.

7 Case Studies

Architects begin with a program (office or residential) and a site,
both provided by the client. The first part of the architectural de-
sign and development workflow is an analysis of the site by test
fitting the program to understand site limitation and opportunities
relative to the required program. Based on the results of the analysis
the architect will generate three to five simple, but distinct design
schemes. These schemes are then refined relative to client feed-
back, zoning regulations, structural requirements and environmen-
tal goals. Finally, a single scheme is selected to develop further,
eventually being constructed.

To demonstrate the capacity of our framework we present two use
cases which illustrate its usefulness within the above workflow.
First, in Section 7.1, we use our framework to compare the possible
views that can be obtained on two different sites, one in Financial
District and the other in Midtown. This will help developers to
identify view types that have to be prioritized for a given site. Next,
in Section 7.2, using the insights gained from the above analyses,
we focus on the Financial District site and use our framework in the
schematic architectural design of a hypothetical mixed use tower.

7.1 Use Case 1: Site Comparison

Multiple sites within the same urban environment can often have
radically different view potentials depending on the built environ-
ment. Both of the sites selected for this comparative analysis are
surrounded by tall, high density development. The Financial Dis-
trict site (Site 1) is a full block in an organic grid configuration with
four narrow street frontages. In contrast, the Midtown site (Site 2)
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Understanding Urban Data
• Human mobility

[Veloso et al. 2011] 
[Liang et al. 2012] 
[Peng et al. 2012]

• Identifying patterns / events in the data
[Doraiswamy et al. 2014] 

[Doraiswamy et al. 
2014]

[Veloso et al. 2011]



Understanding Urban Data
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[Hidalgo and Castañer 2015] 
[Sun et al. 2013]

• Air Pollution
[Qu et al. 2007]

• Public Utility Service
[Zhang et al. 2014]

[Hifalgo and 
Castañer 2015]

[Qu et al. 2007][Zhang et al. 2014]



Objective

• How do cities behave during different times?
• Summer vs. Winter
• Weekdays vs. Weekends

• Data sets about different cultural communities in a 
city
• What patterns do the different communities follow?
• How do these patterns compare?

How to analyze / compare different 
properties of a city?



Objective

• Design of public spaces
• Understand what works / doesn’t work in one city
• Use this to improve design in another city

• Understand properties of neighborhoods
• Compare “activity” between neighborhoods with similar 

properties
• Compare properties between neighborhoods with similar 

“activity”

How to compare cities?
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Urban Pulse: Desiderata
• Capture locations where the pulse is “interesting”
• Quantify the pulse

• Track “activity”
• Temporal resolutions



Step 1: Identify Pulse Locations
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Step 1: Identify Pulse Locations
• Set of scalar functions over time
• Identify all maxima
• Location of prominent pulses

• is a high persistent maxima in at least 1 time step
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2. Quantify 
Pulse



Handling Temporal Resolutions
• Assume functions are defined along 3 resolutions
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Step 1: Identify Pulse Locations
• Set of scalar functions over time
• Identify all maxima
• Location of prominent pulses

• is a high persistent maxima in at least 1 time step
• is a high persistent maxima in at least 1 resolution

1. Identify 
Locations

2. Quantify 
Pulse



Step 2: Quantifying Pulse
• 3 Beats to quantify the pulse at each location
• Significant Beats   

• Is the location a high persistent maximum?
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Step 2: Quantifying Pulse
• 3 Beats to quantify the pulse at each location
• Maxima Beats

• Is the location a maximum?
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Step 2: Quantifying Pulse
• 3 Beats to quantify the pulse at each location
• Function Beats Bf 

• Variation of the function values
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Urban Pulse Interface



Use Case
• Provided the interface to domain experts
• Architects from Kohn Pedersen Fox

• Urban planning
• Human behavioral expert 

• Try to understand the cohabitation between cultural 
communities

• Twitter as proxy for cultural communities



Use Case: Understanding Public Spaces

• Typically classified together as being similar
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Use Case: Understanding Public Spaces
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Conclusion
• Define the notion of Urban Pulse

• Uses the topology of the data to characterize the activity within a city
• Signature for locations

• Data oblivious
• Compare locations within cities
• Compare locations across cities
• Used by experts

• Urban planning
• Cohabitation of cultural communities



Urban Pulse:  
Capturing the Rhythm of Cities



Visually Exploring Transportation Schedules  

Cesar Palomo,  Zhan Guo, Claudio Silva, and Juliana Freire  
New York University



New York City MTA and the GTFS feed
• Data standard: General Transit 
Feed Specification (GTFS) 

• Every 30 second it is possible to 
get a “status” report on the state 
of a large portion of the MTA 
subway and bus infrastructure 

• Open API 
• short-term availability; if you 
do not save it, it is gone



Early work: MTA viewer
• Fall 2012; before 
the GFTS feeds 
were active 

• Initial ideas 
centered around a 
map view 
representation 

• Showing “delay”:

MTA Viewer: a Real-time Visualization System for NYC Subway
Lines

Bowen Yu and Cesar Palomo

Fig. 1. Overview of the interface of MTA Viewer. In the middle is the map rendering of the subway system. The charts for data
aggregation and comparison by stop and time are on the left, while the control panel of the system is on the right.

Abstract— Early in 2013 the New York City Metropolitan Transportation Authority (MTA) plans to start releasing traffic data for Division
A, a subset of New York City subway lines. This project describes MTA Viewer, a real-time visualization system designed for this
data. Our system warehouses the streamed data, extracts the subway lines into a graph structure for plotting and renders statistical
information concerning delays and service updates based on historical information. Both passengers and MTA management teams
can utilize our system to gain insights about the subway service.

Index Terms—Subway Traffic Data, GTFS, Real-Time Visualization

1 INTRODUCTION

Starting early 2013, the New York City Metropolitan Transportation
Authority (MTA) plans to start releasing transit information for a sub-
set of its subway trains, namely the A Division, which includes lines
numbered from 1 through 6. An effective tool for visualizing this real-
time data can benefit both the public and the MTA agency. The public
could rely on the tool to plan trips based on the most up to date in-
formation about the subway trains, and the MTA agency could use
the tool to analyze statistics about the service to support the decision
making process.

We propose MTA Viewer as a visualization system for the described

• Bowen Yu is with the Computer Science and Engineering Department at

NYU-Poly, email: yubowenok@gmail.com.

• Cesar Palomo is with the Computer Science and Engineering Department

at NYU-Poly, email: cesarpalomo@gmail.com.

MTA data, designed for effectively warehousing the provided data and
allowing for meaningful real-time visualization of the most current
trains status along with statistical historical information. The contri-
butions of the system are:

• Visualization of real-time trains status and position

• Visual representation of delays and feed changes on top of the
trains stops and tracks

• Rendering of delay estimates based on a model created from his-
torical data

• Plotting of statistical information about the service based on mul-
tiple filters, e.g., average delay for line 1 on monday mornings.

This paper is organized as follows. Section 2 gives an overview
of related work, spanning from existing subway map applications to
trajectory visualizations. Section 3 details the data used in the system

(a) (b)

Fig. 8. Subway delay near Time Square at different time on Sep 5 2012:
(a) From 1 pm to 2 pm no delay is observed; (b) Significant delay is
perceived from 2 pm to 3 pm.

dependent property of the delay, which might be of interests to data
analyzers.

Rendering features of MTA Viewer can also be set in the control
panel. The rendering features of MTA Viewer include delay/schedule
changes rendering, stop/track rendering and delay prediction, the de-
tails of which have been described in the previous section. An addi-
tional logarithm scale option is provided, which globally changes the
scale of map and chart visualization.

The current timestamp of the system decides the positions of the
trip instances and is therefore an important variable for real-time vi-
sualization. To change the current timestamp, in addition to setting it
directly in an edit, the user may drag a scroll bar at the bottom of our
interface so as to change the current timestamp quickly. The user may
also choose to play the data as the system automatically increases the
current timestamp, therefore showing the movement of trains in an an-
imated way. The speed of the play can also be adjusted using a scroll
bar in the control panel.

By default, we are not showing labels for stops and trip instances in
the map of MTA Viewer. The user may click a stop or a trip instance
to toggle the visibility of its label in the map. When delay prediction
is enabled, the user needs to click a trip instance to view the delay
prediction for that trip instance.

7 CONCLUSION AND FUTURE WORK

MTA Viewer is a visualization system for rendering of MTA real-time
data about A-division trains, useful both for passengers and MTA man-
agement teams. Passengers can utilize the system to determine not
only the most up to date subway system information but also visualize
estimates of delay and train arrival time based on historical data. MTA
management teams can visualize statistical data on top of the trains
map to identify bottlenecks in track segments or stops, compare stops
in terms of delays for a specific hour of day or day of the week, and
take actions based on that information.

This paper described MTA Viewer from the format of the data used
to its warehousing, and from extraction of useful data structures to
the visualizations modes used to convey information. MTA Viewer
is promising in terms of information visualization of subway data, and
could be further extended to become a powerful tool for the public and
for the MTA.

As soon as MTA starts releasing the actual real-time feed for the
trains status, the system may reveal interesting patterns for the trains
service and new visualization modes could be devised to better under-
stand them.

Gantt charts may be useful to study the trains schedule, compar-
ing the planned service with the reality. They could lead to service
schedule changes to better describe the subway system to the public.

An issue in MTA Viewer is the color encoding of tracks, trains and
delay information. Lines 1 through 3 are originally drawn in red by
MTA, and lines 4 through 6 in green. However, transit information
on maps are usually red to encode delays or bad traffic and green to
describe good traffic or good service, which can bring confusion to
the user. It would be helpful to investigate alternatives to those color

schemes or to devise alternatives to convey the information of tracks
and service status without confusing the viewer.

MTA Viewer users could benefit from selection directly in the sub-
way map. Selection would ease comparisons between lines or visu-
alization of stops in a given region. Comparisons betweens regions
in different map locations could also be useful for MTA management
teams to identify patterns and devise plans to solve issues.

Finally, a mobile version of the system could benefit subway pas-
sengers as a tool for trip planning, based on up to date information and
a rich statistical model of the subway service.

We believe exploring and experimenting with frameworks similar to
MTA Viewer can be interesting in terms of applied research on transit
information visualization. The practical issues that need to be consid-
ered bring challenges concerning design and system architecture that
can be further investigated.
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What questions were we interested in?
• T1: Compare planned timetables against real service 

• T2: Characterize speed profile at different route segments 

• T3: Assess delay, wait time and reliability at the station 
level 

• T4: Study the interplay of different attributes



Overhaul: Building on Marey Graph Design



2nd Try: Building on Marey Graph Design

• web-based 
tool 

• uses D3.js 
and WebGL 

• cluttering was 
a problem

Submission ID: #139 / Visual evaluation of schedules in transportation systems

Figure 5: Overview of proof-of-concept prototype. The routes structure (left) can be brushed for focus on station-level. The main
display (implemented with WebGL for efficiency purposes) shows the speed view for route 1 downtown weekday trips. The
right pannel contains controls for setting visibility and hue for specific days of the week, and allows users to choose between the
different analyses for Trips Explorer and Stops Explorer. On the bottom, additional view for transformed data, summaries for
deviation and waiting time (implemented with HTML5 Canvases) offer greater flexibility for filtering and pattern identification.
Finally, a gallery with snapshot views allows for side-by-side comparison during investigation.

They reported the interaction flexibility allows for explo-
ration of non-trivial information in the datasets not avail-
able through conventional statistical approaches and ad-hoc
summaries plots. They were also intrigued with some visual-
ized patterns that fostered further investigation, an evidence
that the framework is an invaluable tool to aid the statistical
methods involved in timetable improvement.

We start with a case study on data cleaning, an important
task for effective visualization of schedules.

5.1. Incomplete trips data

Building a history of trips to analyze real service in a trans-
portation system is a non-trivial task. For NYC subway, for
instance, the real-service dataset needs to be built using real-
time data provided by agencies. Due to capabilities of the
installed system used to control signals and train movement,
a feed with real-time updates can contain missing data for
trips such as wrong or missing stop for stations. Matching
real trips with planned ones might not be trivial either, since
for some control systems the association is not explicit and
needs to be inferred using trips’ start times, train identifica-
tions and headsigns.

Our proposed visualization can assist in this initial pro-
cess of data handling and cleaning. For example, Figure 6b
shows Southbound trips for subway Line 3 that should all
start at Harlem - 147th St Station (circle in green), but many
trips (inside red ellipse) actually have a different start station,
making clear those trips are missing partial data. Notice how
without the data transformation (Figure 6a) it is impossible
to identify trips with missing data for multiple stations. With
this easy identification, schedule analysts can take action to
handle the unexpected trips format. Options include remov-
ing them entirely from the dataset, or set default values to
complete the missing stops.

5.2. Longer time at station

The chosen visual representations for speed and delay are
very powerful to convey overview of important transport
system’s properties. For instance, one common practice in
NYC subway is for conductors to remain longer at stations
to give more time to riders during transfers. That is com-
mon between periods of rush hours, while at peak service
the opposite happens, when trains run observing a tight time
at station. Another common practice is riders holding doors

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.



Visual Elements

Submission ID: #139 / Visual evaluation of schedules in transportation systems

(a) Planned schedule (b) Real service (c) Composite

Figure 2: Proposed trip-level visualization applied to weekdays uptown trips of NYC subway Line 1. It consists of the combi-
nation (c) of planned (a) and real (b) service. The x axis represents time of day, and the y axis lists the route’s stations.

(a) Trips Explorer, patterns per day (b) Trips Explorer, delay view

(c) Stops Explorer, patterns per day (d) Stops Explorer, delay view

Figure 3: Zoom view of weekdays trips between stations 66 St and 157 St in Trips Explorer (top row) and Stops Explorer
(bottom row). (a) shows planned trips in black, real trips in blue except for monday, in red. The plot shows that the same
schedule is not accurate for monday trips between 5:00am and 6:00am. In (b) a color scale varying from yellow (low) to red
(high) maps deviation levels, making evident an increase in deviation starting around 7am. Analogous views for station-level
views are seen in (c) and (d). Based on dot plots that keep the vertical spacing for stations, each dot represents a stop in the real
service.

(a) 0-24h (b) Origin

Figure 4: Data transformation reveals patterns for trips structure by translating all trips start time to origin (b). The conventional
display of trips in 0-24h range (a) does not allow easy structure identification like in (b).

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.
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TR-EX: adding user-controlled KDE
12

am
3a

m
6a

m
9a

m
12

pm
3p

m
6p

m
9p

m
12

am

Woodlawn

Crown
Heights

New Lots
Ave

(a) Original Marey graph: each trip is represented by a line with full opacity
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(c) Using KDE for lines: wide bandwidth reveals coarser details
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(d) Using of KDE for lines: narrow bandwidth reveals finer details

Fig. 3: Marey’s Graph applied to downtown trips of NYC subway line 4. Data about actual service consists of a large number of trips, leading
to severe cluttering (a), even when additive blending (b) or transfer functions are used. The use of KDE avoids overplotting by revealing trends
at different levels of detail: wide bandwidth shows a high-level overview (c), and a narrow bandwidth shows fine-grained details (d). In TR-EX,
users can interactively select the bandwidth size according to their needs.

levels of detail, it is important to give users the ability to adjust the
level of abstraction.

4.2 Reducing Clutter with Kernel Density Estimation

While aggregation and sampling can help alleviate overplotting ef-
fects, they do so at the cost of information loss [18]. Since TR-EX
was designed for support interactive visualization of multiple prop-
erties of data sets consisting of a large number of trips, an effective
solution must be 1) flexible, allowing exploration at different levels of
detail, and 2) compute results at interactive rates, ideally without re-
quiring pre-computation. These requirements make approaches such
as Continuous Parallel Coordinates [20] and bundling [33] undesir-
able, since they either require pre-computation or prior knowledge of
the data granularity that might reveal interesting patterns.

A compelling alternative is the use of Kernel Density Estimation
(KDE), a non-parametric approach used to estimate probability den-
sity function of a random variable [37, 34]. KDE has been exten-
sively applied in information visualization. Lampe and Hauser [28]
proposed an interactive implementation of KDE that makes no as-
sumptions about the data and uses the GPU to operate at interactive
rates. The key idea is to perform accumulations of rendered elements
in high-precision 2D textures, and later compute the KDE by raster-
izing 2D polygons on the GPU. A strong benefit is that the time and
space complexity of the KDE step does not depend on the data set size,
since work is done in screen space.

As we discuss below, TR-EX uses KDE both for Trips Explorer
and Stops Explorer as a flexible and unified approach to reveal trends
at different scales. KDE calculates the probability density f̂ at a given
location l by weighing the attribute values of the spatial neighbors of
l. Given a point x, its estimate will depend on the distance between x
and every other data point xi, weighted by a kernel function K, and a
smoothing parameter (or bandwidth) h:

f̂ (x) =
1
nh

n

Â
i=0

K(
x�xi

h
) (1)

The bandwidth determines the width of the kernel function; the ker-
nel function determines the shape of the weighing function. K is usu-
ally a symmetric function that integrates to 1. It has been shown that
the choice of the kernel is less important than an appropriate choice for
bandwidth value [3, 39], so we restrict our discussion to the Gaussian
kernel, shown in Equation 2:

K(x) =
1p
2p

e
�x2

2 (2)

User-Defined Bandwidth. For continuous reconstruction of the dis-
tribution of an attribute c other than frequency, TR-EX uses the tech-
nique by Lampe and Hauser [28], which can be seen as the integral of
a height field over the 2D domain that communicates the accumulated
sum of all values ci. We give users the control over the smoothing
factor in KDE by providing UI controls for the bandwidth shape. As
Figure 3 shows, different bandwidth sizes allow analysts to identify
trends at different levels of detail. In Figure 3c, peak hours are high-
lighted in red and late-night trips are smoothed. In contrast, Figure 3d
reveals additional details about late-night trips and trends during peak
hours.
Estimation at Interactive Rates. Note that precise line density esti-
mation [28] is too costly to achieve interactive rates for tens of thou-
sands of lines, since for each line segment a quad needs to be ren-
dered along which the density estimation is to be computed. This is
not feasible for TR-EX, since the complexity is bound by the data
set size. Consider our example data set for the NYC subway line 4:
polygons would have to be rasterized for each of the 654,252 stops,
making it very challenging (or even impossible) to obtain interactive
rates. Instead, we first accumulate line frequencies or attributes in

(a) Editable color scale
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Speed Visualization

Fig. 4: Basic layout for Trips Explorer (top) and Stops Explorer (bot-
tom): horizontal axis for time of day and vertical axis for stations
along route. To avoid clutter, uptown (left) and downtown (right) trips
are visualized separately, but stations are fixed for both directions of
the route allowing users to go back and forth from one direction to the
other without losing context.

high-precision textures. Then, we later apply 2D KDE on the result-
ing texture, assuming the accumulated lines define a height field of
frequency or an attribute such as wait time or delay, and the estimated
density is done as for the point-wise density computation. This design
choice allows TR-EX to achieve interactive rates and still gives users
a good overview of when (x axis) and where (stations along y axis)
interesting patterns occur.

4.3 Trips Explorer
The Trips Explorer extends Marey’s Graph for use with a large num-
ber of real trips. As in the original design, we display stations along
the vertical axis, spaced according to their physical distance along the
route (see Figures 3c and 3d). One difference from the original design
is that we limit the visualization of trips to a single direction: the si-
multaneous visualization of both directions causes cognitive overload
and patterns are barely visible. Besides, we fix the order of stations
in the vertical axis for both directions: when visualizing south-bound
trips, trips run from top-left corner (north-most station, earliest hour)
to bottom-right corner (south-most station, latest hour of the day) of
the display. North-bound trips run from bottom-left corner to top-right
corner. As shown in Figure 4, this choice helps users keep a men-
tal map of the physical position (and orientation) of the stops when
switching back and forth between directions, a common practice dur-
ing exploration.

User interface (UI) elements and interactive summary plots provide
users with the ability to choose to visualize planned or real service,
different routes and directions, and filter trips for different days of the
week. Color scales are also provided to convey measures of the differ-
ent attributes available: users can select multiple options for qualitative
and sequential scales from ColorBrewer [6]. Users can compare real
and planned service in terms of frequency (through accumulation of
lines density and then KDE computation as discussed in Section 4.2)
and scalar attributes of trip such as deviation and speed.
Deviation. Trip deviation is defined as the distance measure between
a polyline for a real trip and its matching planned trip, which is pre-
computed for each planned/real trip pair. We use L1 distance to mea-
sure deviation of real stop times against planned stops. This measure
highlights regions in time where the schedule suffers from greater per-
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Fig. 5: Speed visualization with Trips Explorer for uptown trips in
subway line 1. Region A shows that the speed for trips between 66th
St and 72th St stations is mostly constant, except during peak hours,
when vehicles run slower. Localized regions depict vehicles running
faster than usual (region B) or slower during late nights (region C).

turbation, which negatively impacts the perceived service by riders. It
also shows adherence: if deviations are frequent for all times of day,
the planned schedule could be shifted to better represent the actual
service.

TR-EX allows direct visualization of deviation through sequential
color scales, with all trip segments in a real trip (polyline) carrying the
deviation distance. As explained in Section 4.2, after the initial step of
accumulation of that attribute, the resulting density estimation of the
KDE step is mapped to a chosen sequential color scale (continuous or
discrete) defined by the user.
Speed. Analysts use information about trip speed to communicate
possible structural problems to maintenance departments, and to as-
sess whether safe speed limits are followed by conductors. The Trips
Explorer encodes vehicle speed in the slope of the lines: steeper lines
represent trips segments with higher speed. However, the comparison
of angles requires fine inspection and is impractical for higher zoom
levels, where slopes are barely visible. TR-EX also applies the same
technique used for displaying deviations to the visualization of speed,
with speeds set per trip segment. With the scalar value for speed per
trip segment, TR-EX also provides filters by higher or lower speeds
to improve exploration of specific speed ranges. The proposed ap-
proach for speed visualization displays regions of slower and faster
trips, without forcing the users to closely inspect the angles of the lines
as in Marey’s original design. As Figure 5 shows, this representation
clearly shows track segments with uniform speed vehicles throughout
the day (region A), with localized faster (region B) or slower (region C)
vehicles during specific time ranges. Notice that speed and deviation
are not interpolated between pairs of vertices, instead, they defined per
trip segment (adjacent pairs of stations).
Interaction. To allow inspection of specific times of day, we pro-
vide zooming and panning on the plot (horizontal axis). Zooming in
the vertical axis can be done through brushing of specific stations on
the route (see component 4 in Figure 8). A color editor (Figure 6a)
lets users define different color scales (all from ColorBrewer [6]), the
number of colors, choose between discrete and linearly interpolated
colors, and edit the color stops to change the mapping of scalar values
to specific ranges. Also editable are the opacity multiplier for scalar
values and the KDE smoothing parameter defined by the bandwidth,
which can be seen in Figure 6b.

4.4 Stops Explorer
The Trips Explorer allows users to analyze trip behavior. However,
some schedule attributes can only be analyzed at the station level, no-
tably: delay, wait time and reliability. Each of these attributes is a
scalar value associated with a vertex (the stop). TR-EX exposes this
information by incorporating an additional visual representation, the
Stops Explorer, shown in Figure 7). Similar to a dot plot or Cloud-



Wait Time

Fig. 9: Comparing planned (left) and observed (right) wait times at stations for subway line 6 toward Brooklyn Bridge - City Hall on weekdays.
The visualizations show a substantial divergence between the planned and actual wait times in the highlighted region (top). Zooming into this
region, we can see that in the planned service, stops are equally spaced from each other, while in the real service trips are concentrated in three
main clusters: time: around 8am, 10am and 11am. This leads to a considerable increase in observed wait time at later times, as shown in region
B of the real service. The behavior of the real service stabilizes after region A’, where it is similar to the planned schedule.

One example of wait time analysis is shown in Figure 9, for subway
line 6 trips downtown, toward Brooklyn Bridge - City Hall, which
shows planned (left) and actual (right). A prominent pattern is de-
tected between 6am and 12am, from Pelham Bay Park to Castle Hill:
the observed wait times differ considerably from the planned ones.
While in the planned service stops are equally spaced from each other
in time, the real service shows a concentration of trips in three clus-
ters: around 8am, 10am and 11am. Observed wait times increase sub-
stantially later. The ability to easily identify wait times issues such as
this one helps transportation experts focus on trying to understand why
such patterns arise and on strategies to address the problems, which of-
ten spur the need for additional explorations. TR-EX therefore shows
great potential to streamline the exploration, analysis and refinement
process.

5.1.2 Assessing Reliability
For high frequency urban rail like the MTA subway, reliability is best
captured by the fluctuation of wait time experienced by passengers at
the same time period at a particular station. Therefore, by definition
reliability can only be measured when the whole population of inci-
dences, instead of a sample, is observed. This only becomes feasible
when the massive operation data are collected electronically through
automatic vehicle location (AVL), automatic passenger count (APC),
smart cards, etc. The current availability of real service information
then allows analyses of the system performance by proposing mea-
sures to capture reliability.

We capture the dispersion of wait times with the coefficient of varia-
tion (CV) : CV = standard deviation/mean actual wait time (or swt

µwt
).

CV normalizes the differences in wait time by time periods, e.g., peak
hours have shorter wait times than off-peak hours. The larger the CV,
the greater the variation in the wait time, and lower the reliability,
which is defined as:

reliability = 1� swt
µwt

(3)

The analysis of reliability of subway line 1 weekdays trips toward Van
Cortlandt Park 242nd Street is depicted in Figure 10. The expert ob-
served interesting patterns, including some that were previously un-
known. Stations with lower demand often provide higher reliability,
which is confirmed with the visualization for Christopher Street sta-
tion (region B), which presents high reliability throughout the day.
Another hypothesis confirmed by the expert was that the subway is

Fig. 10: Reliability visualization of weekdays trips for subway line 1
toward Van Cortlandt Park 242nd Street. Region B confirms the hy-
pothesis that stations with lower demand are more reliable, and region
C shows that peak hours cause considerable perturbations in wait time
due to higher frequency of vehicles, and resulting in lower reliabil-
ity. Region A in Chelsea presents unexpected low reliability between
10am and hours.

less reliable during peak hours: with higher frequency service, stop
times vary considerably, and so do wait times. That fact can be veri-
fied for the 23rd St station during evening peak hours (region C). An
unexpected pattern, however, was observed between 14 Street Station
and 28th St, after morning peaks and before 2pm (region A). All sta-
tions in the segment (which covers the Chelsea neighborhood) have
high demand throughout the day, but the expert was intrigued by the
localized low reliability behavior during those specific times, and will
gather more information about boarding levels to further investigate
this and try to understand potential causes.

5.2 Interview with Transportation Expert
To validate our design decisions, we interviewed a transportation ex-
pert. Prior to the interview, he was given access to the system to ex-
plore its functionality. As we started the interview, he noted that “the
visual metaphor was obvious”. This reinforced our rationale for se-
lecting Marey’s Graph as the basis for TR-EX: the representation is
familiar and easy to understand for transportation experts. The use
of KDEs was less obvious and it took him a little while to understand
how the process of going from “blurry” to “sharp” images worked. Af-
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