8/9/2017

InterSCity

-
b4

SoftWware Engiﬁee.r{@g
for Large Systems§

Joseph W. Yoder Twitter: @metayoda
joe@refactory.com
The Refactory http://www.refactory.com
Teams That Innovate http://www.teamsthatinnovate.com

Copyright 2017 Joseph Yoder & The Refactory, Inc.

Introducing Joseph

Founder and Architect, The Refactory, Inc.

Pattern enthusiast, author and Hillside
Board President

Author of the Big Ball of Mud Pattern

Adaptive Systems expert (programs
adaptive software, consults on
adaptive architectures, author of
adaptive architecture patterns,
metatdata maven, website:
adaptiveobjectmodel.com)

Agile enthusiast and practitioner

Business owner (leads a world class
development company)

Consults and trains top companies on
design, refactoring, pragmatic testing

Amateur photographer, motorcycle
enthusiast, enjoys dancing sambal!!!

Loves Sushi, Ramen, Taiko Drums ©

What is Software Engineering?

Software engineering (SE) is the
application of engineering to the
development of software in a
systematic method....Wikipedia

Software Engineering

Definition of SOFTWARE ENGINEERING

: abranch of computer science that

deals with the design, implementation, and
maintenance of complex computer programs

software engineer
noun

Webster’s Definition

8/9/2017

Software Engineering

Definition of SOFTWARE ENGINEERING

1. Development of procedures and systematic
applications that are used on electronic machines.
Software engineering incorporates various accepted
methodologies to design software...takes into
consideration what type of machine the software will
be used on, how the software will work with the
machine, and what elements need to be putin place
to ensure reliability.

2. Higher education degree program, which usually
requires a certain number of courses to be completed
in order to receive certification or a degree.

Business Dictionary’s Definition

Software Engineering

Definition of SOFTWARE ENGINEERING

. detailed study of engineering to the design,
development and maintenance of software.
Software engineering was introduced to address the
issues of low-quality software projects. Problems
arise when a software generally exceeds timelines,
budgets, and reduced levels of quality. It ensures
that the application is built consistently, correctly,
on time and on budget and within requirements.

Economic Times Definition

8/9/2017

Software Engineering

Definition of SOFTWARE ENGINEERING

. the process of analyzing user needs and
designing, constructing, and testing end user
applications that will satisfy these needs through
use of software programming languages. It is the
application of engineering principles to software
development. In contrast to simple programming,
software engineering is used for larger and more
complex software systems, which are used as
critical systems for businesses and organizations.

Techopedia’s Definition

Software Engineering

Definition of SOFTWARE ENGINEERING

. the application of principles used in the field
of engineering, which usually deals with physical
systems, to the design, development, testing,

deployment and management of software systems.

Uses a disciplined, structured approach to
programming ... with the goal of improving the
quality, time and budget efficiency, along with

the assurance of structured testing and engineering

certification.

TechTarget’s Definition

8/9/2017

So Really...What is
Software Engineering???

PLANNING ANALYZE DESIGN

FTWARE
ifgﬁlsffﬁszl@,:%
¢

AND VERIFICATION

e

What about Agile?

8/9/2017

AGILE DEVELOPMENT

adaptability

transparency

s
Agility is... T simplicity
STRATEGY
unity
RELEASE
ITERATION oot
CONTINUOUS
’Working

—Z Software

ACCELERATE DELIVERY

8/9/2017

8/9/2017

architecture quality can be invisible

...especially when the spotlight is on

8/9/2017

Mobile, New Products
Version

‘Features

© Can Stock Photo Inc. / alex5248

© Can Stock Photo Inc. / Freezingpicture

8/9/2017

Reliability

ScateRili 5
(’sw '

e/,
-
Performance
Stability
Maintainability

What's below
the waterline?

all those “ilities”
we can’t ignore

Important -ilities

Chris Richardson .
http://microservices.io

8/9/2017

Agile Myths

> Simple solutions are always best

> We can easily adapt to changing
requirements (new requirements)

> Scrum/TDD will ensure good :
Design/Architecture MY T ﬂBU TERS

> Good architecture simply emerges
from “good” development practice

> You always go fast when doing agile
> Make significant architecture
changes at the last moment

“www.agilemyths.com”

Sustaining Your Architecture

Big Ball of Mud

Alias: Shantytown, Spaghetti Code

A BIG BALL OF MUD is haphazardly
structured, sprawling, sloppy, duct tape and bailing
wire, spaghetti code jungle. .

The de-facto standard software
architecture. Why is the gap
between what we preach and
what we practice so large?

| We preach we want to build high quality
systems but why are BBoMs so prevalent?

Sustaining Your Architecture

10

r— FINANCIAL TIMES =FT

working software. Pressure from the
business to deliver new features and
bug fixes within a large codebase
heightens the risk of unnecessary €
complexity being introduced. Add
poor documentation and frequent
staff turmover and the overall
architecture may become “a big ball

............... B

of mud”. Big mud translates to a high

cost of adding new functionality that
a company needs to stay competitive.

Lisa Pollack]

Maintaining code in a tidy state
should be part of the work. “But it
requires constant attention to this

Worse Is Better

Ideas resembles Gabriel’s 1991
“Worse is Better”

Worse is Better is an argument to
release early and then have the
market help you design the final
product...lt is taken as the first
published argument for open
source, among other things

Do BBoM systems have a Quality?

Sustaining Your Architecture

8/9/2017

11

8/9/2017

What exactly do we
mean by "Big"?

Well, for teams | consider > 1072 big
and for code | consider > 1075 big

i (a)
movf PSP,w : Copy current top of stack frame addres
movwf FSR ; into the File Select register

» (bl

movf MULTIPLICAND,w ; Push the Multiplicand into the stack
wwf INDF : by copying the datum out

; and decre i

ou
decf FSR,f & menting the FSR

HEC]

movf MULTIPLIER,w ; Push the Multiplier inte the stack
movwf INDF : by copying the datum out

; and decre

ou
decf FSR,f rementing the FSR

i (d)
call MUL_S ; Call the subroutine

Sustaining Your Architecture

What is Larg

»>1,0 00 (loc)
»10,000,000 (loc)
»100,000,000 (loc)
>1,000,000,000 (loc)
>Ma:}3y erabytes of data
»Many dependencies
>Lot’s of connected p
»Many imertwin@ﬂste

12

Where Mud Comes From?

YEAH. .. MAYDE
HOW DO WE KNOW YOU CAME TO STEAL

YOU CAME TO ELBONLA QUR SECRET PROCESS

CAPITALISM 7 Mup ! DIRT AND
WATER 7

HE KMNOWS. ..

WE'LL HAVE
TO KILL

& 1920 Uniled Festure Syndicata, inc.

People Write Code > People make Mud

Sustaining Your Architecture

Keep it Working, Piecemeal
Growth, Throwaway Code

c o

Sustaining Your Architecture

8/9/2017

13

http://www.zippah.com/~dtweed/dilbert/w0726866.htm
http://www.zippah.com/~dtweed/dilbert/w0726866.htm
http://liftoff.msfc.nasa.gov/RealTime/JTrack/Spacecraft.html
http://liftoff.msfc.nasa.gov/RealTime/JTrack/Spacecraft.html

8/9/2017

Ultra-large-scale (ULS) systems will be interdependent
webs of software-intensive systems, people, policies,
cultures, and economics...Cloud, loT, Big data, ...

http://www.sei.cmu.edu/uls/

What are Large Scale Systems

Large-scale systems include:

» Many lines of code (loc)

» Many dependencies

» Lots of stored data

» Lot’s of connected pieces
»Many intertwined systems
» Many overlapping policies
» Various security issues
»Many people involved

14

8/9/2017

What are Large Scale Systems

Large-scale systems include:

> Very clusters of hardware

» Many networks integrated

» Lot’s of possible failure points

» Distributed Systems with multiple
data centers around the world

» Systems that were not originally
designed to work together

» No single team or timeframe

Need to Balance many forces

Simplicity
Scalability
Adaptability
Flexibility
Performance
Reliability
Features

15

Complex vs Complicated Systems
(Cynefin Framework)

Complex Complicated

Enabling congtrainte
Loosely coupled
probe-sense-respond

Emergent Bractice

Governing congtraintg
Tightly coupled

sense-analyse-respond
Good Practice

"Cynefin as of 1st June 2014" by Snowded - Own work. Licensed under CC BY-SA 3.0 via Commons -
https://commons.wikimedia.org/wiki/File:Cynefin_as of 1st June 2014.png#/media/File:Cynefin as of 1st June 2014.png

What.do
you Value?

KINDNESS SHOW -

5 \
I 1 -
7o At y
- W/
YYoda’s Principles Licensed under CC: https://www.flickr.com/photos/rlei ki/85 m-72157633765455261/

8/9/2017

16

How can | be more confident

SATURN 2017

13th Software Engineering Institute Architecture
Technology User Network Conference

ar, Colorado
w8 -4, 2017

\a. THANK YOU TO_OUR SPONSORS

7;7 b

8/9/2017

17

Ee_%i\'%nc.a Confidence

Values Drive Practices

8/9/2017

18

Agile/Lean Design Values

> Core values:
« Design Simplicity
o Quick Feedback
» Frequent Releases

« Continuous Improvement

o Teamwork/Trust

» Satisfying stakeholder needs
« Building Quality Software

> Keep Learning
> Sustainable Development

AGILE DEVELOPMENT

daptat

transparency

Agility is...
STRATEGY
" positive
- RELEASE team
Q u a ! !t\ ITERATION ality sustainable
; quality delivery
software :
quality quality on - o customer maintainability
scenarios the backlog A atisfaction
dabilit
quality quality acceptance e DouUS deb‘?}?ﬁl{ﬁ!l!é’
- : rell 1tv
dashboard criteria reliability
qualified
readmap ’ Working

4 Software

ACCELERATE DELIVERY

8/9/2017

19

Delivery Size???

incrementally

D < D !3-::'

all at once

D ="
o

'u
lal

Delivery Size is Key

Large Delivery Size can cause many issues

Issues:
» More potential defects

» Longer time to get feedback
> Slower adjust time F
» Harder to experiment

» Problems take a long time to fix

8/9/2017

20

Small Deliveries

Quick Feedback

Master story list

1day Add user
2days Print itinerary
5days Cancel trip
3days Book permit
Tday Update permit

5day Create device
3day Add swap trade

—) T

100 days

-~
~
>
| A

Time

-llities of a microservice
architecture

SERVICES

8/9/2017

21

What about Quality?

Bad Code Smells

Have you ever looked at
a piece of software that
doesn't smell very nice?

A code smell is any
symptom in the
source code that can
indicate a problem!

8/9/2017

22

8/9/2017

Neglect Is Contagious

=Disorder increases and software rots over time
=Don’t tolerate a broken window

IS it better to Or to let dirt

clean little by and mess
little? accumulate?

23

http://www.pragmaticprogrammer.com/ppbook/extracts/no_broken_windows.html

" Some dirt becomes
¢ very hard to clean

If you do not clean
it right away!

Technical Debt?

Clean Code Doesn't Just Happen

®*You have to craft it
®You have to maintain it

*You have to make a professional commitment

“Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.”
— Martin Fowler

8/9/2017

24

But We Don’t Have Time!

Professional Responsibility

There’s no time to wash hands, get to the next patient!

http://en.wikipedia.org/wiki/lmage:|_Semmelweis.jpg

8/9/2017

25

8/9/2017

Professionalism

Make it your responsibility to create software
v/ Delivers business value VER =
v'Is clean
v/ Is tested
Vs simple
v Good design principles

When working with existing code:
Vif you break it, you fix it
v/ You never make it worse than it was
v You always make it better

Refactoring

“If you value clean code...”

26

Refactorings

Behavior Preserving
Program Transformations

- Rename Instance Variable
- Promote Method to Superclass
- Move Method to Component

Always done for a reason!!!

Refactoring is key and integral
to most Agile processes!!!

Sustaining Your Architecture

Floss Refactorings—frequent, small
changes, intermingled with other
programming
(daily health)

Root canal refactorings—infrequent, |
protracted refactoring, during which \
programmers do nothing
else (major repair)

* Emerson Murphy-Hill and Andrew Black in
“Refactoring Tools: Fitness for Purpose”
http://web.cecs.pdx.edu/~black/publications/IEEESoftwareRefact.pdf

8/9/2017

27

8/9/2017

Safe Refactorings
> Rename is always safe!!!

> New Abstract Class moving
common features up

> Extract Method (always safe)
> Extract Interface / Extract Constant
> Pull Up / Push Down

> Create common component
for shared internal methods
» Fairly safe but can be harder to share

Sustaining Your Architecture

You Must Test

When you find smelly code,
you often apply refactorings
to clean your code.

Testing is a key principle
for safe refactoring!

Sustaining Your Architecture

28

Common Wisdom

Work refactoring into your daily routine...

“In almost all cases, I'm
opposed to setting aside time
for refactoring. In my view
refactoring is not an activity you
set aside time to do.
Refactoring is something

you do all the time in little
bursts.” — Martin Fowler

Sustaining Your Architecture

Gradually create a new system
around the edges of the old,
letting it grow slowly over
several years until the old
system is strangled...

A natural wonder of the rain forests in Australia are the huge strangler vines.
They seed in the upper branches of a fig tree and gradually work their way down
the tree until they root in the soil. Over many years they grow into fantastic and
beautiful shapes, meanwhile strangling and killing the tree that was their host.

Sustaining Your Architecture

8/9/2017

29

8/9/2017

PAUSE POINTS HELP

Kaizen X%

The Sino-Japanese word "kaizen" simply means
"change for better”, with no inherent meaning of
either "continuous" or "philosophy" in Japanese
dictionaries or in everyday use. The word refers to
any improvement, one-time or continuous, large or
small, in the same sense as the English word
"improvement”. (Wikipedia)

Most view it as Continuous Improvement... |

30

8/9/2017

Slack Time

Need Slack time to improve

[——

Ways to get slack time...
» Monitor and Make Visible

» Reduce Waste (Muda)

» Inject time into process
(retros, daily cleanup, ...)

Try little experiments...

Continuous Improvement
“Retrospectives are Key!!!”

RETROSPECTIVE

Stays in the Retrospective

Small Steps we can take - next sprint!!!

31

8/9/2017

Minimum Viable Product
(Fultill the narrative &
@ = s ready for real users)

4. Tweak It <— 3.Ship it

Proven & rolled out to
100% of users

Continuously tweak,
test,

measure A
ala & Toray sumsome prosus!

‘gobermamrent

32

As we become more connected...

Smart Energy

Internet of Things
Smart Cities

CC-BY-SA-4 0 Ameer Na

Large Scale SE Principles

» Building Infrastructure
o ldentify common problems, build infrastructure to address them
* Important to not try to satisfy everyone
* Perfection is the enemy of “Good Enough”

o Don't build infrastructure just for its own sake
* Identify common needs and address them
» Don't imagine unlikely potential needs that aren't really there

» Design for Growth
o Try to anticipate how requirements will evolve
o Keep likely features in mind as you design base system
o Think how design will scale if growth changes by 10X or 100X

8/9/2017

33

Large Scale SE Principles

» Design for Low Latency
o Low avg. times (happy users ©) — 90% average idle time is ok
o Lot’s of caching and parallelism can be helpful

» Make Applications Robust

Aggressive load balancing

o

o Failover to other replicas/datacenters
o Bad backend detection: disable live requests until gets better
O

Do something reasonable even if not all is right
— Better to give users limited functionality than an error page

» Keep Software Clean
o Code reviews
o Design reviews

o Lots of testing
— unit tests for individual modules
— larger tests for whole systems
— continuous testing system

HOW SYSTEM QUALITY WORK
CAN FIT INTO YOUR RHYTHMS

8/9/2017

34

Build architectural quality into your project rhythms

“QUALITY IS NOT AN ACT, IT IS A HABIT”
—ARISTOTLE

Some decisions are too important to leave
until The Last Responsible Moment

SO

CHOOSE THE MOST
RESPONSIBLE MOMENT

8/9/2017

35

8/9/2017

Qualify the Roadmap

“All you need is the plan, the roadmap, and
the courage to press on to your destination”
— Earl Nightingale

ormance

R eliability

Low HIGH

TBD RISK o RISK o NORMALo

Qualify the Roadmap

2017 2018
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

MOBILE WEB v1 o MOBILE WEB v2 o RICH MOBILE WEB APPS

PC PLATFORM v1 o PC PLATFORM V2 ONGOING RELEASES

MOBILE RESEARCH o ANDROID v1 O 10S v1 RESPONSIVE DESIGN

DEVELOPMENT

PERSISTENCE FRAMEWORK c MOBILE GENERIC SERVICES SYBASE TO ORACLE MIGRATIONc
LOAD BALANCING o MOBILE SECURITY ° PLATFORM STABILITY
CLOUD RESEARCH o MICROSERVICES o NO SgL / BIG DATA v1° NO SQL / BIG DATA v2

w
4
S
2
o
i}
=
I
S
4
<
w
a
4
o
i}
E
i}

DELIVERY BUDGET RESOURCE ARCHITECTURE DEPENDENCIES RISKS ISSUES ON RADAR
o Delays Budget wil Allresources Persistence Partnerships
c expected to need on track Framework and services COMPETITOR DELIVERY AUG 2017
S Version 1 bolstering in Load- allin place E Corp —new Techissues New mobile
a Q22017 Balancing. and on track. gloduct gpportunit

Cloud
2 N ARCHITECTURE ARCHITECTURE oCT 2017
o Performance Migration Re-evaluate
Platiorm stabiit Security NO SQL strategy

36

@ Qualify the Backlog

Ih QfO(bYQSS 1 DOV]-Q

e]
Elimingle
Tednntca)

'r__j l Delot

Order within
2 Seconds
T

TN

You can add backlog items for technical debt and
quality-related architecture work... yes, you can

Make Architecture Work
Visible and Explicit

Visible Invisible

Invisible Architectural
Feature

Positive Value Visible Feature

Negative Value

Visible Defect Technical Debt

Color your backlog—Phillipe Kruchten
http://philippe.kruchten.com/2013/12/11/the-missing-value-of-software-architecture/

8/9/2017

37

How Quality Fits
Into An Agile Process

Incorporate Feedback :

Functional
Testing eptan
Can

Include FE
Quality G
ltems EE]

—

Daily Review

Include
relevant
quality
tasks

Product
Envisioning

Deploy to

Identify:

Architecture Risks
Key Quality Scenarios
Landing Zone Criteria

Develop
and Manage
the Backlog

Plan a Sprint ~ Run a Sprint

Test Driven Development

TEST-FIRST DEVELOPMENT REFACTORING

L

(Re)write
the test.

some
(\ Check if
u“m':‘.;""’ gl the tests
The test 5 succeed
BuCCeeds. o
: Some tests

Coerect
rRgrassions.

The les! 2908 code.
L

e

Update the
failing tests.

. " The code quality
sainles

\‘ie—/ 8
focus _focus_
Completion of the contract Alignment of the design
a5 defined by the test with known needs

(OXoloNE

8/9/2017

38

8/9/2017

Mob Programming

A Whole Team Approach

5])
e /

lllustration @ 2012 - Andrea Zuill

mobprogramming.org Twitter: @WoodyZuill

> Talk with d@lleal
Discuss

Ive as needed
o Learn from proverfWell-designed int@rfaces

39

[N'l'l-RS(ﬁi’i"i"

Large Scale Practices

Good Modularity and Abstraction principles still work
o nho one group (and no single timeframe) has created
all the software, so do only what you can

Be expansive in exception handling
o When one happens, log all the relevant details; write the
exception handler to try to repair the problems or at least
continue in some fashion

Log stuff just in case

Write code to check consistency and validity of data, and run that
code periodically or continuously in the background

Write code to repair inconsistent or invalid data, preferably
by reconstructing it from sources other than the bad data itself

Don’t assume synchronization is perfect; tolerate messed up data

ONGOING QUALITY ACTIVITIES

8/9/2017

40

Visibility is Important

Monitor System Qualities—
Build An Operational Dashboard

com - USMLocalBiz (linode267274) - CPU - day (5 mn avg)

) M |
e
bl ey
[h]‘""/,I""'[" 'r“'j .‘L-|‘ I
My R S A

e .
w40 E00 G303 W 12w 140

WCPUPCt Maxi 5514 Avgr 140N Las

Fri Jul 26 14:52:48 2013 |, 400 & L sasiin

30.63% i Condlons @ Fli Fiac ‘-hum jnizags @ H.man Resou sas & muasler Raladors

8/9/2017

41

Quality Focused
Checklists

* Release Checklists*

— Agreed upon checklist
for quality and major
architecture concerns

* Use at pause points

— sprint planning,
release planning,

*Thanks, James Thorpe for
sharing your company’s checklist

Development Release Checklist

The code and architecture should be examined prior to release into our test environment. If
any checkbox cannot be checked, exceptions should be noted and communicated to the
Product Owner and QA lead.

Code quality
O All code complies with the relevant coding standard.

Al code compiles without any errors or warnings (full clean and build)
Appropriate logging has implemented throughout the code.
All possible exceptions have been handled appropriately.

The code has been checked for memory leaks.

[m]
o
[m]
O
O All testand debug code has been removed.
O Code is appropriately documented.

O All dead code has been removed.

[All unit tests have been run without error.
[m]

Unit tests have been written for all new code or code changes.

Architecture
O No web service APIs have been created or modified without full documentation and
architectural sign-off

0 No web service data structures have been created or modified without full
documentation and architectural sign-off.

O Nodatabase structures have been created or modified without full documentation and
architectural sign-off

Performance

O All web pages render in under 500 ms with a production workload
O Allreports are generated in under 500 ms with a production workload
O No query takes more than 500 ms to return data with production data volumes.

Notes or Exceptions to the above:

THE NEW YORK TIMES BESTSELLER

CHECKLIST

HOW TO GET THINGS RIGHT

PicADOR

BESTSELLING AUTHOR OF BETTER AND COM

Two Kinds of
Checklists

1.Read-review
2.Do-confirm

i

O
g

3N

R o

i

8/9/2017

42

8/9/2017

0 Define Architecture Triggers

* Conditions that
cause architecture
investigation/ tasks
— Quality target

no longer met
— Code quality
metrics violations

* Have broad
system impact

43

Continuous Inspection

Asian PLoP 2014 Paper

(o) create and

modify code automated

code analysis

CODE SMELL DETECTION BN
feedback to (8 $

METRICS (TEST COVERAGE, e oo .)
CYCLOMATIC COMPLEXITY, B “" generaton
TECHNICAL DEBT, SIZES, ...) —

moment " " |DE Edi
APPLICATION SECURITY CHECKS ./

Continuou mpile-timi
ARCHITECTURAL CONFORMANCE SR

=]
AUTOMATE WHERE YOU CAN!!! ~——inspection

type

Sustaining Your Architecture

Continuous Inspection

=2 &

\ 7

Sourc(e * deve{o pers
oL
" 7
@< Q
5 ‘\/
\’Unv\‘m?, architects
Sottware, an a\Y se

8/9/2017

44

Periodically Re-Evaluate
Architecture Risks

—

_ Iteration
Delivery and Planning

Feedback

Continuous Improvement

Implementation

Architecture Quality

>

Agile Values Can Drive
Architectural Practices

Do something. Don’t debate or
discuss architecture too long

Do something that buys
you information "DO

Prove your architecture ideas

Reduce risks (e ma&k{,hg!

- Make it testable .P | :

> Prototype realistic scenarios rove $
that answer specific questions Q@.{uf\ﬁ

) 3 <

- Incrementally refine

your architecture

Defer architectural decisions that
don’t need to be immediately made

8/9/2017

45

Patterns for Evolving
Agile Architecture

FL

USA PLoP 2015

How can you explore and decide on
srchitectural Esues that are not
completely understood by the tesm?

can include...

How can the t=am know when
current conditions should cause work
on the srchitecture?

How can you handle the t=chnical
challenges in the beginning of the
Erojectwitheut = full architectural
design upfront?

Creste = i=chnicel plan for how and

when 1o handle esch of the chnical

challengss and evalve it throughout the,
ect. This plan needs to define how

rc hitecture

How can you ensure that the
srchitecture will sdequstely svole
during the project. mesting the.
necessary capsbilities i fulfill the
scftware requirements?

Wihen more informstion is needed. sod
an Aschitecture Spie task to your
becklog to perform some study, test o
slematives investigaiion that support
architectural decisions.

Define conditions or scenarics in the.
architecture that if they happen can
trigger the addition of one or more.
architectural tsks o the backlog

can add newta

Agd important architectur sl cepabiliies
to the backlog as they become
spparent to make sure that they are
prioritized and implemented at the host
Respensiole Moments

architecture

can be included
p— as part of the_..
uncentrolled growth of technical debt?

\dentify snd mansge the technical debt

How can you detect architecture and
code preblems 2= soon as possible?

point out if ary vislstion was detecied

Patterns for Evolving

to start working
with the architecture

TN\

Climbing on the
Shoulders of Giants

How can you quickly define the basic
application architecture and the main
component types that will satisfy the
requirements?

Use an existing reference compatible
with the application platform and
suitable to its needs as a starting point.

to know how
tests should
be created can
validate
each other

Test Architecture

How can you define how architectura
components should be tested?

Define the test approach for each

kind of component, considering its
scope, technigue, and kind of tests
and tools that are going to be used

How can you identify relevant points whi
the architectural design should focus?

Early on, identify the challenging
technical requirements that are
important for the project, so they can
be handled at the optimal time.

can guide the
choice of...

Tracer Bullels

How can you define low-level details
about the architecture without
spending a lot of time upfront on a
detailed investigation?

Agile Architecture

RN
Asian PLoP 20

to prepare to
handle the most
critical issues

Plan for Responsible
Moments

How can you handle the technical
challenges in the beginning of the
project without a full architectural
design upfront?

Select the smallest set of architectural
relevant user stories and implement
them asreferences for upcoming
functionality. Use this implementation to
face technical challenges that were
planned to be targeted before the
project iterations.

Create 3 technical plan for how and
when to handle each of the technical
challenges and evolv e it throughout the
project This plan needs to define how
to identify these important responsible
moments and circumstances when itis
appropriate addressthese technical
challenges.

8/9/2017

46

8/9/2017

Patterns for Being Agile at Quality

Core Patterns
Breaking Down Barriers
Integrate Quality

T\

Becoming Agile at Quality Identifying Qualities Making Qualities Visible
Whole Team Finding the Qualities System Quality
Quiality Focused Sprints Agile Quality Scenarios Dashboard
Product Quality Champion Quality Stories System Quality Radiator
Agile Quality Specialist Measureable Qualify the Roadmap
Spread the System Qualities Qualify the Backlog
Quality Workload Fold-out Qualities
Shadow the Quality Expert Agile Landing Zone
Pair with a Recalibrate the
Quality Advocate Landing Zone

Agree on Quality Targets

Automate First
Quiality Checklists

QA to AQ: Patterns about transitioning from Quality
Assurance to Agile Quality, AsianPLoP 2014

QA to AQ
I QA to AQ Part Two: Shifting from Quality Assurance to
Patterns about transitioning from Agile Quality, PLoP 2014

Quality Assurance to Agile Quality

Joseph W. Yoder', Rebecea Wirfs-Brock’, Ademar Aguiar® QA to AQ Part Three: Shifting from Quality Assurance
" The Refactory, Inc., to Agile Quality “Tearing Down the Walls”,

SugarLoafPLoP 2014

“Wirfs-Brock Associates, Inc.

2 FEUP QA to AQ Part Four: Shifting from Quality Assurance
to Agile Quality “Prioritizing Qualities and Making
them Visible”, PLoP 2015

ar@fe.up.pt

joe@refactory.com, rebecca@wirfs-broc

Abstract. As organizations transition from waterfall to agile processes, Quality
Assurance (QA) activities and roles need to e Traditionally, QA activities QA to AQ Part Five: Being Agile At Quality “Growing
have occurred late in the process, after the software is fully functioning. As a Quality Awareness and Expertise”, AsianPLoP 2016
consequence, QA departments have been “quality gateke rather than actively
engaged in the ongoing development and delivery of quality s . Agile teams
incrementally deliver working software. Incremental delivery provides an QA to AQ Part Sox: Being Agile At Quality “Enabling
opportunity to engage in QA activities much earlier, ensuring that both and Infusing Quality”, AsianPLoP 2016

functionality and important system qualities are addressed just in time, rather than
100 late. Agile teams embrace a “whole team” approach. Even though special skills
may be required to perform certain development and Quality Assurance tasks,
eam is focused on the delivery of quality software. This paper
outlines 21 patterns for transitioning from a traditional QA practice to a more agile
process. Six of the patterns are completely presented that focus on where quality is
addressed earlier in the process and QA plays a more integral role. Continuous Inspection, AsianPLoP 2016

Patterns to Develop and Evolve Architecture in an
Agile Project, PLoP 2016,

..PATTERNS FOR TRANSITIONING
FROM TRADITIONAL TO AGILE QA
AND AGILE ARCHITECTURE e concrn

47

8/9/2017

Indicators You’ve Paid Enough
Attention to Architecture

> Defects are localized
> Stable interfaces
> Consistency

> Developers can easily add
new functionality

> New functionality doesn’t
‘break” existing architecture

> Few areas that developers avoid
because they are too difficult to work in

> Able to incrementally integrate new functionality

Sustaining Your Architecture

Other Techniques for
Improving Quality

http://kev.inburke.com/kevin/the-best-ways-to-find-bugs-in-your-code/

Average is 40% for
any one technique!

Combining
techniques
gives you
quality (> 90%)

48

Visibility

An,
Uny "oy,
%né%

X
°

VALUES DRIVE PRACTICE

Continuous
Improvement

CALLTO ACTION

I
Daily Practices

it

Sustainable Deve
(CC) by muffinn on Flickr

Manifesto for Agile Software Development

“We are uncovering easier ways of developing valuable
products by doing it and helping others to do it.
Through this work we have come to value:”

We are uncovering better ways of developmg
software by doing it and helping others do it
Through this work we have come to value;
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That 15, while there 15 value 1 the items on
the night, we value the items on the left more.

8/9/2017

49

Relaxed)
Cazy Manifesto

“We are uncovering easier ways of developing valuable
products by doing it and helping others to do it.
Through this work we have come to value:”

»Keeping slack over being busy all the time

»Small high quality software over
large complex software ?
»Doing only what is necessary over Harada Kire

exhaustively discovering all tasks
»Doing less to deliver the same over
doing more to deliver less

That is, while there is value in the items on the right,
we value the items on the left more...

L Relaxed i
Principles of Cazy Manifesto

“We follow these principles when they don’t add work:”

»Doing nothing is always an option.

»We seek to minimize the number of backlog items while keeping the value of the backlog.
»We believe to keep increasing velocity is not always good.

»We try to eliminate tasks that generate no value.

»We try to combine tasks to reduce latency and rework. -

»We try to rearrange tasks to find problems early. v /

»We try to simplify all tasks as much as possible Haraﬁa Kiro

»We are not afraid of eliminating our own tasks / processes
by continuously acquiring new skills / capabilities.

»We expand capabilities over increasing capacities.

»We only work hard to make our work easier and safer.

»We always look to get help while we provide help to others with minimum effort.

»We never try to add an unnecessary principle simply to match with the other manifesto :)

8/9/2017

50

Dogmatic

Synonyms: bullheaded, dictative,

doctrinaire, fanatical, intolerant

Antonyms: amenable, flexible,
manageable

Pragmatic

Synonyms: common, COmmonsense,

logical, practical, rational,
realistic, sensible

Antonyms: idealistic, unrealistic

Being Pragmatic

Rough

4 No Planning
Adaptive

Lot’s of Plan (changing)

Upfront

No Design

Planning Right Balance or Architecture

of Design

Lot of Design & Architecture Sometimes

& Architecture

Traditional
or Waterfall

®

lled Agil
Being Agile called Agile

© ®

Balance Between...

8/9/2017

51

= .’-7

a Journey

Follow-through —
Deliberate pracnce,s,
Slack Tlmertﬁ"lmprove

Paying attention R

~ Continuous Learning

joe@refactory.com i www.joeyoder.com
Twitter: @metayoda . : www.refactory.com

8/9/2017

52

