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Data Mining

Concept

Automatic extraction of knowledge or patterns that are interesting (novel,
useful, implicit, etc.) from large volumes of data.

Tasks

Data engineering

Characterization

Prediction
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Data Mining Models

Concept

A model aims to represent the nature or reality from a specific perspective. A
model is an artificial construction where all extraneous details have been
removed or abstracted, while keeping the key features necessary for analysis
and understanding.
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Data Mining Models
Frequent Patterns

Task

Among all possible sets of entities, which ones are the most frequent? Or
better, determine the sets of items that co-occur in a database more frequently
than a given threshold.

Application Scenario

Market-basket problem: Given that a customer purchased items in set A, what
are the most likely items to be purchased in the future?
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Data Mining Models
Clustering

Task

Given a similarity criterion, what is the entity partition that groups together the
most similar entities?

Application Scenario

Customer segmentation: Partition a customer base into groups of similar
customers, supporting different policies and strategies for each group.
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Data Mining Models
Classification

Task

Given some knowledge about a domain, including classes or categories of
entities, and a sample whose class is unknown, predict the class of the latter
based on the existing knowledge.

Application Scenario

Credit scoring: A bank needs to decide whether it will loan money to a given
person. It may use past experience with other persons who present a similar
profile to decide whether or not it is worth giving the loan.
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Data Mining

Paradigms

Combinatorial

Probabilistic

Algebraic

Graph-based
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Data Mining
Combinatorial

Domain

Models partition (or select) entities based on their attributes and their
combinations. Search space is discrete and finite, although potentially very
large.

Task

Determine the best model according to a quality metric.

Strategies

Pruning exhaustive search

Heuristic approximation
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Data Mining
Combinatorial

Frequent Itemset Mining

k-Means

DBScan

Decision trees
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Combinatorial Models

A B C D E

ABCD ABCE ABDE ACDE BCDE

AB DEAC AD AE BC BD BE CD CE

CDEBDEBCEBCDADEACEACDABEABDABC

ABCDE
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Combinatorial Models

B(6) C(4) D(4) E(5)A(4)

ABCDE

ABCD ABCE ACDE BCDE

CDEBCDACEACDABC

AC(2) DE(3)CE(3)BE(5)BD(4)BC(4)AE(4)AD(3)AB(4)

ABD(3) ABE(4) ADE(3) BCE(3) BDE(3)

ABDE(3)

CD(2)
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Data Mining

Paradigms

Combinatorial

Probabilistic

Algebraic

Graph-based
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Data Mining
Probabilistic

Domain

Models are based on one or more probability density function(s) (PDF). Given
a model and a dataset, search its parameter space, which may be continuous
and/or discrete.

Task

Determine the best parameter models for a dataset, according to an
optimization metric.

Strategies

Direct

Iterative
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Data Mining
Probabilistic

Expectation-Maximization

DenClue

Naive Bayes
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Probabilistic Models
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Probabilistic Models
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Probabilistic Models
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Probabilistic Models
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Data Mining

Paradigms

Combinatorial
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Data Mining
Algebraic

Domain

Problem is modeled using linear algebra, enabling several existing algebraic
models and algorithms.

Task

Determine the best models and their parameters, according to an optimization
metric.

Strategies

Direct

Iterative
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Data Mining
Algebraic

Principal Component Analysis

Support Vector Machines
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Algebraic Models

Meira Jr. (UFMG) Data Mining Algebraic 25 / 171



Data Mining

Paradigms

Combinatorial

Probabilistic

Algebraic

Graph-based
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Data Mining
Graph-based

Domain

Input data is modeled as a graph, enabling not just richer representations but
also several existing models and algorithms.

Task

Determine the best representation and technique, according to an optimization
metric.

Challenge

How can we handle the larger complexity and numerosity induced by graphs?

Meira Jr. (UFMG) Data Mining Graph-based 27 / 171



Data Mining
Graph-based

Frequent Subgraph Mining

Spectral Clustering
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Graph-based Models
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Data Mining in Social and Cyber-Physical Systems

A massively connected world produces

huge,

incomplete,

noisy,

heterogeneous and

asynchronous streams of data
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Challenges for Data Mining

Heterogeneous data

Incomplete information

Noisy data

Dynamic behavior

Complex relationships

Lack of scalability

Meira Jr. (UFMG) Data Mining Graph-based 31 / 171



Heterogeneous Data

Types of data

numerical, categorical, spatial, temporal, relations

Characteristics

Variable density and representativity
Variable granularity
Best abstraction level?
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Incompleteness

CPS Data are always incomplete

Not measured
Not measured frequently enough

Issues

How much data is enough?
How to fill missing data?
How to augment data?
How to infer more complex behaviors?
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Noise

Data is not accurate as a consequence of measurement issues

Issues:

Noise vs. outliers
Noise reduction (information loss?)
Noise tolerance (e.g., probabilistic models)
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Dynamic Behavior

Data mining models usually assume that the past will occur in the future

Drift is a common phenomena:

Temporal
Spatial
Environmental
Entity-related characteristics and habits

Tasks

Identify drifts
Handle drifts
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Complex Relationships

SCP systems comprise a large spectrum of entities and associated
relationships

Model issues:
Explicit vs. Implicit relationships

Home address and Income vs. Home address and Safety

Directed vs. Undirected relationships

weather→ traffic jam vs. traffic jam 6→ weather

Mining issues:

Significance/similarity measures
Complex patterns
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Scalability

Algorithmical enhancement

it is not simple nor usual

Parallelization

algorithms are usually irregular and I/O intensive.

Sampling

fairness
representativity
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Requirements for Models and Techniques

Transferability: how can we transfer knowledge among domains?

Fairness: how can we avoid discrimination?

Transparency: how can we understand the models and the outcomes?

Accountability: who is responsible for any damage?
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Technology Landscape

Data management: several solutions either general or specialized for all
kinds of data

Data mining: several implementations of each technique

User demands: does the data scientist need to program?

NO! He or she needs to think algorithmically.
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Lemonade
Live Exploration and Mining of a Non-trivial Amount of Data from Everywhere

Enablers:

Wide availability of algorithm implementations

Broad spectrum of databases and storage technologies

Massively parallel processing commercial solutions

Mature virtualization technology

Real time transpiling technology is a reality

Awareness of the data potential
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Lemonade
Live Exploration and Mining of a Non-trivial Amount of Data from Everywhere

Motivations

Data analysts do not need to program, literally

Data analysts need to abstract algortihmically tasks

Cloud-fashion web-based platforms provide good interactive support

Visual programming is a need
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Lemonade
Live Exploration and Mining of a Non-trivial Amount of Data from Everywhere
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Lemonade
Live Exploration and Mining of a Non-trivial Amount of Data from Everywhere
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Lemonade
Live Exploration and Mining of a Non-trivial Amount of Data from Everywhere
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Lemonade
Live Exploration and Mining of a Non-trivial Amount of Data from Everywhere
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Lemonade
Live Exploration and Mining of a Non-trivial Amount of Data from Everywhere
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Representative-based Clustering

Given a dataset with n points in a d-dimensional space, D= {xi}ni=1, and given
the number of desired clusters k, the goal of representative-based clustering is
to partition the dataset into k groups or clusters, which is called a clustering and
is denoted as C = {C1,C2, . . . ,Ck}.
For each cluster Ci there exists a representative point that summarizes the
cluster, a common choice being the mean (also called the centroid) µi of all
points in the cluster, that is,

µi =
1

ni

∑

xj∈Ci

xj

where ni = |Ci| is the number of points in cluster Ci.

A brute-force or exhaustive algorithm for finding a good clustering is simply to
generate all possible partitions of n points into k clusters, evaluate some
optimization score for each of them, and retain the clustering that yields the
best score. However, this is clearly infeasilbe, since there are O(kn/k!)
clusterings of n points into k groups.
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K-means Algorithm: Objective

The sum of squared errors scoring function is defined as

SSE(C)=
k∑

i=1

∑

xj∈Ci

∥∥xj−µi

∥∥2

The goal is to find the clustering that minimizes the SSE score:

C
∗ = argmin

C

{SSE(C)}

K-means employs a greedy iterative approach to find a clustering that
minimizes the SSE objective. As such it can converge to a local optima instead
of a globally optimal clustering.
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K-means Algorithm: Objective

K-means initializes the cluster means by randomly generating k points in the
data space. Each iteration of K-means consists of two steps: (1) cluster
assignment, and (2) centroid update.

Given the k cluster means, in the cluster assignment step, each point xj ∈D is
assigned to the closest mean, which induces a clustering, with each cluster Ci

comprising points that are closer to µi than any other cluster mean. That is,
each point xj is assigned to cluster Cj∗ , where

j∗ = arg
k

min
i=1

{∥∥xj−µi

∥∥2
}

Given a set of clusters Ci, i= 1, . . . ,k, in the centroid update step, new mean
values are computed for each cluster from the points in Ci.

The cluster assignment and centroid update steps are carried out iteratively
until we reach a fixed point or local minima.
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K-Means Algorithm

K-MEANS (D,k,ǫ):
t= 01

Randomly initialize k centroids: µt
1,µ

t
2, . . . ,µ

t
k ∈Rd

2

repeat3

t← t+14

Cj←∅ for all j= 1, · · · ,k5

// Cluster Assignment Step

foreach xj ∈D do6

j∗← argmini

{∥∥xj−µt
i

∥∥2
}
// Assign xj to closest centroid7

Cj∗← Cj∗ ∪{xj}8

// Centroid Update Step

foreach i= 1 to k do9

µt
i← 1

|Ci|
∑

xj∈Ci
xj10

until
∑k

i=1

∥∥µt
i−µt−1

i

∥∥2 ≤ ǫ11
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K-means in One Dimension
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K-means in One Dimension (contd.)
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K-means in 2D: Iris Principal Components
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(a) Random initialization: t= 0
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K-means in 2D: Iris Principal Components
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K-means in 2D: Iris Principal Components
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Density-based Clustering

Density-based methods are able to mine nonconvex clusters, where
distance-based methods may have difficulty.
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The DBSCAN Approach: Neighborhood and Core

Points

Define a ball of radius ǫ around a point x ∈Rd, called the ǫ-neighborhood of x,
as follows:

Nǫ(x)= Bd(x,ǫ)= {y | δ(x,y)≤ ǫ}

Here δ(x,y) represents the distance between points x and y. which is usually
assumed to be the Euclidean

We say that x is a core point if there are at least minpts points in its
ǫ-neighborhood, i.e., if |Nǫ(x)| ≥minpts.

A border point does not meet the minpts threshold, i.e., |Nǫ(x)|< minpts, but it
belongs to the ǫ-neighborhood of some core point z, that is, x ∈Nǫ(z).

If a point is neither a core nor a border point, then it is called a noise point or
an outlier.
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The DBSCAN Approach: Reachability and

Density-based Cluster

A point x is directly density reachable from another point y if x ∈Nǫ(y) and y is
a core point.

A point x is density reachable from y if there exists a chain of points,
x0,x1, . . . ,xl, such that x= x0 and y= xl, and xi is directly density reachable
from xi−1 for all i= 1, . . . , l. In other words, there is set of core points leading
from y to x.

Two points x and y are density connected if there exists a core point z, such that
both x and y are density reachable from z.

A density-based cluster is defined as a maximal set of density connected points.
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Core, Border and Noise Points
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DBSCAN Density-based Clustering Algorithm

DBSCAN computes the ǫ-neighborhood Nǫ(xi) for each point xi in the dataset
D, and checks if it is a core point. It also sets the cluster id id(xi)= ∅ for all
points, indicating that they are not assigned to any cluster.

Starting from each unassigned core point, the method recursively finds all its
density connected points, which are assigned to the same cluster.

Some border point may be reachable from core points in more than one cluster;
they may either be arbitrarily assigned to one of the clusters or to all of them (if
overlapping clusters are allowed).

Those points that do not belong to any cluster are treated as outliers or noise.

Each DBSCAN cluster is a maximal connected component over the core point
graph.

DBSCAN is sensitive to the choice of ǫ, in particular if clusters have different
densities. The overall complexity of DBSCAN is O(n2).
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DBSCAN Algorithm

DBSCAN (D, ǫ, minpts):
Core←∅1

foreach xi ∈D do // Find the core points2

Compute Nǫ(xi)3

id(xi)←∅ // cluster id for xi4

if Nǫ(xi)≥minpts then Core← Core∪{xi}5

k← 0 // cluster id6

foreach xi ∈ Core, such that id(xi)=∅ do7

k← k+18

id(xi)← k // assign xi to cluster id k9

DENSITYCONNECTED (xi,k)10

C←{Ci}ki=1, where Ci←{x ∈D | id(x)= i}11

Noise←{x ∈D | id(x)=∅}12

Border←D \ {Core∪Noise}13

return C,Core,Border,Noise14

DENSITYCONNECTED (x, k):
foreach y ∈Nǫ(x) do15

id(y)← k // assign y to cluster id k16

if y ∈ Core then DENSITYCONNECTED (y,k)17
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Density-based Clusters
ǫ = 15 and minpts= 10
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DBSCAN Clustering: Iris Dataset
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(a) ǫ = 0.2, minpts= 5
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(b) ǫ = 0.36, minpts= 3
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ST-DBSCAN

It is the same of DBSCAN, except for the similarity metric:

Spatial threshold: distance

Temporal threshold: offset in minutes

You may create any kind of neighborhood (e.g., topic). There is not really
integration.
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Kernel Density Estimation

There is a close connection between density-based clustering and density
estimation. The goal of density estimation is to determine the unknown
probability density function by finding the dense regions of points, which can in
turn be used for clustering.

Kernel density estimation is a nonparametric technique that does not assume
any fixed probability model of the clusters. Instead, it tries to directly infer the
underlying probability density at each point in the dataset.
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Univariate Density Estimation

Assume that X is a continuous random variable, and let x1,x2, . . . ,xn be a
random sample. We directly estimate the cumulative distribution function from
the data by counting how many points are less than or equal to x:

F̂(x)= 1

n

n∑

i=1

I(xi ≤ x)

where I is an indicator function.

We estimate the density function by taking the derivative of F̂(x)

f̂(x)=
F̂
(
x+ h

2

)
− F̂

(
x− h

2

)

h
= k/n

h
= k

nh

where k is the number of points that lie in the window of width h centered at x.
The density estimate is the ratio of the fraction of the points in the window
(k/n) to the volume of the window (h).
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Kernel Estimator

Kernel density estimation relies on a kernel function K that is non-negative,
symmetric, and integrates to 1, that is, K(x)≥ 0, K(−x)= K(x) for all values x,
and

∫
K(x)dx= 1.

Discrete Kernel Define the discrete kernel function K, that computes the
number of points in a window of width h

K(z)=
{

1 If |z| ≤ 1
2

0 Otherwise

The density estimate f̂(x) can be rewritten in terms of the kernel function as
follows:

f̂(x)= 1

nh

n∑

i=1

K

(
x− xi

h

)
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Kernel Density Estimation: Discrete Kernel (Iris 1D)
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(d) h= 2.0

The discrete kernel yields a non-smooth (or jagged) density function.
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Kernel Density Estimation: Gaussian Kernel

The width h is a parameter that denotes the spread or smoothness of the
density estimate. The discrete kernel function has an abrupt influence.

Define a more smooth transition of influence via a Gaussian kernel:

K(z)= 1√
2π

exp

{
−z2

2

}

Thus, we have

K

(
x− xi

h

)
= 1√

2π
exp

{
− (x− xi)

2

2h2

}

Here x, which is at the center of the window, plays the role of the mean, and h
acts as the standard deviation.
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Kernel Density Estimation: Gaussian Kernel (Iris 1D)
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(d) h= 0.5

When h is small the density function has many local maxima. A large h results in a
unimodal distribution.
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Multivariate Density Estimation

To estimate the probability density at a d-dimensional point
x= (x1,x2, . . . ,xd)

T, we define the d-dimensional “window” as a hypercube in d
dimensions, that is, a hypercube centered at x with edge length h. The volume
of such a d-dimensional hypercube is given as

vol(Hd(h))= hd

The density is estimated as the fraction of the point weight lying within the
d-dimensional window centered at x, divided by the volume of the hypercube:

f̂(x)= 1

nhd

n∑

i=1

K

(
x− xi

h

)

where the multivariate kernel function K satisfies the condition
∫

K(z)dz= 1.
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Multivariate Density Estimation: Discrete and

Gaussian Kernel

Discrete Kernel: For any d-dimensional vector z= (z1,z2, . . . ,zd)
T, the discrete

kernel function in d-dimensions is given as

K(z)=
{

1 If |zj| ≤ 1
2
, for all dimensions j= 1, . . . ,d

0 Otherwise

Gaussian Kernel: The d-dimensional Gaussian kernel is given as

K(z)= 1

(2π)d/2
exp

{
−zTz

2

}
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Density Estimation: Iris 2D Data (Gaussian Kernel)
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Density Estimation: Density-based Dataset
Gaussian kernel, h= 20
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Nearest Neighbor Density Estimation

In kernel density estimation we implicitly fixed the volume by fixing the width
h, and we used the kernel function to find out the number or weight of points
that lie inside the fixed volume region.

An alternative approach to density estimation is to fix k, the number of points
required to estimate the density, and allow the volume of the enclosing region
to vary to accommodate those k points. This approach is called the k nearest
neighbors (KNN) approach to density estimation.

Given k, the number of neighbors, we estimate the density at x as follows:

f̂(x)= k

nvol(Sd(hx))

where hx is the distance from x to its kth nearest neighbor, and vol(Sd(hx)) is the
volume of the d-dimensional hypersphere Sd(hx) centered at x, with radius hx.
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DENCLUE Density-based Clustering: Attractor and

Gradient

A point x∗ is called a density attractor if it is a local maxima of the probability
density function f.

The density gradient at a point x is the multivariate derivative of the probability
density estimate

∇ f̂(x)= ∂

∂x
f̂(x)= 1

nhd

n∑

i=1

∂

∂x
K

(
x− xi

h

)

For the Gaussian kernel the gradient at a point x is given as

∇ f̂(x)= 1

nhd+2

n∑

i=1

K

(
x− xi

h

)
· (xi− x)

This equation can be thought of as having two parts for each point: a vector
(xi− x) and a scalar influence value K(

x−xi
h

).
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The Gradient Vector
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DENCLUE: Density Attractor

We say that x∗ is a density attractor for x, or alternatively that x is density

attracted to x∗, if a hill climbing process started at x converges to x∗.

That is, there exists a sequence of points x= x0→ x1→ . . .→ xm, starting from
x and ending at xm, such that ‖xm−x∗‖ ≤ ǫ, that is, xm converges to the attractor
x∗.

Setting the gradient to the zero vector leads to the following mean-shift update
rule:

xt+1 =
∑n

i=1 K
( xt−xi

h

)
xi∑n

i=1 K
( xt−xi

h

)

where t denotes the current iteration and xt+1 is the updated value for the
current vector xt.
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DENCLUE: Density-based Cluster

A cluster C⊆D, is called a center-defined cluster if all the points x ∈ C are

density attracted to a unique density attractor x∗, such that f̂(x∗)≥ ξ , where ξ is
a user-defined minimum density threshold.

An arbitrary-shaped cluster C⊆D is called a density-based cluster if there exists
a set of density attractors x∗1,x∗2, . . . ,x∗m, such that

1 Each point x ∈ C is attracted to some attractor x∗i .

2 Each density attractor has density above ξ .

3 Any two density attractors x∗i and x∗j are density reachable, that is, there

exists a path from x∗i to x∗j , such that for all points y on the path, f̂(y)≥ ξ .
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The DENCLUE Algorithm

DENCLUE (D,h,ξ,ǫ):
A←∅1

foreach x ∈D do // find density attractors2

x∗← FINDATTRACTOR(x,D,h,ǫ)44

if f̂(x∗)≥ ξ then5

A←A∪{x∗}77

R(x∗)← R(x∗)∪{x}99

C←{maximal C⊆A | ∀x∗i ,x∗j ∈ C,x∗i and x∗j are density reachable}1111

foreach C ∈ C do // density-based clusters12

foreach x∗ ∈ C do C← C∪R(x∗)13

return C14
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The DENCLUE Algorithm: Find Attractor

FINDATTRACTOR (x,D,h,ǫ):
t← 022

xt← x3

repeat4

xt+1←
∑n

i=1 K
( xt−xi

h

)
·xt

∑n
i=1 K

(
xt−xi

h

)
66

t← t+17

until ‖xt− xt−1‖ ≤ ǫ8

return xt1010
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DENCLUE: Iris 2D Data
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DENCLUE: Density-based Dataset
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Clustering fragmented trajectories

Given that

u1,u2, . . . ,un be individuals.

Nui
be the number of points collected for individual ui, that is, the length.

p1ui
,p2ui

, . . . ,pNui
the points from individual ui.

The problem of determining fragmented or noncontiguous clusters consists of
finding the groups of individuals such that those in the same group present
similar point density over the sampling space and those in differ ent groups
present different densities.

Premises:

the locations that an individual visits do not have to be contiguous and

the densities considered must take into account the relative number of
points from an individual in a given location or region.
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Clustering fragmented trajectories

Challenge: how to cluster people based on parts of the trajectories?

Rationale: In order to cluster objects by their spatial patterns, we assume
that the observed points of the objects that belong to the same cluster were
generated by the same process, a Poisson point process. Therefore, we are
able to calculate the likelihood of an object of having been g enerated by
this implicit process that rules a cluster.
In our method, we represent each cluster not as a centroid as in K-means,
but as a Poisson process, with its intensity in the two-dimensional space.
The log-likelihood of an object to belong to a cluster, for the Poisson
process, is given by:

N∑

i=1

logλ(xi,yi)−
∫

B

λ(x,y)dxdy (1)

where N is the number of observed positions, wi is the weight for the

position xi, and W is equal to
∑N

i=1 wi.
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Current results

Clustering results for Belo Horizonte.

Meira Jr. (UFMG) Data Mining Chapter 15: Density-based Clustering 86 / 171



Practice

Site: https://sc.ctweb.inweb.org.br/
User: aluno_X (1≥ X≥ 40)
Password: sm4rt.Citi3Z
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Bayes Classifier

Let the training dataset D consist of n points xi in a d-dimensional space, and
let yi denote the class for each point, with yi ∈ {c1,c2, . . . ,ck}.

The Bayes classifier estimates the posterior probability P(ci|x) for each class ci,
and chooses the class that has the largest probability. The predicted class for x
is given as

ŷ= argmax
ci

{P(ci|x)}

According to the Bayes theorem, we have

P(ci|x)= P(x|ci) ·P(ci)

P(x)

Because P(x) is fixed for a given point, Bayes rule can be rewritten as

ŷ= argmax
ci

{P(ci|x)} = argmax
ci

{
P(x|ci)P(ci)

P(x)

}
= argmax

ci

{
P(x|ci)P(ci)

}
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Estimating the Prior Probability: P(ci)

Let Di denote the subset of points in D that are labeled with class ci:

Di = {xj ∈D | xj has class yj = ci}

Let the size of the dataset D be given as |D| = n, and let the size of each
class-specific subset Di be given as |Di| = ni.

The prior probability for class ci can be estimated as follows:

P̂(ci)=
ni

n
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Estimating the Likelihood: Numeric Attributes,

Parametric Approach

To estimate the likelihood P(x|ci), we have to estimate the joint probability of x
across all the d dimensions, i.e., we have to estimate P

(
x= (x1,x2, . . . ,xd)|ci

)
.

In the parametric approach we assume that each class ci is normally distributed,
and we use the estimated mean µ̂i and covariance matrix 6̂i to compute the
probability density at x

f̂i(x)= f̂(x|µ̂i,6̂i)=
1

(
√

2π)d
√
|6̂i|

exp

{
− (x− µ̂i)

T6̂
−1

i (x− µ̂i)

2

}

The posterior probability is then given as

P(ci|x)= f̂i(x)P(ci)∑k
j=1 f̂j(x)P(cj)

The predicted class for x is:

ŷ= argmax
ci

{
f̂i(x)P(ci)

}
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Bayes Classifier Algorithm

BAYESCLASSIFIER (D= {(xj,yj)}nj=1):

for i= 1, . . . ,k do1

Di←
{
xj | yj = ci, j= 1, . . . ,n

}
// class-specific subsets2

ni←|Di| // cardinality3

P̂(ci)← ni/n // prior probability4

µ̂i← 1
ni

∑
xj∈Di

xj // mean5

Zi←Di−1ni
µ̂

T
i // centered data6

6̂i← 1
ni

ZT
i Zi // covariance matrix7

return P̂(ci),µ̂i,6̂i for all i= 1, . . . ,k8

TESTING (x and P̂(ci), µ̂i, 6̂i, for all i ∈ [1,k]):
ŷ← argmax

ci

{
f(x|µ̂i,6̂i) ·P(ci)

}
9

return ŷ10
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Bayes Classifier: Iris Data
X1:sepal length versus X2:sepal width
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Bayes Classifier: Categorical Attributes

Let Xj be a categorical attribute over the domain dom(Xj)= {aj1,aj2, . . . ,ajmj
}.

Each categorical attribute Xj is modeled as an mj-dimensional multivariate
Bernoulli random variable Xj that takes on mj distinct vector values
ej1,ej2, . . . ,ejmj

, where ejr is the rth standard basis vector in R
mj and corresponds

to the rth value or symbol ajr ∈ dom(Xj).

The entire d-dimensional dataset is modeled as the vector random variable
X= (X1,X2, . . . ,Xd)

T. Let d′ =
∑d

j=1 mj; a categorical point x= (x1,x2, . . . ,xd)
T is

therefore represented as the d′-dimensional binary vector

v=




v1

...

vd


=




e1r1
...

edrd




where vj = ejrj provided xj = ajrj is the rjth value in the domain of Xj.
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Bayes Classifier: Categorical Attributes

The probability of the categorical point x is obtained from the joint probability
mass function (PMF) for the vector random variable X:

P(x|ci)= f(v|ci)= f
(
X1 = e1r1, . . . ,Xd = edrd

| ci

)

The joint PMF can be estimated directly from the data Di for each class ci as
follows:

f̂(v|ci)=
ni(v)

ni

where ni(v) is the number of times the value v occurs in class ci.
However, to avoid zero probabilities we add a pseudo-count of 1 for each value

f̂(v|ci)=
ni(v)+1

ni+
∏d

j=1 mj
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Discretized Iris Data: sepal length and sepal width

Bins Domain

[4.3,5.2] Very Short (a11)

(5.2,6.1] Short (a12)

(6.1,7.0] Long (a13)

(7.0,7.9] Very Long (a14)

(a) Discretized sepal length

Bins Domain

[2.0,2.8] Short (a21)

(2.8,3.6] Medium (a22)

(3.6,4.4] Long (a23)

(b) Discretized sepal width

Meira Jr. (UFMG) Data Mining Chapter 18: Probabilistic Classification 95 / 171



Class-specific Empirical Joint Probability Mass

Function

Class: c1
X2

f̂X1Short (e21) Medium (e22) Long (e23)

X1

Very Short (e11) 1/50 33/50 5/50 39/50

Short (e12) 0 3/50 8/50 13/50

Long (e13) 0 0 0 0

Very Long (e14) 0 0 0 0

f̂X2 1/50 36/50 13/50

Class: c2
X2

f̂X1Short (e21) Medium (e22) Long (e23)

X1

Very Short (e11) 6/100 0 0 6/100

Short (e12) 24/100 15/100 0 39/100

Long (e13) 13/100 30/100 0 43/100

Very Long (e14) 3/100 7/100 2/100 12/100

f̂X2 46/100 52/100 2/100
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Iris Data: Test Case

Consider a test point x= (5.3,3.0)T corresponding to the categorical point

(Short, Medium), which is represented as v=
(
eT

12 eT
22

)T
.

The prior probabilities of the classes are P̂(c1)= 0.33 and P̂(c2)= 0.67.
The likelihood and posterior probability for each class is given as

P̂(x|c1)= f̂(v|c1)= 3/50= 0.06

P̂(x|c2)= f̂(v|c2)= 15/100= 0.15

P̂(c1|x)∝ 0.06×0.33= 0.0198

P̂(c2|x)∝ 0.15×0.67= 0.1005

In this case the predicted class is ŷ= c2.
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Iris Data: Test Case with Pseudo-counts

The test point x= (6.75,4.25)T corresponds to the categorical point

(Long, Long), and it is represented as v=
(
eT

13 eT
23

)T
.

Unfortunately the probability mass at v is zero for both classes. We adjust the
PMF via pseudo-counts noting that the number of possible values are
m1×m2 = 4×3= 12.

The likelihood and prior probability can then be computed as

P̂(x|c1)= f̂(v|c1)=
0+1

50+12
= 1.61×10−2

P̂(x|c2)= f̂(v|c2)=
0+1

100+12
= 8.93×10−3

P̂(c1|x)∝ (1.61×10−2)×0.33= 5.32×10−3

P̂(c2|x)∝ (8.93×10−3)×0.67= 5.98×10−3

Thus, the predicted class is ŷ= c2.
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Bayes Classifier: Challenges

The main problem with the Bayes classifier is the lack of enough data to
reliably estimate the joint probability density or mass function, especially for
high-dimensional data.

For numeric attributes we have to estimate O(d2) covariances, and as the
dimensionality increases, this requires us to estimate too many parameters.

For categorical attributes we have to estimate the joint probability for all the
possible values of v, given as

∏
j |dom

(
Xj

)
|. Even if each categorical attribute

has only two values, we would need to estimate the probability for 2d values.
However, because there can be at most n distinct values for v, most of the
counts will be zero.

Naive Bayes classifier addresses these concerns.
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Naive Bayes Classifier: Numeric Attributes

The naive Bayes approach makes the simple assumption that all the attributes
are independent, which implies that the likelihood can be decomposed into a
product of dimension-wise probabilities:

P(x|ci)= P(x1,x2, . . . ,xd|ci)=
d∏

j=1

P(xj|ci)

The likelihood for class ci, for dimension Xj, is given as

P(xj|ci)∝ f(xj|µ̂ij, σ̂
2
ij )=

1√
2πσ̂ij

exp

{
− (xj− µ̂ij)

2

2σ̂ 2
ij

}

where µ̂ij and σ̂ 2
ij denote the estimated mean and variance for attribute Xj, for

class ci.
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Naive Bayes Classifier: Numeric Attributes

The naive assumption corresponds to setting all the covariances to zero in 6̂i,
that is,

6i =




σ 2
i1 0 . . . 0
0 σ 2

i2 . . . 0
...

...
. . .

0 0 . . . σ 2
id




The naive Bayes classifier thus uses the sample mean µ̂i = (µ̂i1, . . . , µ̂id)
T and a

diagonal sample covariance matrix 6̂i = diag(σ 2
i1, . . . ,σ

2
id) for each class ci. In

total 2d parameters have to be estimated, corresponding to the sample mean
and sample variance for each dimension Xj.
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Naive Bayes Algorithm

NAIVEBAYES (D= {(xj,yj)}nj=1):

for i= 1, . . . ,k do1

Di←
{
xj | yj = ci, j= 1, . . . ,n

}
// class-specific subsets2

ni← |Di| // cardinality3

P̂(ci)← ni/n // prior probability4

µ̂i← 1
ni

∑
xj∈Di

xj // mean5

Zi =Di−1 · µ̂T
i // centered data for class ci6

for j= 1, ..,d do // class-specific variance for Xj7

σ̂ 2
ij ← 1

ni
ZT

ijZij // variance8

σ̂ i =
(
σ̂ 2

i1, . . . , σ̂
2
id

)T
// class-specific attribute variances9

return P̂(ci), µ̂i, σ̂ i for all i= 1, . . . ,k10

TESTING (x and P̂(ci), µ̂i, σ̂ i, for all i ∈ [1,k]):

ŷ← argmax
ci

{
P̂(ci)

d∏

j=1

f(xj|µ̂ij, σ̂
2
ij )

}

11

return ŷ12
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Naive Bayes versus Full Bayes Classifier: Iris 2D Data
X1:sepal length versus X2:sepal width
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(a) Naive Bayes
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(b) Full Bayes
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Naive Bayes: Categorical Attributes

The independence assumption leads to a simplification of the joint probability
mass function

P(x|ci)=
d∏

j=1

P(xj|ci)=
d∏

j=1

f
(
Xj = ejrj | ci

)

where f(Xj = ejrj |ci) is the probability mass function for Xj, which can be

estimated from Di as follows:

f̂(vj|ci)=
ni(vj)

ni

where ni(vj) is the observed frequency of the value vj = ejrj corresponding to
the rjth categorical value ajrj for the attribute Xj for class ci.

If the count is zero, we can use the pseudo-count method to obtain a prior
probability. The adjusted estimates with pseudo-counts are given as

f̂(vj|ci)=
ni(vj)+1

ni+mj

where mj = |dom(Xj)|.
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Nonparametric Approach: K Nearest Neighbors

Classifier

We consider a non-parametric approach for likelihood estimation using the
nearest neighbors density estimation.

Let D be a training dataset comprising n points xi ∈Rd, and let Di denote the
subset of points in D that are labeled with class ci, with ni = |Di|.
Given a test point x ∈Rd, and K, the number of neighbors to consider, let r
denote the distance from x to its Kth nearest neighbor in D.

Consider the d-dimensional hyperball of radius r around the test point x,
defined as

Bd(x, r)=
{
xi ∈D | δ(x,xi)≤ r

}

Here δ(x,xi) is the distance between x and xi, which is usually assumed to be
the Euclidean distance, i.e., δ(x,xi)= ‖x− xi‖2. We assume that |Bd(x, r)| = K.
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Nonparametric Approach: K Nearest Neighbors

Classifier

Let Ki denote the number of points among the K nearest neighbors of x that are
labeled with class ci, that is

Ki =
{
xj ∈ Bd(x, r) | yj = ci

}

The class conditional probability density at x can be estimated as the fraction of
points from class ci that lie within the hyperball divided by its volume, that is

f̂(x|ci)=
Ki/ni

V
= Ki

niV

where V= vol(Bd(x, r)) is the volume of the d-dimensional hyperball.
The posterior probability P(ci|x) can be estimated as

P(ci|x)= f̂(x|ci)P̂(ci)∑k
j=1 f̂(x|cj)P̂(cj)

However, because P̂(ci)= ni
n

, we have

f̂(x|ci)P̂(ci)=
Ki

niV
· ni

n
= Ki

nV
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Nonparametric Approach: K Nearest Neighbors

Classifier

The posterior probability is given as

P(ci|x)=
Ki
nV∑k

j=1

Kj

nV

= Ki

K

Finally, the predicted class for x is

ŷ= argmax
ci

{P(ci|x)} = argmax
ci

{
Ki

K

}
= argmax

ci

{Ki}

Because K is fixed, the KNN classifier predicts the class of x as the majority
class among its K nearest neighbors.
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Iris Data: K Nearest Neighbors Classifier
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Web Observatory
observatorio.inweb.org.br

Motivation

There is an increasing use of the Web in events of overall interest such as
politics and sports.

Major motivations are the lack of a central control and the fast
information propagation.

Recently, there has been an emphasis on "what you are doing" instead of
"who you are".

Challenge

Qualify, quantify, and summarize the content being exchanged in the various
Internet-related media on line and evaluate its impact on specific events.
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Web Observatory

On line tool for capturing, analyzing and presenting the dynamics of a given
scenario on the Web.
Scenarios

Soccer World Cup

Olympics

Brazilian National Soccer League

Brazilian Elections

Public Safety

Brand reputation

Dengue Epidemics
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Background on dengue

Dengue is a mosquito-borne infection that causes a severe flu-like illness,
and sometimes a potentially lethal complication

Approximately 2 billion people from more than 100 countries are at risk of
infection and about 50 million infections occur every year worldwide

Outbreaks tend to occur every year during the rainy season but there is
large variation of the degree of the epidemic in areas with similar rainfall
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Background on dengue

Current strategies for prediction of dengue epidemics are based on
surveillance of insects, which provide only a rough estimate of cases

Once disease outbreaks are detected in a certain area, efforts need to be
concentrated to avoid further cases and to optimize treatment and staff -
number of cases may reach several hundred thousands

In Brazil, where there is a epidemics accounting system, detection of
important outbreaks may take a few weeks, leading to loss of precious time
to address the epidemy
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WebSci’11, Iberamia’14

To analyze how dengue epidemics manifests in Twitter and to what extent
that information can be used for surveillance.

To design and implement an active surveillance framework that analyzes
how social media reflects epidemics based on a combination of four
dimensions: volume, location, time, and public perception.

To exploit user generated content available in online social media to
predict the dengue epidemics.
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Methodology

Active dengue surveillance based on four dimensions:

Public perception
Volume
Location
Time

Methodology steps

Content analysis
Correlation analysis
Spatio-temporal analysis
Surveillance
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Content analysis

Determine the sentiment categories

Personal experience: “You know I have had dengue?”
Ironic/sarcastic tweets: “My life looks like a dengue-prone steady water"
Opinion: “The campaign against dengue is very cool”
Resource: “Dengue virus type 4 in circulation”
Marketing: “Everybody must fight dengue. Brazil relies on you”
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Content analysis

Sentiment distribution over time
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Content analysis

Is personal experience a good indicator of dengue’s incidence?
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Correlation Analysis

Manaus

Personal experience, notifications and symptom perception
From November, 2010 to May, 2011
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Correlation Analysis

Manaus
Cross-correlation between personal experience and symptom perception from
November, 2010 to May, 2011
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Correlation Analysis

Rio de Janeiro

Personal experience, notifications and symptom perception
From November, 2010 to May, 2011
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Correlation Analysis

Rio de Janeiro
Cross-correlation between personal experience and symptom perception from
November, 2010 to May, 2011
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Spatio-temporal analysis

Evaluated two metrics

the volume of tweets
the PTPE value
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Spatio-temporal analysis

Evaluated two metrics

the volume of tweets Rand Index = 0.8506
the PTPE value Rand Index = 0.8914
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Spatio-temporal analysis

Evaluated two metrics

the volume of tweets Rand Index = 0.8506
the PTPE value Rand Index = 0.8914
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Surveillance

Strategy: Analize the ratio of personal experience tweets weekely.

Intuition: a sudden increase in this ratio indicates a surge

Visual metaphors

maps
temporal graphs
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Dengue Observatory
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Dengue Observatory
Summary

Twitter data are useful for epidemics surveillance.

Enablers:

Dengue is an urban disease, as it is the Internet usage in Brazil.
Dengue-related tweets are easy to collect.
People talk about dengue spontaneously.

Tweets associated with “personal experience" present high correlation
with dengue incidence.

Simple alarm systems are effective to detect dengue surges.
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Hot-Spot Mining from Case-Control Trajectories

Problem

Detecting infection hot spots from case-control trajectories.

We target the identification of infection hot spots related to Dengue

through geo-tagged tweets.

Challenges

Trajectories may be composed of unlimited and distinct number of
points.

The place where a person tweets about dengue is not necessarily where
she got infected.
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Problem Definition
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Visit Model

The Visit Model finds the most likely zones that a diseased person visits.

Let Vi,z the random number of tweets in Z among the ni total number from
the i-th individual.

Let p = p(Z) the probability that, giving that a case individual is tweeting,
she does it from within Z. (p̄ = p̄(Z) is the analogous for a control
individual).

For a user who is a case, P(Vi,z ≥ 1)= 1− (1−p)ni . For a control user, it is
equals to 1− (1− p̄)ni .
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Visit Model

The log-likelihood for the Visit Model can be written as:

ℓ1(Z,p, p̄)= log(1−p) ·N(Z̄)+ log(1− p̄) ·M(Z̄)+

N∑

i=1

1[Vi,Z ≥ 1] · log(1− (1−p)ni)+

N+M∑

i=N+1

1[Vi,Z ≥ 1] · log(1− (1−p)ni)

where N is the number of cases and M, the number of controls.
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Infection Model

The Infection Model finds the most likely zones where a person gets

infected while visiting.

We want to estimate the probability that someone issues a dengue-labelled
tweet given that she visited k times the region Z.

Let r= r(Z) be the infection risk inside the candidate cluster (r= r(Z̄) is the
same outside Z).

Let Ii be the binary indicator that individual i is a case. So,

P(Ii = 1|Vi,z = ki) = 1−P(Ii = 0|Vi,z = ki)

= 1− (1− r)ki (1− r̄)ni−ki
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The log-likelihood for the Infection Model can be written as:

ℓ2(Z, r, r̄)=
N+M∑

i=1

Ii · log(1− (1− r)ki · (1− r̄)ni−ki)+

(1− Ii) · (ki · log(1− r)+ (ni− ki) · log(1− r̄))
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Contrasting the two Models

Visit Model:

P(Tweets from Z | Is a case)

Infection Model:

P(Is a case | K Tweets from Z)
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Evaluating the Data Evidence

The test statistic for the Visit Model is:

T1 = ℓ1(Ẑ, p̂, ˆ̄p)= sup
Z∈Z

p̂(Z)> ˆ̄p(Z)

ℓ1(Ẑ, p̂(Z), ˆ̄p(Z))

The exact p-value for the null hypothesis is given by:

p1 =
1

B
(1+#{T(k)

1 ≥ T1,k= 1, . . . ,B−1})

Both are analogous for the Infection Model.
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Evaluating the Data Evidence
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Dataset

We collected the data from Twitter.

Geo-located tweets from Brazil.

Period: Jan 1st, 2015 – Dec 31th, 2015.

Total of 106,784,441 tweets.

City-level analysis.

Selected 11 municipalities, including cities facing strong surges.
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Dataset

Table: Data summary. We present the total number of tweets collected in the city
(#msg); the respective number of unique users (#unq_usr); the number of case and
control individuals (#case_usr and #ctrl_usr) and the respective number of tweets they
issued (#case_usr and #ctrl_msg).

City name #msg #unq_usr #case_msg #case_usr #ctrl_msg #ctrl_usr

Belém 1,049,433 19,611 8,134 23 18,416 65
B. Horizonte 3,134,497 50,360 60,968 104 168,820 302
Curitiba 1,694,301 35,775 3,028 18 9,066 54
Goiânia 566,114 16,849 15,933 54 33,750 147
Natal 522,689 16,689 3,847 15 8,748 42
R. de Janeiro 9,875,435 167,567 71,115 163 213,168 490
São Paulo 6,965,165 174,544 167,772 413 486,264 1229
Campinas 574,226 20,335 37,313 90 64,442 226
Limeira 91,454 2,991 11,614 47 16,830 108
SJ. Campos 407,143 9,697 19,883 58 40,251 148
Sorocaba 230,224 7,471 32,734 91 39,352 206
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Results

For each selected city we applied the Visit and Infection Models.

The zones Z are defined by overlaying different grids on the map and each
cell corresponds to a zone to be scanned.

We also set the number of Monte Carlo replicas to 999 and significance
level as 0.05.
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Figure: Zones found by the Visit (green) and Infection (black) Models.



Figure: Zoom in to the hot spot in Goiânia.



Principles for Algorithmic Transparency and

Accountability

1 Awareness

2 Access and redress

3 Accountability

4 Explanation

5 Data provenance

6 Auditability

7 Validation and testing
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Principles for Algorithmic Transparency and

Accountability

1. Awareness

Owners, designers, builders, users, and other stakeholders of analytic systems
should be aware of the possible biases involved in their design, implementation,
and use and the potential harm that biases can cause to individuals and society.
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Principles for Algorithmic Transparency and

Accountability

2. Access and redress

Regulators should encourage the adoption of mechanisms that enable
questioning and redress for individuals and groups that are adversely affected
by algorithmically informed decisions.
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Principles for Algorithmic Transparency and

Accountability

3. Accountability

Institutions should be held responsible for decisions made by the algorithms
that they use, even if it is not feasible to explain in detail how the algorithms
produce their results.
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Principles for Algorithmic Transparency and

Accountability

4. Explanation

Systems and institutions that use algorithmic decision-making are encouraged
to produce explanations regarding both the procedures followed by the
algorithm and the specific decisions that are made. This is particularly
important in public policy contexts.
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Principles for Algorithmic Transparency and

Accountability

5. Data Provenance

A description of the way in which the training data was collected should be
maintained by the builders of the algorithms, accompanied by an exploration of
the potential biases induced by the human or algorithmic data-gathering
process. Public scrutiny of the data provides maximum opportunity for
corrections. However, concerns over privacy, protecting trade secrets, or
revelation of analytics that might allow malicious actors to game the system can
justify restricting access to qualified and authorized individuals.
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Principles for Algorithmic Transparency and

Accountability

6. Auditability

Models, algorithms, data, and decisions should be recorded so that they can be
audited in cases where harm is suspected.

Meira Jr. (UFMG) Data Mining Chapter 18: Probabilistic Classification 146 / 171



Principles for Algorithmic Transparency and

Accountability

7. Validation and Testing

Institutions should use rigorous methods to validate their models and document
those methods and results. In particular, they should routinely perform tests to
assess and determine whether the model generates discriminatory harm.
Institutions are encouraged to make the results of such tests public.
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Fairness?
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Fairness?
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Discrimination

To discriminate is to treat someone differently
(Unfair) discrimination is based on group membership, not individual
merit

People’s decisions include objective and subjective elements
Hence, they can be discriminate

Algorithmic inputs include only objective elements
Hence, can they discriminate?
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Discrimination

On the web: race and gender stereotypes reinforced
Results for "CEO" in Google Images: 11% female, US 27% female CEOs
Also in Google Images, "doctors" are mostly male, "nurses" are mostly
female

Geography and race: the "Tiger Mom Tax"
Pricing of SAT tutoring by The Princeton Review in the US doubles for
Asians, due to geographical price discrimination
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Self-perpetuating algorithmic biases

Credit scoring algorithm suggests Joe has high risk of defaulting

Hence, Joe needs to take a loan at a higher interest rate

Hence, Joe has to make payments that are more onerous

Hence, Joe’s risk of defaulting has increased
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Sources of algorithmic bias

Data as a social mirror
Protected attributes redundantly encoded in observables

Correctness and completeness
Garbage in, garbage out (GIGO)
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Data mining assumptions might not hold

Data mining assumptions are not always observed in reality

Variables might not be independently identically distributed
Samples might be biased
Labels might be incorrect

Errors might be concentrated in a particular class

Sometimes, we might be seeking more simplicity than what is possible

Meira Jr. (UFMG) Data Mining Chapter 18: Probabilistic Classification 154 / 171



Main concerns: data and algorithms

Data inputs:

Poorly selected (e.g., observe only car trips, not bicycle trips)
Incomplete, incorrect, or outdated
Selected with bias (e.g., smartphone users)
Perpetuating and promoting historical biases (e.g., hiring people that "fit the
culture")

Algorithmic processing:

Poorly designed matching systems
Personalization and recommendation services that narrow instead of expand
user options
Decision making systems that assume correlation implies causation
Algorithms that do not compensate for datasets that disproportionately
represent populations
Output models that are hard to understand or explain hinder detection and
mitigation of bias
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Connection between privacy and discrimination

Finding if people having attribute X were discriminated is like inferring
attribute X from a database in which:

the attribute X was removed
a new attribute (the decision), which is based on X, was added

This is similar to trying to reconstruct a column from a privacy-scrubbed
dataset
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Fairness-aware data mining

Goal: Develop a non-discriminatory decision-making process while preserving
as much as possible the quality of the decision.
Steps:

1 Defining anti-discrimination/fairness constraints

2 Transforming data/algorithm/model to satisfy the constraints

3 Measuring data/model utility
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Fairness-aware data mining

Pre-processing: input data transformations to minimize discrimination while
accuracy is maximized (e.g., supression, massaging, reweighing,
sampling).

In-processing: novel algorithms that achieve the same goal (e.g., change split
criterion and leaf relabeling in decision trees). A classifier is fair
if it is not affected by the presence of sensitive data in the
training set.

Post-processing: output models should not discriminate, how to clean the
traces of discrimination (e.g., pattern sanitization, which is
similar to anonymization).
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Transparency?
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Transparency?

Meira Jr. (UFMG) Data Mining Chapter 18: Probabilistic Classification 160 / 171



Transparency

Transparency may imply, in a broader sense, model interpretability:

Trust: Confidence that a model will perform well. More specifically, not
only how often it performs well, but also for which cases.

Causality: To what extent may we generalize associations to infer
properties?

Transferability: Capacity of transferring learned skills to unfamiliar
situations.

Informativeness: How actionable is the pattern or model?

Fair and Ethical-Decision Making: Are the models fair? Do they follow
ethical patterns?
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Properties

Transparency: How does the model work?

Post-hoc explanations: What else can the model tell me?
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Transparency

Simulatability: A human should be able to take the input data together
with the parameters and, in reasonable time, compute the model.

Decomposability: Each part of the model (input, parameter, calculation)
admits an intuitive explanation.

Algorithmic transparency: We should be able to understand how the
model was built, i.e., its principles, capabilities and limitations.
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Post-hoc interpretability

Text explanations: Build an additional model that explains textually the
outputs of a primal model.

Visualizations: Render visualizations of the model and its outputs to ease
understanding and usage.

Local explanations: Zoom in the search space associated with input data
and build a local model.

Explanation by example: Report which training samples resemble the
input data.
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Accountability?
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Accountability?
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Accountability

What are the personal rights regarding his/her collected data?

What are the acceptable uses of data?

Who is liable when something goes wrong?

How can we report on algorithmical abuse?
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GDPR
General Data Protecion Regulation

Approved in April, 2016.

Effective in 2018

Three basic rights:

Right to access
Right to be forgotten
Right to explanation
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GDPR

Article 22: Automated individual decision making, including profiling

1 The data subject shall have the right not to be subject to a decision based
solely on automated processing, including profiling, which produces legal
effects concerning him or her or similiarity significantly affects him or her.

2 Paragraph 1 shall not apply if the decision:

1 is necessary for entering into, or performance of, a contract between the data
subject and the data controller.

2 is authorised by Union or Member State law to which the controller is subject
and which also lays down suitable measures to safeguard the data subject’s
right and freedoms and legitimate interests.

3 is based on data subject’s explicit consent.
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Right to explanation

Basically, is the right for some interpretability and fairness assurance, but it is
challenging:

intentional concealment on the part of the institutions;

gaps in technical literacy which mean that having access to technical details
is not enough;

a mismatch between the computational models and the demands of
human-scale reasoning and styles of interpretation.
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Practice

Site: https://sc.ctweb.inweb.org.br/
User: aluno_X (1≥ X≥ 40)
Password: sm4rt.Citi3Z
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