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Data

@ Tabular

@ categorical
@ numeric

@ Text

@ Graphs
@ Sound
@ Image
@ Video
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Data

Challenges

@ Storage
@ Accessing
@ Engineering
o Integration

¢ Cleaning
o Transformation

@ Visualization
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Automatic extraction of knowledge or patterns that are interesting (novel,
useful, implicit, etc.) from large volumes of data.

@ Data engineering

@ Characterization
@ Prediction
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Data Mining Models

A model aims to represent the nature or reality from a specific perspective. A
model is an artificial construction where all extraneous details have been

removed or abstracted, while keeping the key features necessary for analysis
and understanding.
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Data Mining Models

Frequent Patterns

Among all possible sets of entities, which ones are the most frequent? Or
better, determine the sets of items that co-occur in a database more frequently
than a given threshold.

Application Scenario

Market-basket problem: Given that a customer purchased items in set A, what
are the most likely items to be purchased in the future?

Meira Jr. (UFMG) Data Mining Preamble 7/171



Data Mining Models

Clustering

Task

Given a similarity criterion, what is the entity partition that groups together the
most similar entities?

Application Scenario

Customer segmentation: Partition a customer base into groups of similar
customers, supporting different policies and strategies for each group.
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Data Mining Models

Classification

Given some knowledge about a domain, including classes or categories of
entities, and a sample whose class is unknown, predict the class of the latter
based on the existing knowledge.

Application Scenario

Credit scoring: A bank needs to decide whether it will loan money to a given
person. It may use past experience with other persons who present a similar
profile to decide whether or not it is worth giving the loan.
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Paradigms

@ Combinatorial
@ Probabilistic
o Algebraic

@ Graph-based

Meira Jr. (UFMG) Data Mining Preamble 10/171



Data Mining

Combinatorial

Models partition (or select) entities based on their attributes and their
combinations. Search space is discrete and finite, although potentially very
large.

Determine the best model according to a quality metric.

Strategies
@ Pruning exhaustive search

@ Heuristic approximation
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Data Mining

Combinatorial

@ Frequent Itemset Mining
@ k-Means
@ DBScan

@ Decision trees
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Combinatorial
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Combinatorial Models
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Paradigms

@ Combinatorial
o Probabilistic
o Algebraic

o Graph-based
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Data Mining

Probabilistic

Models are based on one or more probability density function(s) (PDF). Given
a model and a dataset, search its parameter space, which may be continuous
and/or discrete.

Task

Determine the best parameter models for a dataset, according to an
optimization metric.

Strategies

| A\

@ Direct

@ Iterative
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Data Mining

Probabilistic

@ Expectation-Maximization
o DenClue

@ Naive Bayes
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Probabilistic Models

T Xl
8.0

Xz
3 o T
X = (6.75,4.25)
[m]
4.0
o
A A
Q0o
A
1 e
$ o
A A
A AA AAA A
A A A
3.0 H A AA AAL AAAA
AA A A A
A A A| AA
A AA A
2.5 AMA A A
A
o A
L KA
2 T A T T T T >
4 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Figure 18.1. Iris data: X1:sepal length versus Xz:sepal width. The class means are show in black;
the density contours are also shown. The square represents a test point labeled x.
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Probabilistic Models
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Figure 18.2. Naive Bayes: X|:sepal length versus Xz2:sepal width. The class means are shown in
black; the density contours are also shown. The square represents a test point labeled x.
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Paradigms

@ Combinatorial
@ Probabilistic
o Algebraic

o Graph-based
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Data Mining

Algebraic

Domain

Problem is modeled using linear algebra, enabling several existing algebraic
models and algorithms.

Task

Determine the best models and their parameters, according to an optimization
metric.

| A

Strategies

@ Direct
@ Iterative
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Data Mining

Algebraic

@ Principal Component Analysis
@ Support Vector Machines
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Algebraic Models

Figure 21.3. Soft margin hyperplane: the shaded points are the support vectors. The margin is 1/ ||w]|
as illustrated, and points with positive slack values are also shown (thin black line).
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Paradigms

@ Combinatorial
@ Probabilistic
o Algebraic

@ Graph-based
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Data Mining

Graph-based

Input data is modeled as a graph, enabling not just richer representations but
also several existing models and algorithms.

Determine the best representation and technique, according to an optimization
metric.

Challenge

How can we handle the larger complexity and numerosity induced by graphs?
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Data Mining

Graph-based

@ Frequent Subgraph Mining
@ Spectral Clustering
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Graph-based Models

Figure 16.6. MCL on Iris graph.
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Data Mining in Social and Cyber-Physical Systems

A massively connected world produces
@ huge,
@ incomplete,
9 noisy,
@ heterogeneous and
@ asynchronous streams of data
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Challenges for Data Mining

@ Heterogeneous data

@ Incomplete information
@ Noisy data

@ Dynamic behavior

@ Complex relationships
@ Lack of scalability
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Heterogeneous Data

@ Types of data

@ numerical, categorical, spatial, temporal, relations
@ Characteristics

9 Variable density and representativity
e Variable granularity

@ Best abstraction level?

Meira Jr. (UFMG)
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Incompleteness

@ CPS Data are always incomplete
o Not measured
¢ Not measured frequently enough
@ Issues
¢ How much data is enough?
o How to fill missing data?
o How to augment data?
o How to infer more complex behaviors?
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Noise

@ Data is not accurate as a consequence of measurement issues
@ Issues:

o Noise vs. outliers
¢ Noise reduction (information loss?)
@ Noise tolerance (e.g., probabilistic models)
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Dynamic Behavior

@ Data mining models usually assume that the past will occur in the future
@ Drift is a common phenomena:

o Temporal

o Spatial

o Environmental

o Entity-related characteristics and habits
@ Tasks

o Identify drifts

o Handle drifts

Meira Jr. (UFMG)
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Complex Relationships

@ SCP systems comprise a large spectrum of entities and associated
relationships
@ Model issues:
o Explicit vs. Implicit relationships
9 Home address and Income vs. Home address and Safety
¢ Directed vs. Undirected relationships
@ weather — traffic jam vs. traffic jam 4 weather
@ Mining issues:
o Significance/similarity measures
o Complex patterns

36/171
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Scalability

@ Algorithmical enhancement
9 it is not simple nor usual
@ Parallelization

o algorithms are usually irregular and I/O intensive
@ Sampling
o fairness

@ representativity
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Requirements for Models and Techniques

@ Transferability: how can we transfer knowledge among domains?

@ Fairness: how can we avoid discrimination?

@ Transparency: how can we understand the models and the outcomes?
@ Accountability: who is responsible for any damage?
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Technology Landscape

o Data management: several solutions either general or specialized for all
kinds of data

o Data mining: several implementations of each technique

@ User demands: does the data scientist need to program?
o NO! He or she needs to think algorithmically.
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Lemonade

Live Exploration and Mining of a Non-trivial Amount of Data from Everywhere

Enablers:

Wide availability of algorithm implementations

Broad spectrum of databases and storage technologies
Massively parallel processing commercial solutions
Mature virtualization technology

Real time transpiling technology is a reality

Awareness of the data potential
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Lemonade

Live Exploration and Mining of a Non-trivial Amount of Data from Everywhere

Motivations
@ Data analysts do not need to program, literally
@ Data analysts need to abstract algortihmically tasks
@ Cloud-fashion web-based platforms provide good interactive support
@ Visual programming is a need

Meira Jr. (UFMG) Data Mining Graph-based



Lemonade

Live Exploration and Mining of a Non-trivial Amount of Data from Everywhere
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Lemonade

@sténd

Live Exploration and Mining of a Non-trivial Amount of Data from Everywhere
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Lemonade

Live Exploration and Mining of a Non-trivial Amount of Data from Everywhere
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Lemonade

Live Exploration and Mining of a Non-trivial Amount of Data from Everywhere
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Representative-based Clustering

Given a dataset with n points in a d-dimensional space, D = {x;}?_,, and given
the number of desired clusters k, the goal of representative-based clustering is
to partition the dataset into k groups or clusters, which is called a clustering and
isdenotedasC ={C, G, ..., Cl.

For each cluster C; there exists a representative point that summarizes the
cluster, a common choice being the mean (also called the centroid) u; of all
points in the cluster, that is,

1
I n; )
X/-GC,'

where n; = |Cj| is the number of points in cluster C,.

A brute-force or exhaustive algorithm for finding a good clustering is simply to
generate all possible partitions of n points into k clusters, evaluate some
optimization score for each of them, and retain the clustering that yields the
best score. However, this is clearly infeasilbe, since there are O(k"/k!)
clusterings of n points into k groups.
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K-means Algorithm: Objective

The sum of squared errors scoring function is defined as

k
SSEC) =33 xj— |’

i=1 XjEC,‘

The goal is to find the clustering that minimizes the SSE score:
C*=arg mcin{SSE(C)}
K-means employs a greedy iterative approach to find a clustering that

minimizes the SSE objective. As such it can converge to a local optima instead
of a globally optimal clustering.
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K-means Algorithm: Objective

K-means initializes the cluster means by randomly generating k points in the
data space. Each iteration of K-means consists of two steps: (1) cluster
assignment, and (2) centroid update.

Given the k cluster means, in the cluster assignment step, each point x; € D is
assigned to the closest mean, which induces a clustering, with each cluster C;
comprising points that are closer to u; than any other cluster mean. That is,
each point x; is assigned to cluster Cyx, where

. k 2
jr=argminflx;— |’}

Given a set of clusters C;, i=1,..., k, in the centroid update step, new mean
values are computed for each cluster from the points in C..

The cluster assignment and centroid update steps are carried out iteratively
until we reach a fixed point or local minima.
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K-Means Algorithm

K-MEANS (D, k, €):

1t=0

2 Randomly initialize k centroids: u!, p5, ..., p} € R
3 repeat

4 t<t+1

5 G<«@forallj=1,--- k

// Cluster Assignment Step
6 foreach x; € D do

// Centroid Update Step
9 foreach i=1 fo kdo

t 1 )
10 L Ri< 1 ijeq Xj

until Y1 |l — pt! ||2 <e

7 \;f‘ <—argmin,»{||xj—ﬂ,t'”2] // Assign x; to closest centroid

-
=y
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K-means in One Dimension

O-0-0 O-0-0
2 3 4 10 11 12
(a) Initial dataset

AAA
2 3 4 10 11 12 20 25 30
(b) Tteration: t=1
pny=2.5 =16
L1 L1 1 1 1 L1 1 + L 11 AL 11T 1T AT LT T A
2 3 4 10 11 12 20 25 30

(c) Tteration: t=2
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K-means in One Dimension (contd.)

2 3 4 10 11 12 20 25 30

(d) Tteration: t=3

ity =4.75 iy =19.60
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(e) Iteration: t=4
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() Iteration: t=5 (converged)
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K-means in 2D: Iris Principal Components
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K-means in 2D: Iris Principal Components
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K-means in 2D: Iris Principal Components
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Density-based Clustering

Density-based methods are able to mine nonconvex clusters, where
distance-based methods may have difficulty.

Meira Jr. (UFMG) Chapter 15: Des B 56/171



The DBSCAN Approach: Neighborhood and Core

Points

Define a ball of radius € around a point x € RY, called the e-neighborhood of x,
as follows:

Ne(x) = Ba(x,€) ={y | 3(x,y) <€}

Here §(x, y) represents the distance between points x and y. which is usually
assumed to be the Euclidean

We say that x is a core point if there are at least minpts points in its
e-neighborhood, i.e., if |N¢(x)| > minpts.

A border point does not meet the minpts threshold, i.e., |N¢(x)| < minpts, but it
belongs to the e-neighborhood of some core point z, that is, x € N,(z).

If a point is neither a core nor a border point, then it is called a noise point or
an outlier.
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The DBSCAN Approach: Reachability and

Density-based Cluster

A point x is directly density reachable from another point y if x € N (y) and y is
a core point.

A point x is density reachable from y if there exists a chain of points,

Xo, X1, ..., X/, such that x =xo and y = x/, and x; is directly density reachable
from x;_q for all i=1,..., [ In other words, there is set of core points leading
fromy to x.

Two points x and y are density connected if there exists a core point z, such that
both x and y are density reachable from z.

A density-based cluster is defined as a maximal set of density connected points.
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Core, Border and Noise Points

(d) Neighborhood of a (e) Core, Border, and Noise Points
Point
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DBSCAN Density-based Clustering Algorithm

DBSCAN computes the e-neighborhood N, (x,) for each point x; in the dataset
D, and checks if it is a core point. It also sets the cluster id id(x;) = @ for all
points, indicating that they are not assigned to any cluster.

Starting from each unassigned core point, the method recursively finds all its
density connected points, which are assigned to the same cluster.

Some border point may be reachable from core points in more than one cluster;
they may either be arbitrarily assigned to one of the clusters or to all of them (if
overlapping clusters are allowed).

Those points that do not belong to any cluster are treated as outliers or noise.

Each DBSCAN cluster is a maximal connected component over the core point
graph.

DBSCAN is sensitive to the choice of ¢, in particular if clusters have different
densities. The overall complexity of DBSCAN is O(n?).
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DBSCAN Algorithm

DBSCAN (D, €, minpts):
1 Core < ()
2 foreach x;e D do // Find the core points
3 Compute N, (x;)
4 id(x;) < ¥ // cluster id for x;
5 if Ne(x;) > minpts then Core <— CoreU {x;}

6 k< 0// cluster id

7 foreach x; € Core, such that id(x;) = ¢ do

8 k<« k+1

9 id(x;) < k// assign X; to cluster id k
10 DENSITYCONNECTED (X;, k)

1u C <« {C;}f:pwhere Ci«<{xeD]| id(x) =1}
12 Noise < {x € D | id(x) =@}
13 Border <— D\ {CoreU Noise}

14 return C, Core, Border, Noise

DENSITYCONNECTED (x, k):
15 foreachy € N.(x) do
16 id(y) < k// assign y to cluster id k
if y € Core then DENSITYCONNECTED (Y, k)
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Density-based Clusters

€ =15 and minpts=10




DBSCAN Clustering: Iris Dataset
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ST-DBSCAN

It is the same of DBSCAN, except for the similarity metric:
@ Spatial threshold: distance
@ Temporal threshold: offset in minutes

You may create any kind of neighborhood (e.g., topic). There is not really
integration.
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Kernel Density Estimation

There is a close connection between density-based clustering and density
estimation. The goal of density estimation is to determine the unknown
probability density function by finding the dense regions of points, which can in
turn be used for clustering.

Kernel density estimation is a nonparametric technique that does not assume
any fixed probability model of the clusters. Instead, it tries to directly infer the
underlying probability density at each point in the dataset.
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Univariate Density Estimation

Assume that Xis a continuous random variable, and let x;, x2,..., X, be a
random sample. We directly estimate the cumulative distribution function from
the data by counting how many points are less than or equal to x:

n

Foo = 1; D Ixi=x

=1
where /is an indicator function.
We estimate the density function by taking the derivative of F(x)

Foct3) —Fx=3) _kin_ k
h h  nh

fx) =

where kis the number of points that lie in the window of width h centered at x.
The density estimate is the ratio of the fraction of the points in the window
(k/n) to the volume of the window (h).
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Kernel Estimator

Kernel density estimation relies on a kernel function K that is non-negative,
symmetric, and integrates to 1, that is, K(x) > 0, K(—x) = K(x) for all values x,
and [K(x)dx=1.

Discrete Kernel Define the discrete kernel function K, that computes the
number of points in a window of width h

1 If|z<1
K(z) = 12l = 5
0 Otherwise

The density estimate 1?(x) can be rewritten in terms of the kernel function as
follows:

A 1 < —X;
f(x):EZK(X hx)
i=1
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Kernel Density Estimation: Discrete Kernel (Iris 1D)

The discrete kernel yields a non-smooth (or jagged) density function.
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Kernel Density Estimation: Gaussian Kernel

The width his a parameter that denotes the spread or smoothness of the
density estimate. The discrete kernel function has an abrupt influence.

Define a more smooth transition of influence via a Gaussian kernel:

K(z) = ! ex {—Z—z}
_m p >

Thus, we have

o X% 1 o (x— x))?
h )T /o O 2R
Here x, which is at the center of the window, plays the role of the mean, and h
acts as the standard deviation.
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Kernel Density Estimation: Gaussian Kernel (Iris 1D)

When h is small the density function has many local maxima. A large h results in a
unimodal distribution.
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Multivariate Density Estimation

To estimate the probability density at a d-dimensional point

X = (X1, X2,...,Xq)", we define the d-dimensional “window” as a hypercube in d
dimensions, that is, a hypercube centered at x with edge length h. The volume
of such a d-dimensional hypercube is given as

vol(Hy(h)) = h?

The density is estimated as the fraction of the point weight lying within the
d-dimensional window centered at x, divided by the volume of the hypercube:

N 1 < X — X
0= 2K (*5)
i=1

where the multivariate kernel function K satisfies the condition [ K(z)dz=1.
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Multivariate Density Estimation: Discrete and

Gaussian Kernel

Discrete Kernel: For any d-dimensional vector z = (z;, 23, ..., z4) ", the discrete
kernel function in d-dimensions is given as

K(z) 1 If |z]| < 5, for all dimensions j=1,...,d
~]0 Otherwise

Gaussian Kernel: The d-dimensional Gaussian kernel is given as

Kz — 1 { ZTZ}
(Z) - (27‘[)“72 eXp _7

Meira Jr. (UFMG)
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Density Estimation:
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Nearest Neighbor Density Estimation

In kernel density estimation we implicitly fixed the volume by fixing the width
h, and we used the kernel function to find out the number or weight of points
that lie inside the fixed volume region.

An alternative approach to density estimation is to fix k, the number of points
required to estimate the density, and allow the volume of the enclosing region
to vary to accommodate those k points. This approach is called the k nearest
neighbors (KNN) approach to density estimation.

Given k, the number of neighbors, we estimate the density at x as follows:
- k
fxX)=———
%= avol(Suh)

where hy is the distance from x to its kth nearest neighbor, and vol(S,(hy)) is the
volume of the d-dimensional hypersphere Sy(hy) centered at x, with radius hy.
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DENCLUE Density-based Clustering: Attractor and

Gradient

A point x* is called a density attractor if it is a local maxima of the probability
density function f.

The density gradient at a point x is the multivariate derivative of the probability
density estimate

A 0 ~ 1T <& 9 X — X;
Vix)y=—fx)=— > —K
) ax % nhd ; ox ( h )
For the Gaussian kernel the gradient at a point x is given as

A 1 1 X — X;
Vix) = — ZK(T) S (X —X)
i=1

This equation can be thought of as having two parts for each point: a vector

(x;—x) and a scalar influence value K(*2*).
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The Gradient Vector

A
X3 N X
3+ V1(x) ’
2 4
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DENCLUE: Density Attractor

We say that x* is a density attractor for x, or alternatively that x is density
attracted to x*, if a hill climbing process started at x converges to x*.

That is, there exists a sequence of points X = Xg — X; — ... = X, starting from
x and ending at x,,, such that ||x,, — x*|| <, that is, x,,, converges to the attractor
xX*.

Setting the gradient to the zero vector leads to the following mean-shift update
rule:

XL KEF)x
YL K(F)

where tdenotes the current iteration and x,,; is the updated value for the
current vector X;.

X1 =
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DENCLUE: Density-based Cluster

A cluster CC D, is called a center-defined cluster if all the points x € C are
density attracted to a unique density attractor x*, such that A(x*) > &, where & is
a user-defined minimum density threshold.

An arbitrary-shaped cluster C C D is called a density-based cluster if there exists
a set of density attractors xj, X3, ..., X%, such that

@ Each point x € Cis attracted to some attractor x;.

© Each density attractor has density above &.

@ Any two density attractors x} and X are density reachable, that is, there

exists a path from x to x7, such that for all points y on the path, f(y) >E.
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The DENCLUE Algorithm

DENCLUE (D, h, &, €):
1 A<
2 foreachxe D do // find density attractors
4 x* < FINDATTRACTOR(X, D, h, €)
5 if f(x*) > & then
7 A« AU {x*}
9 L R(x*) <= R(x*) U{x}

11 C < {maximal CC A| Vx], x}‘ e C,x7 and x}* are density reachable}

12 foreach Ce Cdo // density-based clusters
13 L foreach x* € Cdo C < CU R(x*)

14 return C
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The DENCLUE Algorithm: Find Attractor

FINDATTRACTOR (x,D, h, €):

2 t<0
3 X< X
4 repeat

Xep1 < e )x K(Xt;ji)..’(t
6 Xy K(th’)
7 t<—t+1
8 until ||x;— x| <€

10 return X,
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DENCLUE: Iris 2D Data
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DENCLUE: Density-based Dataset
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Clustering fragmented trajectories

Given that
@ Uy, U, ..., U, beindividuals.
@ N,, be the number of points collected for individual u;, that is, the length.
O Pry P2y PNy, the points from individual u;.
The problem of determining fragmented or noncontiguous clusters consists of
finding the groups of individuals such that those in the same group present

similar point density over the sampling space and those in differ ent groups
present different densities.

Premises:

@ the locations that an individual visits do not have to be contiguous and

@ the densities considered must take into account the relative number of
points from an individual in a given location or region.
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Clustering fragmented trajectories

@ Challenge: how to cluster people based on parts of the trajectories?

@ Rationale: In order to cluster objects by their spatial patterns, we assume
that the observed points of the objects that belong to the same cluster were
generated by the same process, a Poisson point process. Therefore, we are
able to calculate the likelihood of an object of having been g enerated by
this implicit process that rules a cluster.

In our method, we represent each cluster not as a centroid as in K-means,
but as a Poisson process, with its intensity in the two-dimensional space.
The log-likelihood of an object to belong to a cluster, for the Poisson
process, is given by:

N
Zlog)\(x,-, Vi) —/[3A(x, yydxdy @)
i=1

where N is the number of observed positions, w; is the weight for the
position x;, and Wis equal to Z,’-i] Wi

Meira Jr. (UFMG) Data Mining Chapter 15: Density-based Clustering 85/171



Current results

Clustering results for Belo Horizonte.
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Practice

Site: https://sc.ctweb.inweb.org.br/
User: aluno_X (1 > X> 40)
Password: sm4rt.Citi3Z
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Bayes Classifier

Let the training dataset D consist of n points x; in a d-dimensional space, and
let y; denote the class for each point, with y; € {c;, ¢, ..., ¢}

The Bayes classifier estimates the posterior probability P(c;|x) for each class c;,
and chooses the class that has the largest probability. The predicted class for x
is given as

y=arg max{P(c;|x)}

According to the Bayes theorem, we have

PXIC) - P(c)

P(cilx) = PO

Because P(x) is fixed for a given point, Bayes rule can be rewritten as

P(x|cp) P(ci)

y=arg mCEilX{P(Ci|X)} =arg mc?x { P(x)

} = argmax{ Px|c) P(c)
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Estimating the Prior Probability: P(c;)

Let D; denote the subset of points in D that are labeled with class c;:
D, ={x; € D|x; has class y; = ¢;}
Let the size of the dataset D be given as |D| = n, and let the size of each
class-specific subset D; be given as |D;| = n;.
The prior probability for class ¢; can be estimated as follows:

~ ni
Pey="
n
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Estimating the Likelihood: Numeric Attributes,

Parametric Approach

To estimate the likelihood P(x|c;), we have to estimate the joint probability of x
across all the d dimensions, i.e., we have to estimate P(x =(X1,X2,..., xd)lci).

In the parametric approach we assume that each class ¢; is normally distributed,
and we use the estimated mean jfi; and covariance matrix X; to compute the
probability density at x

fix) = fix|;, 2)) =

e (x— ﬂi) T§:1 (x— Ili)
(V2m)d/ |12 2

The posterior probability is then given as
FooP(c)

P(cilx) = 5 -
5 f0P)

The predicted class for x is:

y=arg max { f,»(x) P(c) ]
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Bayes Classifier Algorithm

BAYESCLASSIFIER (D = {(x;, y))}/L,):

1 fori=1,... kdo

2 D; < {xjlyj=ci,j=1,....n} // class-specific subsets
3 n; < |Dj| // cardinality

4 P(ci) <~ ni/n// prior probability

5 Ri<— %ije[,i X; // mean

6 Z, <~ D;— 1niﬂ,T // centered data

7 T« %_Z,.TZ,' // covariance matrix

$ return ,b(c,'),ﬂ,-, f;for alli=1,...,k

TESTING (x and P(c), ju, T, forall i € [1, K]):
V< argmgx{f(xlﬂ,-, %) P(c)}

10 return y
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Bayes Classifier: Iris Data

Xi:sepal length versus Xj:sepal width

Xo
A
° X = (6.75,4.25)7
o
4.0 -
A A
3.5
3.0 1 A
A
2.5 -
2 T T > X1
4 75 8.0
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Bayes Classifier: Categorical Attributes

Let X; be a categorical attribute over the domain dom(X)) = {a;, ap, ..., ajmj}.
Each categorical attribute X; is modeled as an m;-dimensional multivariate
Bernoulli random variable X; that takes on m; distinct vector values
€.€p,....€m, where e, is the rth standard basis vector in R" and corresponds

to the rth value or symbol a; € dom(X)).

The entire d-dimensional dataset is modeled as the vector random variable
X=X1,Xz,....Xs)". Letd = Z‘-j:] my; a categorical point X = (X1, X,..., Xg) " is
therefore represented as the -dimensional binary vector

Vi €1

Vd edrd

where v; = ejp; provided x; = ajr; is the rjth value in the domain of X;.
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Bayes Classifier: Categorical Attributes

The probability of the categorical point x is obtained from the joint probability
mass function (PMF) for the vector random variable X:

P(x|c)) = fivlc) = (X =€y, ... Xg=€qp,| C))

The joint PMF can be estimated directly from the data D; for each class ¢; as
follows:

ni(v

fivic) =

I

where n;(v) is the number of times the value v occurs in class ¢;.
However, to avoid zero probabilities we add a pseudo-count of 1 for each value
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Discretized Iris Data: sepal length and sepal width

Bins Domain
[4.3,5.2] Very Short (a1)
(5.2,6.1] Short (a12)
(6.1,7.0] Long (a3)
(7.0,7.9] Very Long (ai4)

(a) Discretized sepal length

Bins Domain
[20,28] Short (a21)
(2.8,3.6] Medium (ay;)
(3.6,4.4] Long (ay3)

(b) Discretized sepal width
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Class-specific Empirical Joint Probability Mass

Function
. X2 2
Class: 1 Short (621) | Medium (622) | Long (623) fX1
Very Short (e1) 1/50 33/50 5/50 39/50
x| short Cer) 0 3/50 8/50 13/50
' | Long (er3) 0 0 0 0
Very Long (eq4) 0 0 0 0
fx, 1/50 36/50 13/50
. Xo N
Class: ¢, Short (621) | Medium (622) | Long (623) fX1
Very Short (ejq) 6/100 0 0 6/100
X Short (eq2) 24/100 15/100 0 39/100
" | Long (e3) 13/100 30/100 0 43/100
Very Long (ejs) 3/100 7/100 2/100 12/100
fx, 46/100 52/100 2/100

ation

96 /171
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Iris Data: Test Case

Consider a test point x = (5.3, 3.0)" corresponding to the categorical point
(Short, Medium), which is represented as v = (e], el,)’.

The prior probabilities of the classes are P(¢c;) =0.33 and P(c;) = 0.67.
The likelihood and posterior probability for each class is given as

P(x|cy) = fv|cy) = 3/50 = 0.06
P(x|cy) = fiv|c;) = 15/100 = 0.15

P(ci|x) < 0.06 x 0.33 = 0.0198
P(cy|x) < 0.15 x 0.67 = 0.1005

In this case the predicted class is y = ¢;.
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Iris Data: Test Case with Pseudo-counts

The test point x = (6.75,4.25) corresponds to the categorical point
(Long, Long), and it is represented as v = (e], e2T3)T.

Unfortunately the probability mass at v is zero for both classes. We adjust the
PMF via pseudo-counts noting that the number of possible values are
mxm=4x3=12.

The likelihood and prior probability can then be computed as

A P 0+1

P = fi = =1.61x107
(x|cr) =1f(v]cy) 50112 x

- P 0+1 .
P(x|) = fv|c) = 100513 = 8.93x 10

P(ci1%) oc (1.61 x 1072) x 0.33 =532 x 1073
P(c|x) o (8.93 x 107°) x 0.67 = 5.98 x 107>

Thus, the predicted class is y = ¢;.
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Bayes Classifier: Challenges

The main problem with the Bayes classifier is the lack of enough data to
reliably estimate the joint probability density or mass function, especially for
high-dimensional data.

For numeric attributes we have to estimate O(d?) covariances, and as the
dimensionality increases, this requires us to estimate too many parameters.

For categorical attributes we have to estimate the joint probability for all the
possible values of v, given as [ | j |dom(X;)|. Even if each categorical attribute

has only two values, we would need to estimate the probability for 2¢ values.
However, because there can be at most n distinct values for v, most of the
counts will be zero.

Naive Bayes classifier addresses these concerns.
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Naive Bayes Classifier: Numeric Attributes

The naive Bayes approach makes the simple assumption that all the attributes
are independent, which implies that the likelihood can be decomposed into a
product of dimension-wise probabilities:

d
P(x|c) = P(x1. X2, xdlc) = [ [ Pxilc
j=1

The likelihood for class ¢;, for dimension Xj, is given as

S 1 (X — fup)?
Poglci) ocfoi ) = V276 eXp{_ /2&2/

where /1;; and &; denote the estimated mean and variance for attribute X;, for
class c;.
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Naive Bayes Classifier: Numeric Attributes

The naive assumption corresponds to setting all the covariances to zero in s,
that is,

7 0 0
5 0 oé 0
0O O al.i,

The naive Bayes classifier thus uses the sample mean fi; = (jis, ..., /lig)" and a
diagonal sample covariance matrix f,- = diag(o',% e, ofj) for each class ¢;. In
total 2d parameters have to be estimated, corresponding to the sample mean
and sample variance for each dimension X;.
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Naive Bayes Algorithm

11
12

NAIVEBAYES (D = {(x;, y,)} L)

fori=1,...,kdo

D; < {xj lyj= c.j=1,..., n} // class-specific subsets
<« |Dj| // cardinality

P(ciy < ni/n// prior probability

i< Y 0% // mean

Z,=D;—-1 -ﬁ,iT// centered data for class ¢;

forj=1,..,ddo // class-specific variance for X

L Af TZTZ,, // variance

&,»:(&,%,...,oid) // class-specific attribute variances

return i’(c;),;l,,&;for alli=1,...,k

TESTING (x and P(c)), L6 forallic[1,k]):
d

V<« argmcz_ix{i’(c,-)l_[f(xjm,-j, &,»/2» }

j=1
return y
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Naive Bayes versus Full Bayes Classifier: Iris 2D Data

Xi:sepal length versus Xj:sepal width

X
x = (6.75,4.25)7 ° DX =(6.75,4.25)7
A A A A
Eryamey
A A
AA  AAA AA  AAA A
A A A A A A
AAAA |AA AA AAAA | AA
A A, S*A A A
AA
A A
4 §
2 T 4 T T T T T X2 T 4 T T T T T Xi
4 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 4 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
(a) Naive Bayes (b) Full Bayes
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Naive Bayes: Categorical Attributes

The independence assumption leads to a simplification of the joint probability
mass function

d d
Pxlc) = [Poglen = [AX; =yl )
j=1 j=1

where f(X; = e |ci) is the probability mass function for X;, which can be
estimated from D; as follows:

ni(vj)

i

fvjlc) =

where n;(v)) is the observed frequency of the value v; = e;r; corresponding to
the rjth categorical value aj, for the attribute X; for class c;.
If the count is zero, we can use the pseudo-count method to obtain a prior
probability. The adjusted estimates with pseudo-counts are given as
n;(vy) + 1

ni+ m]

flvjlc) =

where m; = [dom(X))|.
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Nonparametric Approach: K Nearest Neighbors

Classifier

We consider a non-parametric approach for likelihood estimation using the
nearest neighbors density estimation.

Let D be a training dataset comprising n points x; € R?, and let D; denote the
subset of points in D that are labeled with class c;, with n; = |Dj|.

Given a test point x € R?, and K, the number of neighbors to consider, let r
denote the distance from x to its Kth nearest neighbor in D.

Consider the d-dimensional hyperball of radius r around the test point x,
defined as

Ba(x,n ={x;eD| 8(x,x,) <r}

Here §(x, x;) is the distance between x and x;, which is usually assumed to be
the Euclidean distance, i.e., §(x, X;) = ||[x — X;||». We assume that |By(x, )| = K.
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Nonparametric Approach: K Nearest Neighbors

Classifier

Let K; denote the number of points among the K nearest neighbors of x that are
labeled with class c¢;, that is
Ki={x;j € Ba(x,n | y; = ci}
The class conditional probability density at x can be estimated as the fraction of
points from class ¢; that lie within the hyperball divided by its volume, that is
K,‘/ n; _ K,‘
V. mVv
where V = vol(By(x, n) is the volume of the d-dimensional hyperball.
The posterior probability P(ci|x) can be estimated as

fix|ci) =

fix|cn Picy)
Yr, fixicpP(c)

However, because P(c¢;) = %, we have

P(cilx) =

fxieybiey =~ 0 2 K
YTV on T nv
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Nonparametric Approach: K Nearest Neighbors

Classifier

The posterior probability is given as

X

P(cilx) = P =

<
Jj=1 nVv

x| =

Finally, the predicted class for x is
N Ki
y=argmax{P(c;|x)} = argmax | — t = argmax{Kj}
G | K G

Because Kis fixed, the KNN classifier predicts the class of x as the majority
class among its K nearest neighbors.
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Iris Data: K Nearest Neighbors Classifier

x=(6.75,4.25)"
n
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Web Observatory

observatorio.inweb.org.br

Motivation
@ There is an increasing use of the Web in events of overall interest such as
politics and sports.

@ Major motivations are the lack of a central control and the fast
information propagation.

@ Recently, there has been an emphasis on "what you are doing" instead of
"who you are".

Challenge

Qualify, quantify, and summarize the content being exchanged in the various
Internet-related media on line and evaluate its impact on specific events.
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Web Observatory

On line tool for capturing, analyzing and presenting the dynamics of a given
scenario on the Web.
Scenarios

Soccer World Cup

Olympics

Brazilian National Soccer League
Brazilian Elections

Public Safety

Brand reputation

Dengue Epidemics
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Background on dengue

@ Dengue is a mosquito-borne infection that causes a severe flu-like illness,
and sometimes a potentially lethal complication

@ Approximately 2 billion people from more than 100 countries are at risk of
infection and about 50 million infections occur every year worldwide

@ Outbreaks tend to occur every year during the rainy season but there is
large variation of the degree of the epidemic in areas with similar rainfall
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Background on dengue

@ Current strategies for prediction of dengue epidemics are based on
surveillance of insects, which provide only a rough estimate of cases

@ Once disease outbreaks are detected in a certain area, efforts need to be
concentrated to avoid further cases and to optimize treatment and staff -
number of cases may reach several hundred thousands

@ In Brazil, where there is a epidemics accounting system, detection of
important outbreaks may take a few weeks, leading to loss of precious time
to address the epidemy

Meira Jr. (UFMG) Data Mining Chapter 18: Probabilistic cation 112/171



observatorizcadengue

WebSci’l1, Iberamia’14

@ To analyze how dengue epidemics manifests in Twitter and to what extent
that information can be used for surveillance.

@ To design and implement an active surveillance framework that analyzes
how social media reflects epidemics based on a combination of four
dimensions: volume, location, time, and public perception.

@ To exploit user generated content available in online social media to
predict the dengue epidemics.
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Methodology

@ Active dengue surveillance based on four dimensions:
Public perception

¢ Volume

¢ Location

o Time

©

@ Methodology steps
o Content analysis
o Correlation analysis
o Spatio-temporal analysis
o Surveillance
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Content analysis

@ Determine the sentiment categories

o Personal experience: “You know I have had dengue?”

o Ironic/sarcastic tweets: “My life looks like a dengue-prone steady water"
@ Opinion: “The campaign against dengue is very cool”

o Resource: “Dengue virus type 4 in circulation”

o Marketing: “Everybody must fight dengue. Brazil relies on you”
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Content analysis

Sentiment distribution over time
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Content analysis

Is personal experience a good indicator of dengue’s incidence?

28
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Correlation Analysis

Manaus
Personal experience, notifications and symptom perception

‘e T —
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Correlation Analysis

Manaus
Cross-correlation between personal experience and symptom perception from
November, 2010 to May, 2011
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Correlation Analysis

Rio de Janeiro
Personal experience, notifications and symptom perception
From November, 2010 to May, 2011
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Correlation Analysis

Rio de Janeiro

Cross-correlation between personal experience and symptom perception from
November, 2010 to May, 2011
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Spatio-temporal analysis

@ Evaluated two metrics

@ the volume of tweets
@ the PTPE value
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Spatio-temporal analysis

@ Evaluated two metrics

@ the volume of tweets Rand Index = 0.8506
@ the PTPE value Rand Index = 0.8914
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Spatio-temporal analysis

@ Evaluated two metrics

@ the volume of tweets Rand Index = 0.8506
@ the PTPE value Rand Index = 0.8914

Ewitter
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Surveillance

@ Strategy: Analize the ratio of personal experience tweets weekely.
@ Intuition: a sudden increase in this ratio indicates a surge
@ Visual metaphors

@ maps
o temporal graphs
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Dengue Observatory

'SEMANA DE REFERENCIA COMEGANDO EM

Mapas Relativos a Dengue no Brasil
Incidéncia Relativa

Tendéncia Relativa

Meira Jr. (UFMG)
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Dengue Observatory

Summary

o Twitter data are useful for epidemics surveillance.
@ Enablers:

o Dengue is an urban disease, as it is the Internet usage in Brazil.
o Dengue-related tweets are easy to collect.
@ People talk about dengue spontaneously.

@ Tweets associated with “personal experience" present high correlation
with dengue incidence.

@ Simple alarm systems are effective to detect dengue surges.
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Hot-Spot Mining from Case-Control Trajectories

Problem
@ Detecting infection hot spots from case-control trajectories.

o We target the identification of infection hot spots related to Dengue
through geo-tagged tweets.

Challenges

@ Trajectories may be composed of unlimited and distinct number of
points.

@ The place where a person tweets about dengue is not necessarily where
she got infected.
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Visit Model

o The Visit Model finds the most likely zones that a diseased person visits.

@ Let V;, the random number of tweets in Z among the n; total number from
the i-th individual.

@ Let p = p(2) the probability that, giving that a case individual is tweeting,
she does it from within Z. (p = p(2) is the analogous for a control
individual).

@ For a user who is a case, P(V;, > 1) =1 — (1 — p)"i. For a control user, it is
equalsto 1 — (1 —p)".
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Visit Model

@ The log-likelihood for the Visit Model can be written as:

€(Z,p, p) = log(1 —p)- N(2) + log(1 — p) - M(2)+

N
> H[Viz=1]-log(1 — (1 —p)")+

i=1
N+M

> W[Viz=1]-log(1 = (1= p)")

i=N+1

where N is the number of cases and M, the number of controls.
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Infection Model

o The Infection Model finds the most likely zones where a person gets
infected while visiting.

@ We want to estimate the probability that someone issues a dengue-labelled
tweet given that she visited k times the region Z.

@ Let r=r(Z) be the infection risk inside the candidate cluster (r= r(2) is the
same outside Z).

@ Let /; be the binary indicator that individual /is a case. So,

P(i=1|Vi,=k) = 1-P(;=0|V;,=k)
T—(1=phkia—prih

Meira Jr. (UFMG) Data Mining Chapter 18: Probabilistic Classification 130/171



@ The log-likelihood for the Infection Model can be written as:

N+M

GZ D=l log(l—(1=nki-(1=p" )+

i=1

(1 —=1)-(ki-log(1 =+ (ni— k) - log(1 — 1)
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Contrasting the two Models

Visit Model:

P(Tweets from Z | Is a case)

Infection Model:

P(Is a case | K Tweets from 7))
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Evaluating the Data Evidence

@ The test statistic for the Visit Model is:

i=6(Zp.p)= sup GL(ZPD.p(2)
ZeZ
PD>p2

@ The exact p-value for the null hypothesis is given by:
1
pr=50+#1 2T k=1,....B-1}

@ Both are analogous for the Infection Model.
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Evaluating the Data Evidence

Real Labels Simulation 1
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We collected the data from Twitter.
Geo-located tweets from Brazil.
Period: Jan 1st, 2015 — Dec 31th, 2015.
Total of 106,784,441 tweets.

City-level analysis.

Selected 11 municipalities, including cities facing strong surges.
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Table: Data summary. We present the total number of tweets collected in the city
(#msg); the respective number of unique users (#unq_usr); the number of case and
control individuals (#case_usr and #ctrl_usr) and the respective number of tweets they
issued (#case_usr and #ctrl_msg).

City name #msg #unq_usr #case_msg #case_usr #ctrl_msg #ctrl_usr
Belém 1,049,433 19,611 8,134 23 18,416 65
B. Horizonte 3,134,497 50,360 60,968 104 168,820 302
Curitiba 1,694,301 35,775 3,028 18 9,066 54
Goiania 566,114 16,849 15,933 54 33,750 147
Natal 522,689 16,689 3,847 15 8,748 42
R.de Janeiro 9,875,435 167,567 71,115 163 213,168 490
Sao Paulo 6,965,165 174,544 167,772 413 486,264 1229
Campinas 574,226 20,335 37,313 90 64,442 226
Limeira 91,454 2,991 11,614 47 16,830 108
SJ. Campos 407,143 9,697 19,883 58 40,251 148
Sorocaba 230,224 7,471 32,734 91 39,352 206
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@ For each selected city we applied the Visit and Infection Models.
@ The zones Z are defined by overlaying different grids on the map and each
cell corresponds to a zone to be scanned.

@ We also set the number of Monte Carlo replicas to 999 and significance
level as 0.05.
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Goiania Limeira

SJ. dos Campos Sorocaba

Figure: Zones found by the Visit (green) and Infection (black) Models.
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Figure: Zoom in to the hot spot in Goiania.



Principles for Algorithmic Transparency and

Accountability

@ Awareness

@ Access and redress

© Accountability

© Explanation

© Data provenance

@ Auditability

@ Validation and testing
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Principles for Algorithmic Transparency and
Accountability

1. Awareness

Owners, designers, builders, users, and other stakeholders of analytic systems
should be aware of the possible biases involved in their design, implementation,
and use and the potential harm that biases can cause to individuals and society.

Meira Jr. (UFMG) Data Mining



Principles for Algorithmic Transparency and
Accountability

2. Access and redress

Regulators should encourage the adoption of mechanisms that enable
questioning and redress for individuals and groups that are adversely affected
by algorithmically informed decisions.
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Principles for Algorithmic Transparency and
Accountability

3. Accountability

Institutions should be held responsible for decisions made by the algorithms
that they use, even if it is not feasible to explain in detail how the algorithms
produce their results.
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Principles for Algorithmic Transparency and
Accountability

4. Explanation

Systems and institutions that use algorithmic decision-making are encouraged
to produce explanations regarding both the procedures followed by the
algorithm and the specific decisions that are made. This is particularly
important in public policy contexts.
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Principles for Algorithmic Transparency and

Accountability

5. Data Provenance

A description of the way in which the training data was collected should be
maintained by the builders of the algorithms, accompanied by an exploration of
the potential biases induced by the human or algorithmic data-gathering
process. Public scrutiny of the data provides maximum opportunity for
corrections. However, concerns over privacy, protecting trade secrets, or
revelation of analytics that might allow malicious actors to game the system can
justify restricting access to qualified and authorized individuals.
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Principles for Algorithmic Transparency and
Accountability

6. Auditability

Models, algorithms, data, and decisions should be recorded so that they can be
audited in cases where harm is suspected.
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Principles for Algorithmic Transparency and
Accountability

7. Validation and Testing

Institutions should use rigorous methods to validate their models and document
those methods and results. In particular, they should routinely perform tests to
assess and determine whether the model generates discriminatory harm.
Institutions are encouraged to make the results of such tests public.
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Fairness?

Google is not ‘just’ a platform. It
frames, shapes and distorts how we 4

see the world ‘;
Carole Cadwalladr N

Last week, we reported how extremist sites ‘game’ the search engine, boosting

their propaganda. In response, the web giant appears to have modified some
results, but would like us not to notice
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Fairness?
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Discrimination

@ To discriminate is to treat someone differently
(Unfair) discrimination is based on group membership, not individual
merit

@ People’s decisions include objective and subjective elements
Hence, they can be discriminate

@ Algorithmic inputs include only objective elements
Hence, can they discriminate?
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Discrimination

@ On the web: race and gender stereotypes reinforced
Results for "CEO" in Google Images: 11% female, US 27% female CEOs
Also in Google Images, "doctors" are mostly male, "nurses" are mostly
female

@ Geography and race: the "Tiger Mom Tax"
Pricing of SAT tutoring by The Princeton Review in the US doubles for
Asians, due to geographical price discrimination
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Self-perpetuating algorithmic biases

@ Credit scoring algorithm suggests Joe has high risk of defaulting
@ Hence, Joe needs to take a loan at a higher interest rate

@ Hence, Joe has to make payments that are more onerous

@ Hence, Joe’s risk of defaulting has increased
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Sources of algorithmic bias

@ Data as a social mirror

Protected attributes redundantly encoded in observables
@ Correctness and completeness

Garbage in, garbage out (GIGO)
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Data mining assumptions might not hold

@ Data mining assumptions are not always observed in reality

9 Variables might not be independently identically distributed
o Samples might be biased
o Labels might be incorrect

@ Errors might be concentrated in a particular class
@ Sometimes, we might be seeking more simplicity than what is possible
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Main concerns: data and algorithms

@ Data inputs:

Poorly selected (e.g., observe only car trips, not bicycle trips)

Incomplete, incorrect, or outdated

Selected with bias (e.g., smartphone users)

Perpetuating and promoting historical biases (e.g., hiring people that "fit the
culture")

©

¢ ¢ ©

@ Algorithmic processing:

o Poorly designed matching systems

¢ Personalization and recommendation services that narrow instead of expand
user options

o Decision making systems that assume correlation implies causation

o Algorithms that do not compensate for datasets that disproportionately
represent populations

@ Output models that are hard to understand or explain hinder detection and
mitigation of bias
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Connection between privacy and discrimination

@ Finding if people having attribute X were discriminated is like inferring
attribute X from a database in which:
@ the attribute X was removed
@ anew attribute (the decision), which is based on X, was added

@ This is similar to trying to reconstruct a column from a privacy-scrubbed
dataset
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Fairness-aware data mining

Goal: Develop a non-discriminatory decision-making process while preserving
as much as possible the quality of the decision.
Steps:

@ Defining anti-discrimination/fairness constraints

@ Transforming data/algorithm/model to satisfy the constraints
© Measuring data/model utility
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Fairness-aware data mining

Pre-processing: input data transformations to minimize discrimination while
accuracy is maximized (e.g., supression, massaging, reweighing,
sampling).

In-processing: novel algorithms that achieve the same goal (e.g., change split
criterion and leaf relabeling in decision trees). A classifier is fair
if it is not affected by the presence of sensitive data in the
training set.

Post-processing: output models should not discriminate, how to clean the

traces of discrimination (e.g., pattern sanitization, which is
similar to anonymization).
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Transparency?
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DANGER ZONE

Inside the Algorithm That Tries to Predict Gun Violence in Chicago
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Gun violence in Chicago has surged since late 2015, and much of the news
media attention on how the city plans to address this problem has focused
on the Strategic Subject List, or S.5.L.
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The list is made by an algorithm that tries to predict who is most likely to be inion | Op-Ed Contributor
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online through its open data portal, making it possible for the first time to
see how Chicago evaluates risk.
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comments from the Chicago police have suggested.
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Transparency?

Qrome  § Momens M@ Notfications  pMessages v Search Twiter a @
ALL NEWD SNUFFING vivcus IVIAGED H

“According to details exposed in Western
Center for Journalism's exclusive video, not
only could Obama be in bed with the
communist Chinese, but Obama may in fact
be planning a communist coup d'état at the
end of his term in 2016!”

LATEST SNOWDEN LEAK: OBAMA PLANNING A

160/1



Transparency

Transparency may imply, in a broader sense, model interpretability:

@ Trust: Confidence that a model will perform well. More specifically, not
only how often it performs well, but also for which cases.

o Causality: To what extent may we generalize associations to infer
properties?

o Transferability: Capacity of transferring learned skills to unfamiliar
situations.

o Informativeness: How actionable is the pattern or model?

o Fair and Ethical-Decision Making: Are the models fair? Do they follow
ethical patterns?
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Properties

@ Transparency: How does the model work?
@ Post-hoc explanations: What else can the model tell me?
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Transparency

@ Simulatability: A human should be able to take the input data together
with the parameters and, in reasonable time, compute the model.

@ Decomposability: Each part of the model (input, parameter, calculation)
admits an intuitive explanation.

@ Algorithmic transparency: We should be able to understand how the
model was built, i.e., its principles, capabilities and limitations.
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Post-hoc interpretability

@ Text explanations: Build an additional model that explains textually the
outputs of a primal model.

@ Visualizations: Render visualizations of the model and its outputs to ease
understanding and usage.

@ Local explanations: Zoom in the search space associated with input data
and build a local model.

o Explanation by example: Report which training samples resemble the
input data.
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Accountability?

Tim Berners-Lee calls for tighter
regulation of online political advertising

Inventor of the worldwide web described in an open letter how it hasbecome a
sophisticated and targeted industry, drawing on huge pools of personal data
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Accountability?

Social Media’s Silent Filter

Under-the-radar workers have scrubbed objectionable material from
Facebook and other sites since well before the fake-news controversy.

SARAHT.ROBERTS | MaRsS 2017 | [RETNCIEIOG

e -

A few months ago, in the wake of the fake-news debacle surrounding the
election, Facebook announced partnerships with four independent fact-checking
organizations to stomp out the spread of misinformation on its site. If
investigators from at least two of these organizations—Snopes, Politifact, ABC
News, and FactCheck.org, all members of the Poynter International Fact
Checking Network—flag an article as bogus, that article now shows up in
people’s News Feeds with a banner marking it as disputed.

Facebook has said its employees have a hand in this process by separating
personal posts from links that present themselves as news, but maintains that
they play no role in judging the actual content of the flagged articles themselves.
“We believe in giving people a voice and that we cannot become arbiters of truth
ourselves,” wrote Adam Mosseri, the vice president of Facebook’s News Feed

team, in introducing the change.

The announcement was an early step in Facebook’s ongoing revision of how it
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Accountability

@ What are the personal rights regarding his/her collected data?
@ What are the acceptable uses of data?

@ Who is liable when something goes wrong?

@ How can we report on algorithmical abuse?
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GDPR

General Data Protecion Regulation

@ Approved in April, 2016.
@ Effective in 2018
@ Three basic rights:

o Right to access
o Right to be forgotten
e Right to explanation
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GDPR

Article 22: Automated individual decision making, including profiling

@ The data subject shall have the right not to be subject to a decision based
solely on automated processing, including profiling, which produces legal
effects concerning him or her or similiarity significantly affects him or her.

© Paragraph 1 shall not apply if the decision:

@ is necessary for entering into, or performance of, a contract between the data
subject and the data controller.

@ is authorised by Union or Member State law to which the controller is subject
and which also lays down suitable measures to safeguard the data subject’s
right and freedoms and legitimate interests.

© is based on data subject’s explicit consent.
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Right to explanation

Basically, is the right for some interpretability and fairness assurance, but it is
challenging:
@ intentional concealment on the part of the institutions;

@ gaps in technical literacy which mean that having access to technical details
is not enough;

@ a mismatch between the computational models and the demands of
human-scale reasoning and styles of interpretation.
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Practice

Site: https://sc.ctweb.inweb.org.br/
User: aluno_X (1 > X> 40)
Password: sm4rt.Citi3Z
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