
SoftwareX 15 (2021) 100777

C
P

(

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

INACITY - INvestigate and Analyze a CITY
Artur André Almeida de Macedo Oliveira ∗, Roberto Hirata Jr.
omputer Science Department, Instituto de Matemática e Estatística - Universidade de São Paulo, Rua do Matão 1010, São
aulo, SP 05508-090, Brazil

a r t i c l e i n f o

Article history:
Received 18 April 2021
Received in revised form 19 July 2021
Accepted 20 July 2021

MSC:
68-04
68U01
68U105
68U3
97R50

Keywords:
Geographical information system
Geoportal
Computer vision

a b s t r a c t

INACITY is a platform that integrates Geo-located Imagery Databases (GIDs), Geographical Information
Systems (GIS), digital maps, and Computer Vision (CV) to collect and analyze urban street-level images.
The platform’s software architecture is a client–server model, where the client-side is a simple Web
page that allows the user to select regions of a map and select filters to analyze and visualize urban
features. The server side is a Django-powered Web service with PostgreSQL and Neo4j databases.
Users can select a region of a map, an image filter, and geographical features to analyze relevant
urban characteristics as trees, for instance, using the platform. An open-source implementation of the
platform is available. The architecture is extensible, and it is easy to add new modules or replace the
existing ones with new digital maps, GIS databases, other CV filters, or other GIDs.

© 2021 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00075
Code Ocean compute capsule N/A
Legal Code License Mozilla Public License 2.0
Code versioning system used git
Software code languages, tools, and services used Python, Django, Javascript, jquery, openlayers, bootstrap, Docker, PostgreSQL, neo4j
Compilation requirements, operating environments & dependencies Docker, docker-compose
If available Link to developer documentation/manual http://inacity.org/docs
Support email for questions arturao@ime.usp.br

Software metadata

Current software version v1.0
Permanent link to executables of this version https://github.com/arturandre/inacity
Legal Software License Mozilla Public License 2.0
Computing platforms/Operating Systems Linux, OS X, Microsoft Windows, Docker
Installation requirements & dependencies Docker, docker-compose
If available, link to user manual — if formally published include a reference to
the publication in the reference list

http://inacity.org/tutorial

Support email for questions arturao@ime.usp.br

∗ Corresponding author.
E-mail address: arturao@ime.usp.br

Artur André Almeida de Macedo Oliveira).

1. Introduction

Open-Government data, or crowd-sourced data, or even en-
terprise companies data, is usually available on the Internet, and
the correct and proper use of it may be significant for both
governments and citizens [1]. Several social investigations and
ttps://doi.org/10.1016/j.softx.2021.100777
352-7110/© 2021 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100777
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100777&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-21-00075
http://inacity.org/docs
mailto:arturao@ime.usp.br
https://github.com/arturandre/inacity
http://inacity.org/tutorial
mailto:arturao@ime.usp.br
mailto:arturao@ime.usp.br
https://doi.org/10.1016/j.softx.2021.100777
http://creativecommons.org/licenses/by/4.0/


Artur André Almeida de Macedo Oliveira and Roberto Hirata Jr. SoftwareX 15 (2021) 100777

p
d
t
b
l
f
a
r
t
h
b
s
d

c
p
d
I
u
i
(

g
C
T
w
t
v
s
a
Q
f
u
l
d
h
D

h
(
p
c
u
e
o

e
i
e
G

2

c
n
I
a
t
t

2

(
n
i

rojects are done by inspecting places in person and collecting
ata through surveys or photographs. Some of these investiga-
ions had been conducted in order to establish a relationship
etween neighborhood audition data and health related subjects
ike adolescents mental health [2], overall and lower-extremity
unctional loss [3,4], poverty and mortality [5], low birth weight,
sthma and respiratory diseases [6,7], physical activity [8], self-
ated health [9], depression and stress [10,11]. Some studies
argeted more specifically the relationship between neighbor-
ood physical characteristics (e.g. greenery, graffiti, visual ur-
an decay), psychosocial characteristics and obesity [12–16]. In
ome studies the causes and consequences of physical and social
isorder at the neighborhood level are analyzed [17–19].
Collecting data can be an expensive and time-demanding pro-

ess [20]. To the best of our knowledge, there is no open source
latform to gather, combine, analyze, and visualize multimodal
ata. When image data at the street level is needed, Geo-located
magery Databases (GIDs), that is, image retrieval systems, can be
sed to collect the urban images [20,21]. Looking for some feature
n thousands of images can be unfeasible, and Computer Vision
CV) systems can be employed to mitigate this problem.

INACITY is an open-source platform that integrates GIDs, Geo-
raphical Information Systems (GIS) databases, digital maps, and
V techniques to collect and analyze urban street-level images.
he software architecture of the platform is a client–server model,
here the client-side is a simple Web page that allows the user
o select regions of a map and also select filters to analyze and
isualize urban features. The server side is a Django powered Web
ervice with PostgreSQL and Neo4j databases. The platform is not
replacement for a Geographical Information System, such as
GIS [22] for example. It can be complementary to a GIS to de-
ine geographical locations of interest. The workflow would start
sing an Imagery database system to collect images from defined
ocations, extracted features from those images, and stored the
ata back into a GIS, as will be described later when we explain
ow we use the store geographical data into the graph-oriented
atabase Management System Neo4j [23].
From the perspective of an end-user, the platform allows

im/her to select a region of interest in a map, select a feature
e.g. greenery, bus stops, traffic signs, etc.) and then analyze the
resence, or even the distribution of that feature based on images
ollected, inside the selected region, on GIDs. Besides, the end-
ser can also use INACITY’s front-end to visualize geographical
ntities from a GIS such as bus stops, schools, overpasses, and
thers, over the same region of interest.
From a developer’s perspective, INACITY offers three kinds of

xtensions: new GIS, GIDs, and CV techniques. The architecture
s extensible, and it is easy to add new modules or replace the
xisting ones with new digital maps, GIS databases, CV filters, or
IDs.

. Methodology and software description

This section presents the software architecture, components,
lasses, current functionalities, and the way to extend it to add
ew features. The components responsible for collecting data in
NACITY’s back-end keep a common interface, so that integrating
new data collecting component is just a matter of implementing
hat interface. Besides, custom objects allow heterogeneous data
o be combined and displayed at INACITY’s front-end.

.1. Software architecture

The INACITY’s client–server model [24] is twofold: a back-end
data access layer) and a front-end (presentation layer) compo-
ent. This model was chosen in order to maximize the accessibil-
ty of the platform, that is, instead of having a client application

for each major OS (e.g., Linux, macOS, and Windows) by mak-
ing the platform available as a web platform, any http-based
client front-end can consume it. To make the platform even more
accessible, the main deploy tool used is Docker system [25].

The programming language adopted to develop the back-end
was Python 3. The reason to choose Python rather than a more
business-driven language like C# or even Java is that those lan-
guages usually come coupled with an environment of their own,
like the Java Virtual Machine or proprietary libraries from Mi-
crosoft. Python tends to be more friendly for newcomers and
has a rich set of libraries and packages publicly available. Be-
sides, there is a considerably large body of scientific work pro-
duced with Python (e.g., the Scikit libraries family [26]) and
web-development frameworks (e.g., Django and Flask), which in
turn are tuned to deal easily with database modeling even with
geographical data.

The choice for the Django framework [27] as the back-end
core was because Django provides all the machinery for han-
dling web-based requests (i.e. HTTP or, more specifically REST
based requests), database access and modeling, user authentica-
tion and authorization, real-time communication (with the exten-
sion Django-channels) and a stable and large community. Having
all of these pieces managed and put together by the Django
framework leaves only the main concepts (data integration) to
be dealt with in the INACITY platform. In the back-end, the
main body of work, besides setting up the Django machinery,
is modeling the classes responsible for collecting and integrating
data.

The front-end development also followed the Django guide-
lines. Using Django templates, we developed a coupled front-end
provided by the same back-end rather than having a framework
to deal with the server stuff (e.g., processing and database access)
and front-end serving (e.g., NodeJS). The front-end provided by
the INACITY platform is a visualization tool that consumes data
from the back-end, also allowing user account creation, login,
and the management of users’ work sessions. The front-end was
developed using Django template language (based on HTML) and
Javascript.

The back-end holds a manager system1 responsible for keep-
ing track of classes that collect data from GIS, GIDs, and classes
that implement CV techniques for extracting and processing data
from images. The flow of a request to the back-end is as follow-
ing:

1. A request is made to some end-point in the back-end.
2. Django infrastructure delegates this request to the Manager

Component (MC).
3. The MC delegates it to the class responsible for collect-

ing/generate data for the request.
4. The data collecting/generating class returns data to the MC.
5. The MC formats the data received (if needed) and returns it

to the Django infrastructure that, in turn, returns it to the
caller that originated the request.

It is worth noting that the communication with the back-
end is performed through a REST API. Any client application can
request to the back-end, not only the front-end developed in
the INACITY platform. A diagram describing the back-end com-
ponents along with some comments about their functions is
available at the project’s Github entry [30]. The diagram also il-
lustrates the relationship between managers, abstract classes and

1 A class that follows the design pattern known as Strategy [28], that is,
when a class is a manager (usually called Manager Components) it delegates a
request to an associated class and the response depends on the associated class.
These components have nothing to do with Django’s Manager class, which is an
interface to allow Django models to query a database [29].
2



Artur André Almeida de Macedo Oliveira and Roberto Hirata Jr. SoftwareX 15 (2021) 100777

d
r
s
b

erived counterparts. Each manager is responsible for delegating
equests from some front-end client to the components respon-
ible for collecting urban imagery, GIS data, and data extracted
y some Image Filter. The MapMinerManager, ImageProvi-
derManager, and ImageFilterManager are abstract classes
that define a common interface to enable the manager classes
to delegate requests in the same fashion to different external
systems. The URLs component define end-points that external
clients can call; those end-points define the REST API functions
of the back-end.

A class diagram describing the Manager classes, arranged ac-
cording to the Strategy design pattern, is available at the project’s
Github entry [31]. The diagram shows the abstract base classes
allowing the extension of the INACITY data sources and proces-
sors. For example, the class OSMMiner is a subclass derived from
MapMinerManager, and it provides a unified way to collect data
from the OpenStreetMap GIS [32]. The OSMMiner class imple-
ments functions whose signatures are defined in its base class. By
calling those functions, the MapMinerManager class can collect
data from the OpenStreetMap GIS seamlessly, without the need
to be adjusted to the data model or even the connection details
from the OpenStreetMap GIS. This design is possible because the
OSMMiner class translates requests from the MapMinerManager
to queries for the OpenStreetMap, and also translates the re-
sponse from the latter to a common format (i.e., GeoJSON [33])
that can be transmitted back to the front-end client.

The front-end part comprises a website for the end-user. A
diagram describing the front-end diagram is available at the
project’s Github entry [34]. The main components are its pages
and communication classes. The pages essentially enable the end-
user to interact with the website and render updated information
as the user makes requests. The communication components
are responsible for encapsulating requests for the back-end and,
at the current version, for Google Street View (GSV) servers. It
is noteworthy that the GSVService component, responsible for
communication with GSV servers, is implemented at the front-
end due to restrictions on GSV. However, the signing key and
the GSV request formulation algorithms are implemented at the
back-end. The Google Street View [35] was chosen as the standard
GID due to its worldwide coverage and because it is a platform
that is commonly used in scientific papers targeted at analyzing
the urban environment through street-level urban imagery.

2.2. Software functionalities

This section presents the components of the system that allow
one to add functionalities to the system. By combining geo-
located features from GIS and geo-located images from an image
provider, one can enrich the system’s functionalities. One ex-
ample of such functionality consists of observing specific kinds
of trees cataloged in a city greenery database like the Pasadena
Urban Trees dataset [36], or the road afforestation (‘‘Arborização
viária’’) layer from the GeoSampa dataset [37] of the city of São
Paulo, Brazil.

The INACITY platform concerns integrating imagery data and
information extracted from it with a GIS. Such integration al-
lows a comprehensive range of applications, the most direct
ones assessing the quality or presence of urban features. This
integration allows one to assess visually and automatically the
quality of a segment of road, spotting precisely cracks, potholes,
paint damage, and other signs of degradation. Concerning the
detection of urban features, one possibility would be to imple-
ment deep learning neural networks to detect traffic signs [38]
in images collected from a crowdsourced imagery platform such
as KartaView (previously known as OpenStreetCam) [39]. By cre-
ating subclasses, from the abstract base classes ImageProvider

and ImageFilter, one can integrate KartaView (to collect the
images) to INACITY to process the collected images and detect
the traffic signs or other urban elements. From a developer’s
perspective, INACITY offers three kinds of extensions: new GIS,
GIDs, and CV techniques.

2.3. Extending the platform

The platform provides the means for a user to use his/her
dataset or new image filter algorithms, so new components can
be easily integrated with previously implemented components
thanks to its design. Integrating a new component to extend the
platform requires the user to implement the new component(s)
directly in Python’s source code. There are three main ways to
extend the platform, new geographical databases, new imagery
platforms, and new Computer Vision algorithms.

Each possible extension is made by implementing a subclass
of a specific base class, as detailed in the following sections, that
defines an interface for a corresponding Manager Component.

2.3.1. GeoImage
To facilitate the integration between imagery data and geo-

graphical data, one can use the GeoImage object. A class dia-
gram describing the GeoImage component based on GeoJSON is
available at the project’s Github entry [40].

The implementation of this object is similar to the GeoJ-
SON object to achieve better interoperability. As specified by
RFC 7946 [33], the GeoJSON object has its fields well defined
with a proper semantic, except for the properties field of
the Feature object. This field can contain any JSON (JavaScript
Object Notation) object. Therefore, we keep the imagery data
related to the coordinates of a Feature object inside the prop-
erties field under the key geoimages. Every GeoJSON object is
either a FeatureCollection, a Feature or one of seven kinds
of geometries [33]. We consider each geographical entity as a
FeatureCollection, usually containing only a single Feature.

Every geographical entity is treated as a FeatureCollec-
tion, possibly containing just a single Feature. Each request
to ImageProvider will contain a FeatureCollection with an
array of Features. The coordinates of the latter will define the
coordinates of the images to be retrieved by the ImageProvider.
Fig. 1 shows a diagram of the GeoJSON as an abstract class with
nine possible subclasses (considering that the Geometry class
could be one of six distinct types).

The GeoImage object keeps metadata about some image col-
lected from an image provider and data extracted from that
particular image using some Computer Vision algorithm. The
extracted data will be kept in a separate object called Pro-
cessedImageData. Notice that the same GeoImage can hold a
reference to multiple ProcessedImageData, because each im-
age can be processed by different Computer Vision algorithms,
yielding multiple distinct extracted data.

We add a new entry with the key geoimages into the JSON
field properties of the Feature object to keep the same in-
dexes between the coordinates of the geometry property. That
is an easy way to access the GeoImage related to a particular
coordinate. The geoimages entry may have the same structure
(i.e., nesting indexes) of the coordinates in the geometry property
of the Feature. When an image is not available for a partic-
ular coordinate, an error string will fulfill that particular index
position in the geoimages entry.
3



Artur André Almeida de Macedo Oliveira and Roberto Hirata Jr. SoftwareX 15 (2021) 100777

2

c
i
p
c
u
o

g
g
f
G

t
m
s
e
p
b
m

s
t
c
a

2

b

t
i
b
F
p
s
i
s

Fig. 1. GeoJSON class diagram.

.3.2. Image filter module
Fig. 2 illustrates how the platform can be extended. The sub-

lasses from the Image Filter components are meant to process
mages. The components without any highlight are already im-
lemented while the ones highlighted in yellow represent new
omponents in development, and the Trees & Powerlines is
nder integration in the platform. It represents a detector of
verhead power-lines that intersect trees’ canopies and branches.
The Scene Captioning class could, for example, be such that

iven an image, it provides a textual description of the scene. A
eo-located image’s description can be stored in the geographical
eature related to the image or even in a completely decoupled
IS.
The Pavement quality class is another example of an object

hat could provide a degree to indicate to what extent the pave-
ent of a road is damaged. If the input image’s point of view is
uch that the camera points downwards, the main object of inter-
st will be the pavement and its eventual defects (e.g., cracks and
otholes). The component could provide a mask image obtained
y segmenting the defects that would highlight the pavement’s
ost relevant damages.
The interface design and the guidelines provided by the ab-

tract class ImageFilter can be used to add a new component
hat derives from the ImageFilter. The newly implemented
omponent can then be readily used by the ImageFilterMan-
ger and integrated into the INACITY platform.

.3.3. Image Provider module
Similarly, the same extensibility and modularity concepts can

e extended to the Image Provider and the Map Miner classes.
Fig. 3 presents the same concept as presented for image fil-

ers but applied to image providers. The main difference is that
nstead of processing an input image, the component is responsi-
le for collecting an image associated with a given coordinate.
or example, the GSV API allows one to query for the closest
anorama with relation to some given coordinate. It also allows
electing the vertical and horizontal angles, the field of view,
mage resolution, and other parameters regarding an image from
ome specific panorama.

The component GoogleStreetView in Fig. 3 receives as in-
put a set of coordinates and converts them into appropriate
requests for the GSV platform, treat possible exceptions and fi-
nally return a formatted response (typically a GeoImage instance)
back to the ImageProviderManager class.

To extend the Image Provide module a subclass derived from
the Image Provider abstract class must be created, as exempli-
fied in Fig. 3 by the highlighted (yellow boxes) subclasses Map-
pilary[41], Baidu Total View[42] and Crowdsource. Such
subclasses encapsulate all the code responsible for communi-
cating with the target Image Provider system. Given a set of
coordinates, the subclasses must formulate a query to the target
system, and then merge the response from that system with
the input coordinates, composing a GeoImage response that is
returned to the ImageProviderManager class. In the case of the
Crowdsource subclass, its target system is the INACITY platform
back-end itself, and this component provides the means for the
users to provide urban images themselves, which in turn can
be retrieved later by the Image Provider Manager component
under another user request.

2.3.4. Map Miner module
The Map Miner module is responsible for integrating GIS

databases to INACITY. It has some particularities that are worth
mentioning. Fig. 4 presents the Map Miner module and its con-
nections with some GIS databases. As in the other module figures,
the blue components correspond to those implemented, and the
yellow ones are example components to be implemented in fu-
ture versions of the INACITY platform. The GeoSampa component
defines the means to collect data, from the internal PostgreSQL
database, regarding bus stops from the city of São Paulo. An
extract from the GeoSampa [37] database was introduced directly
into the INACITY database to mitigate the number of exter-
nal queries. The database also keeps users’ access and working
session data.

The OSMMiner class implements the means to collecting
streets’ information. The streets are represented as a collection
of interconnected LineString objects (according to GeoJSON
specification [33]), from the OpenStreetMap [32] platform.

The sequence of collected LineString objects (each holding
its geographical coordinates) can be the input to get geolocalized
images from some Image Provider system. Besides that, the rela-
tionships (e.g. direction) between each pair of objects can be used
to determine camera angles between two adjacent panoramas.

The PanoramaMiner class performs queries over a Neo4j
database instance, a graph-oriented Database Management Sys-
tem (DBMS) [23]. The main advantage of using a graph-oriented
database is to model the streets, the regions, and other geographi-
cal objects. The Neo4j instance is hosted together with the Django
server into the same Docker container in the current version. This
database is responsible for relating data from physical entities
(e.g., objects from some GIS), their images (sampled from some
Image Provider system), and even data extracted from those
images (using some Image Filter component).

Fig. 5 shows an example of some GSV’s panoramas, images
metadata from each panorama, and data extracted from the im-
ages, as seen by Neo4j Browser User Interface. An orange cir-
cle represents each panorama. It holds information like address,
pitch, heading of the camera, and the shot’s time. Each panorama
may span different images, each with a pitch and heading. There-
fore, each panorama may be related to multiple images, so the
metadata regarding these images are stored in the blue circles
called Views. The data resulting from processing the images is
stored in vertices called FilterResult represented by the gray
circles in Fig. 5 (related to the View that correspond to the pro-
cessed image). This data representation in a graph-oriented DBMS
allows faster retrieval of results already collected and processed,
reducing the time a user needs to wait for his/her request to be
completed, keeping the system flexible and extensible.
4



Artur André Almeida de Macedo Oliveira and Roberto Hirata Jr. SoftwareX 15 (2021) 100777

T
a

s
(

i
d
A
(

Fig. 2. Image Filtering module. All the subclasses of the Image Filter class have a common interface that is used by the ImageFilterManager class during a request.
he yellow shadowed subclasses are being developed in the current version of the INACITY platform, the green shadowed one is being integrated in the platform
nd the others are already available. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Image Provider module. Each user request is received by the Manager component (e.g. ImageProviderManager) and routed to the ImageProvider subclass
pecified in the request. Each of these subclasses provide to the Manager component a common interface to collect images from a given external image provider
e.g. GSV), thus abstracting the particularities of the API and rules (e.g. minimum time between requests) of each external image provider.

Fig. 4. Map Miner module. The Neo4j and the PostgreSQL databases (cylinder
cons) are locally deployed, while the components depicted with a cloud icon
enote external systems accessed through the subclasses of the Map Miner class.
s with the other modules, user requests are routed by a Manager component
omitted in this figure; see Figs. 2 and 3 for examples) to the Map Miner subclass
specified in the request. This subclass must translate the user request into a
request to the target GIS (e.g., OpenStreetMap) or local database (e.g., Neo4j),
which contains geographical data (e.g., the location of GSV panoramas or even
bus stops imported from GeoSampa into the local PostgresSQL database). Notice
that the Django ORM is used to interact with the PostgresSQL database, while
the interaction with the Neo4j is done through the packages for python provided
by the Neo4j, Inc.

3. Results and illustrative examples

The platform’s current implementation includes the Open-
StreetMap GIS as a source of coordinates to be sampled from the
GSV Image Provider. This combination allows multiple uses of the
platform in a practical way. In this section, we present two use
case examples of the platform.

3.1. Neighborhood visual inspection

The platform’s most simple use case involves selecting a region
of interest and fetching images from that region. In the current
implementation, the OpenStreetMap and the GSV platforms are
the coordinates’ source and the Image Provider. Once collected,
the streets define a route for the user to view pictures from
streets in the selected region as if he/she was there. This use case
is handy for auditing neighborhoods [21]. A short video showing
the use case accompanies this article [43].

The pipeline begins when a person using INACITY’s front-end
selects a region and presses the ‘‘Get Images’’ button. We assume
that the user keeps the default options of GIS (MapMiner). This
action triggers a request from the front-end class UIModel to
INACITY’s back-end. The request consists of the selected region’s
geographical entities collected and sent to the Image Provider.
A diagram of the process that follows the UIModel request is
available at the project’s Github entry [44]. Since this is a re-
quest for a geographical entity, the request is received by the
MapMinerManager component, which in turn delegates it to the
appropriate MapMiner subclass. In this example, the OSMMiner
is the referred subclass since it is responsible for treating requests
to the OpenStreetMap platform. The OSMMiner subclass will for-
mulate a query written using the Overpass Query Language [45]
and will send it to the OpenStreetMap platform.

After the OpenStreetMap returns the query results, the OSM-
Miner subclass will format the response using the GeoJSON [33]
specification and return it to the MapMinerManager, which in
turn will return it to the front-end. INACITY’s front-end will then
display the returned geographical entities, streets in this case. To
better visualize the results, the system represents streets as blue
lines in the digital map.

Following this step, a second request is issued by the UIModel
class. This request consists of the geographical entities collected
in the first step and an Image Provider.
5



Artur André Almeida de Macedo Oliveira and Roberto Hirata Jr. SoftwareX 15 (2021) 100777
Fig. 5. Visualization of some nodes stored in the local Neo4j instance. Panorama nodes in orange represent locations (specified in latitude and longitude coordinates)
where images were taken. Views (in blue) represents an image and encapsulates the horizontal (heading) and vertical (pitch) angles of the camera (with relation to
the true North and a flat ground, respectively) at the moment of the shot. Filter results (nodes in gray) maintain data extracted from a view by some ImageFilter
subclass (Fig. 2).

Following this step, the UIModel class issues a second request
consisting of the geographical entities collected in the first step
and an Image Provider. This request follows a similar flow as
the one used to collect street geographical data, except that
this time the ImageProviderManager receives the request. As-
suming that the default option for the Image Provider is the
GSV, the ImageProviderManager will delegate the request to
the GoogleStreetViewImageProvider subclass of the Image-
Provider component.

3.2. Urban feature visualization (greenery)

Visualizing the distribution of urban features, like greenery, is
another use case of the INACITY platform in a given geographical
region.

The pipeline starts as before (a user selecting a region of
interest) and then triggers a request for processing the images
collected during a neighborhood audition. In the video that ac-
companies this paper, the user applies a filter called Greenery
filter to estimate the Green View Index by segmenting which
parts of the image correspond to green vegetation. The propor-
tion of the image (in relation to the image size) regarded as
green vegetation will be stored in the density property of a
ProcessedImageData object associated with the GeoImage of
the processed image. When the FeatureCollection is returned
back to the front-end each of its features and corresponding
GeoImages (if available) will have an associated ProcessedIm-
ageData which in turn may have extracted data as the density of
Green View Index which will be displayed as Fig. 6, for example.

Besides the heat-map visualization, INACITY can present some
urban features overlayed to the original images. Fig. 7(b) presents
an example of an image in which the greenery parts (as classified
by the back-end) are highlighted in green and the non-greenery
ones in blue overlayed to the image. This kind of visualization
allows a fine-grained inspection over each image rather than over
the analyzed region. The greenery image filter module uses the
Python packages numpy [46] and scikit-image [47].

4. Demo site, impact and limitations

INACITY is available at http://inacity.org to anyone who wishes
to try the implemented analysis without deploying it. A user-level
quota system is necessary to allow more users to try the platform
through the demo site (due to GSV costs). Despite that, users can
supply the platform with their own GSV credentials (i.e., there is
no general quota use).

A non-specialist user can use the public instance to select a
region, query images from it, and extract features from those

Fig. 6. Greenery heat-map (lighter colors for higher values) for a region selected
(i.e. the red square). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

images. Nevertheless, this approach limits the user to the already
available capabilities implemented in the public instance, those
are, street network locations from OpenStreetMap [32], Bus Stops
from GeoSampa [37], images from Google Street View [35] and
currently the only image processing algorithm implemented in
INACITY’s public instance is the greenery one. Additional capa-
bilities can be implemented by developers and researchers in
the future, possibly in locally deployed instances of the INACITY
platform.

INACITY can be part of a more extensive pipeline of research.
For instance, in [48], we collect images from some locations in
the cities of Porto Alegre (BR) and São Paulo to build a ma-
chine learning model to detect entanglements between electric
wires and tree branches. If the model is successful, it can be
coupled into INACITY by subclassing the ImageFilter class, thus
enabling the platform to help city managers to detect tree and
wire entanglements and prevent accidents.

4.1. Quota module

The quota module keeps track of how many calls are per-
formed by a registered user. An anonymous user, identified by
a Django session-id, can also use the system.
6

http://inacity.org


Artur André Almeida de Macedo Oliveira and Roberto Hirata Jr. SoftwareX 15 (2021) 100777

t
t

p
b
o
q
f
f
s
a
T
m
c

4

s
l
r
s
d
s
n
a
i
s
l

Fig. 7. (a) An example image as provided by Google Street View. (b) Image shown in (a) after being filtered by the ‘‘Greenery density’’ subclass. In the filtered image
he detected greenery regions are highlighted in green while the rest of the image is blue tinted. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

The main components of the quota subsystem is shown at the
roject’s Github entry [49]. The class QuotaManager is responsi-
le for registering a new entry in the database and keeping track
f each registered user’s available quota. The decorator factory
uota_request_decorator_factory is used as a decorator over the
unctions whose usage is tracked. The parameters of the decorator
actory are default_user_quota, default_anonymous_quota and
kip_condition. These parameters specify how many calls will be
vailable for a registered, and an anonymous user, respectively.
he last parameter is a Boolean function called to test if the quota
anager should be used (e.g., the user is using his/her own GSV
redentials).

.2. Performance tests

We created a benchmark test to assess the effect of multiple
imultaneous requests to the back-end. The tests consist of col-
ecting streets and images for two disjoint urban regions. Each
egion has a different size and consequently a different number of
treets and images. Table 1 presents the results and information
etails of both areas used in the benchmark. The features are the
ize (in squared meters) of each region, the number of streets, the
umber of images collected. The minimum, maximum, average,
nd standard deviation times are split between collecting streets
n each region and collecting the images for the corresponding
treets collected. Finally, the time spent processing all the col-
ected images using the currently implemented Greenery image
filter. To collect the response times, 100 requests were performed,
50 for area 1 and 50 for area 2. At any given time, ten simulta-
neous requests have been made. The requests for area 1 were
intertwined with requests for area 2, that is, the first request
performed was related to area 1, the second to area 2, the third
to area 1 again, and so on. The server hosting the platform during
the benchmark was an Intel Xeon E5420 2.5 GHz with eight cores.

5. Discussion and conclusions

In the context of smart cities and the Internet of the future,
using government public data or even private data available on
the Internet is essential to assess features in a city. We created the

Table 1
Multiple statistics taken upon the execution times and requests sizes (in terms
of streets and images collected) for two distinct regions.

Both areas Area 1 Area 2

Area 348906 m2 20931 m2 327975 m2

Num. Streets 27 2 25
Num. Images 429 71 358
Min Time (Streets) 7.78 s 7.78 s 7.89 s
Avg. Time (Streets) 9.14 s 9.36 s 8.91 s
Std. Time (Streets) 2.2 s 2.34 s 2.05 s
Max Time (Streets) 16.76 s 16.68 s 16.76 s
Min Time (Images) 8.57 s 8.57 s 108.36 s
Avg. Time (Images) 84.55 s 18.79 s 152.04 s
Std. Time (Images) 68.79 s 9.52 s 19.81 s
Max Time (Images) 194.92 s 50.13 s 194.92 s
Min Time (Greenery filter) 153.70 s 153.70 s 812.96 s
Avg. Time (Greenery filter) 494.61 s 170.53 s 843.63 s
Std. Time (Greenery filter) 342.97 s 10.97 s 15.32 s
Max Time (Greenery filter) 867.48 s 187.24 s 867.47 s

INACITY platform with three concepts in mind: geolocated im-
ages, geolocated data, and algorithms to extract information from
images. These concepts directed the platform modules’ design
and architecture such that implementing a new image provider,
GIS, or a new CV/image processing algorithm can be done without
impacting any of the other modules. In other words, by following
each module base class’s specifications, new components can be
seamlessly integrated.

The front-end is simple and allows end-users (e.g., citizens,
developers, researchers, or government administration agents) to
use the platform to gather data for future use and, because it
is open-source, further improve the platform by modifying it to
their needs.

The use cases presented are useful but straightforward, and
we plan to extend them to other city problems as studying the
problem of intersection of power lines with trees in the future.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
7



Artur André Almeida de Macedo Oliveira and Roberto Hirata Jr. SoftwareX 15 (2021) 100777

A

S
1
F
f
P

R

cknowledgments

This research is part of the INCT of the Future Internet for
mart Cities funded by CNPq 465446/2014-0, FAPESP 14/50937-
and 15/24485-9. The authors acknowledge São Paulo Research
oundation (FAPESP) 18/10767-0 and 15/22308-2. This study was
inanced in part by the Coordenação de Aperfeiçoamento de
essoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

eferences

[1] OpenStreetMap contributors. Providing your data to openstreetmap. 2021,
https://blog.openstreetmap.org/wp-content/uploads/2020/07/Providing-
data-to-OpenStreetMap.pdf. Retrieved: 18/06/2021.

[2] Aneshensel CS, Sucoff CA. The neighborhood context of adolescent mental
health. J Health Soc Behav 1996;293–310.

[3] Balfour JL, Kaplan GA. Neighborhood environment and loss of physical
function in older adults: evidence from the Alameda County Study. Am
J Epidemiol 2002;155(6):507–15.

[4] Schootman M, Andresen EM, Wolinsky FD, Malmstrom TK, Miller JP,
Miller DK. Neighborhood conditions and risk of incident lower-body func-
tional limitations among middle-aged African Americans. Am J Epidemiol
2006;163(5):450–8.

[5] Cohen DA, Farley TA, Mason K. Why is poverty unhealthy? Social and
physical mediators. Soc Sci Med 2003;57(9):1631–41.

[6] Cagney KA, Browning CR. Exploring neighborhood-level variation in
asthma and other respiratory diseases. J Gen Intern Med 2004;19(3):229–
36.

[7] Nepomnyaschy L, Reichman NE. Low birthweight and asthma among
young urban children. Am J Public Health 2006;96(9):1604–10.

[8] Hoehner CM, Ramirez LKB, Elliott MB, Handy SL, Brownson RC. Perceived
and objective environmental measures and physical activity among urban
adults. Am J Prev Med 2005;28(2):105–16.

[9] Agyemang C, van Hooijdonk C, Wendel-Vos W, Lindeman E, Stronks K,
Droomers M. The association of neighbourhood psychosocial stressors and
self-rated health in Amsterdam, The Netherlands. J Epidemiol Commun
Health 2007;61(12):1042–9.

[10] Latkin CA, Curry AD. Stressful neighborhoods and depression: a prospec-
tive study of the impact of neighborhood disorder. J Health Soc Behav
2003;34–44.

[11] Kim D. Blues from the neighborhood? Neighborhood characteristics and
depression. Epidemiol Rev 2008;30(1):101–17.

[12] Ellaway A, Macintyre S, Bonnefoy X. Graffiti, greenery, and obesity
in adults: secondary analysis of European cross sectional survey. BMJ
2005;331(7517):611–2.

[13] Glass TA, Rasmussen MD, Schwartz BS. Neighborhoods and obesity in older
adults: the Baltimore Memory Study. Am J Prev Med 2006;31(6):455–63.

[14] Boehmer T, Hoehner C, Deshpande A, Ramirez LB, Brownson RC. Perceived
and observed neighborhood indicators of obesity among urban adults. Int
J Obes 2007;31(6):968.

[15] Stafford M, Cummins S, Ellaway A, Sacker A, Wiggins RD, Macintyre S.
Pathways to obesity: identifying local, modifiable determinants of physical
activity and diet. Soc Sci Med 2007;65(9):1882–97.

[16] Grafova IB. Overweight children: assessing the contribution of the built
environment. Prevent Med 2008;47(3):304–8.

[17] Skogan WG. Disorder and decline: Crime and the spiral of decay in
American neighborhoods. Univ of California Press; 1992.

[18] Sampson RJ, Raudenbush SW. Systematic social observation of public
spaces: A new look at disorder in urban neighborhoods. Am J Sociol
1999;105(3):603–51.

[19] Skogan W. Disorder and decline: The state of research. J Res Crime
Delinquency 2015;52(4):464–85.

[20] Wilson JS, Kelly CM, Schootman M, Baker EA, Banerjee A, Clennin M, et
al. Assessing the built environment using omnidirectional imagery. Am J
Prev Med 2012;42(2):193–9.

[21] Rundle AG, Bader MD, Richards CA, Neckerman KM, Teitler JO. Using
Google Street View to audit neighborhood environments. Am J Prev Med
2011;40(1):94–100.

[22] QGIS Development Team. QGIS geographic information system. Open
Source Geospatial Foundation; 2009, http://qgis.osgeo.org.

[23] c⃝2019 Neo4j, Inc.. Neo4j graph platform. 2019, https://neo4j.com/.
Retrieved: 2019-12-04.

[24] Reese G. Database programming with JDBC and JAVA. " O’Reilly Media,
Inc."; 2000.

[25] c⃝2019 Docker Inc.. Docker overview. 2019, https://docs.docker.com/
engine/docker-overview/. Retrieved: 2020-02-28.

[26] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
et al. Scikit-learn: Machine learning in Python. J Mach Learn Res
2011;12:2825–30.

[27] Django Software Foundation. About the django software foundation. 2021,
https://www.djangoproject.com/foundation/. Retrieved: 16/06/2021.

[28] Vlissides J, Helm R, Johnson R, Gamma E. Design patterns: Ele-
ments of reusable object-oriented software. Reading: Addison-Wesley
1995;49(120):11.

[29] Django Software Foundation. Managers - django documentation -
django. 2021, https://docs.djangoproject.com/en/2.2/topics/db/managers/.
Retrieved: 16/06/2021.

[30] Oliveira AAAM. INACITY’s Back-end diagram. 2021, https://github.
com/arturandre/INACITY/raw/master/django_website/docs/diagrams/
backendDiagram.png. Last access 28/06/2021.

[31] Oliveira AAAM. INACITY’s Back-end class diagram. 2021, https:
//github.com/arturandre/INACITY/raw/master/django_website/docs/
diagrams/inacity_components.png. Last access 28/06/2021.

[32] OpenStreetMap contributors. 2017, Planet dump retrieved from https:
//planet.osm.org, https://www.openstreetmap.org.

[33] Butler H, Daly M, Doyle A, Gillies S, Schaub T, Schaub T. The GeoJSON
format. RFC 7946, RFC Editor; 2016, http://dx.doi.org/10.17487/RFC7946,
https://rfc-editor.org/rfc/rfc7946.txt.

[34] Oliveira AAAM. INACITY’s Front-end diagram. 2021, https://github.
com/arturandre/INACITY/raw/master/django_website/docs/diagrams/
frontendDiagram.png. Last access 28/06/2021.

[35] Google Inc. Google street view. 2017, https://www.google.com/maps/
streetview/. Last access 05/11/2017.

[36] c⃝RegisTree 2016. Pasadena urban trees. 2016, http://www.vision.caltech.
edu/registree/publications-and-dataset.html. Retrieved: 2019-12-04.

[37] Prefeitura de São Paulo. Mapa digital da cidade de São Paulo. 2020,
http://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx. Last access
01/03/2020.

[38] Arcos-Garcia A, Alvarez-Garcia JA, Soria-Morillo LM. Evaluation of deep
neural networks for traffic sign detection systems. Neurocomputing
2018;316:332–44.

[39] OpenStreetMap Wiki. KartaView — OpenStreetMap Wiki. 2021, https://
wiki.openstreetmap.org/w/index.php?title=KartaView&oldid=2163193. Re-
trieved: 18/06/2021.

[40] Oliveira AAAM. INACITY’s GeoImage class diagram. 2021, https:
//github.com/arturandre/INACITY/blob/master/django_website/docs/
diagrams/GeoImage_example.png. Last access 28/06/2021.

[41] Mappilary. About - Mappilary. 2021, https://www.mapillary.com/about.
Last access 10/06/2021.

[42] c⃝2019 Baidu. Baidu map (Translated from chinese). 2019, https://map.
baidu.com/. Retrieved: 2019-12-04.

[43] Oliveira AAAM. INACITY use cases. 2021, https://youtu.be/K525hS7SsAg.
Last access 10/03/2021.

[44] Oliveira AAAM. INACITY’s Street sampling diagram. 2021, https:
//github.com/arturandre/INACITY/blob/master/django_website/docs/
diagrams/diagram_street_sampling.png. Last access 28/06/2021.

[45] OpenStreetMap contributors. Overpass API/Overpass QL - openstreetmap
wiki. 2019, https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_
QL.

[46] Oliphant T. NumPy: A guide to NumPy. USA: Trelgol Publishing; 2006,
http://www.numpy.org/. Retrieved: 2020-02-28.

[47] van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne Fc, Warner JD,
Yager N, et al. Scikit-image: image processing in Python. PeerJ
2014;2:e453. http://dx.doi.org/10.7717/peerj.453, https://doi.org/10.7717/
peerj.453.

[48] Oliveira AAAM, Hirata Jr R, Buckeridge MS. Detecting trees near electric
wires with deep learning. 2021, [submitted for publication].

[49] Oliveira AAAM. Quota subsystem diagram. 2021, https://github.com/
arturandre/INACITY/blob/master/django_website/docs/diagrams/quota_
system.png. Last access 28/06/2021.
8

https://blog.openstreetmap.org/wp-content/uploads/2020/07/Providing-data-to-OpenStreetMap.pdf
https://blog.openstreetmap.org/wp-content/uploads/2020/07/Providing-data-to-OpenStreetMap.pdf
https://blog.openstreetmap.org/wp-content/uploads/2020/07/Providing-data-to-OpenStreetMap.pdf
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb2
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb2
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb2
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb3
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb3
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb3
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb3
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb3
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb4
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb4
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb4
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb4
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb4
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb4
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb4
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb5
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb5
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb5
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb6
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb6
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb6
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb6
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb6
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb7
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb7
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb7
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb8
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb8
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb8
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb8
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb8
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb9
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb9
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb9
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb9
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb9
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb9
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb9
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb10
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb10
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb10
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb10
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb10
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb11
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb11
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb11
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb12
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb12
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb12
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb12
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb12
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb13
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb13
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb13
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb14
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb14
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb14
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb14
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb14
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb15
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb15
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb15
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb15
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb15
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb16
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb16
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb16
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb17
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb17
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb17
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb18
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb18
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb18
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb18
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb18
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb19
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb19
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb19
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb20
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb20
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb20
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb20
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb20
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb21
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb21
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb21
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb21
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb21
http://qgis.osgeo.org
https://neo4j.com/
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb24
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb24
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb24
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb26
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb26
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb26
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb26
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb26
https://www.djangoproject.com/foundation/
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb28
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb28
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb28
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb28
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb28
https://docs.djangoproject.com/en/2.2/topics/db/managers/
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/backendDiagram.png
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/backendDiagram.png
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/backendDiagram.png
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/backendDiagram.png
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/backendDiagram.png
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/inacity_components.png
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/inacity_components.png
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/inacity_components.png
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/inacity_components.png
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/inacity_components.png
https://planet.osm.org
https://planet.osm.org
https://planet.osm.org
https://www.openstreetmap.org
http://dx.doi.org/10.17487/RFC7946
https://rfc-editor.org/rfc/rfc7946.txt
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/frontendDiagram.png
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/frontendDiagram.png
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/frontendDiagram.png
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/frontendDiagram.png
https://github.com/arturandre/INACITY/raw/master/django_website/docs/diagrams/frontendDiagram.png
https://www.google.com/maps/streetview/
https://www.google.com/maps/streetview/
https://www.google.com/maps/streetview/
http://www.vision.caltech.edu/registree/publications-and-dataset.html
http://www.vision.caltech.edu/registree/publications-and-dataset.html
http://www.vision.caltech.edu/registree/publications-and-dataset.html
http://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb38
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb38
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb38
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb38
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb38
https://wiki.openstreetmap.org/w/index.php?title=KartaView&oldid=2163193
https://wiki.openstreetmap.org/w/index.php?title=KartaView&oldid=2163193
https://wiki.openstreetmap.org/w/index.php?title=KartaView&oldid=2163193
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/GeoImage_example.png
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/GeoImage_example.png
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/GeoImage_example.png
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/GeoImage_example.png
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/GeoImage_example.png
https://www.mapillary.com/about
https://map.baidu.com/
https://map.baidu.com/
https://map.baidu.com/
https://youtu.be/K525hS7SsAg
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/diagram_street_sampling.png
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/diagram_street_sampling.png
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/diagram_street_sampling.png
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/diagram_street_sampling.png
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/diagram_street_sampling.png
https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL
https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL
https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL
http://www.numpy.org/
http://dx.doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb48
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb48
http://refhub.elsevier.com/S2352-7110(21)00091-1/sb48
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/quota_system.png
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/quota_system.png
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/quota_system.png
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/quota_system.png
https://github.com/arturandre/INACITY/blob/master/django_website/docs/diagrams/quota_system.png

	INACITY - INvestigate and Analyze a CITY
	Introduction
	Methodology and software description
	Software architecture
	Software functionalities
	Extending the platform
	GeoImage
	Image filter module
	Image Provider module
	Map Miner module


	Results and illustrative examples
	Neighborhood visual inspection
	Urban feature visualization (greenery)

	Demo site, impact and limitations
	Quota module
	Performance tests

	Discussion and conclusions
	Declaration of competing interest
	Acknowledgments
	References


