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São José dos Campos, Brazil
{alvaro.fazenda,ffaria}@unifesp.br

Abstract—Tropical forests represent the home of many species
on the planet for flora and fauna, retaining billions of tons of
carbon footprint, promoting clouds and rain formation, implying
a crucial role in the global ecosystem, besides representing the
home to countless indigenous peoples. Unfortunately, millions
of hectares of tropical forests are lost every year due to de-
forestation or degradation. To mitigate that fact, monitoring
and deforestation detection programs are in use, in addition
to public policies for the prevention and punishment of crim-
inals. These monitoring/detection programs generally use remote
sensing images, image processing techniques, machine learning
methods, and expert photointerpretation to analyze, identify and
quantify possible changes in forest cover. Several projects have
proposed different computational approaches, tools, and mod-
els to efficiently identify recent deforestation areas, improving
deforestation monitoring programs in tropical forests. In this
sense, this paper proposes the use of pattern classifiers based on
neuroevolution technique (NEAT) in tropical forest deforestation
detection tasks. Furthermore, a novel framework called e-NEAT
has been created and achieved classification results above 90%
for balanced accuracy measure in the target application using
an extremely reduced and limited training set for learning the
classification models. These results represent a relative gain of
6.2% over the best baseline ensemble method compared in this
paper .

I. INTRODUCTION

Tropical forests are located between the tropics of Capricorn
and Cancer, close to the equator. They have hot and humid
weather, great biodiversity (more than half of the species of
the planet) besides regulating the climate and rainfall through
their plants and trees that also absorb large amounts of carbon
dioxide [1], [2].

Unfortunately, tropical forests suffer from indiscriminate
and progressive deforestation and degradation due to livestock,
agriculture, wood extraction, or urban area expansion [1].
According to INPE (Brazilian’s National Institute for Space
Research), the deforestation in the Brazilian Legal Amazon
(BLA) between the period of August 1, 2019, and July 31,
2020, was 10, 851km2, an increase of 7.13% considering the
previous period [3]. This increasing deforestation can bring
irreversible and catastrophic consequences, such as loss of
biodiversity, climate change, desertification, water scarcity,
increase in diseases, and even the emergence of pandemics [2].

*The G. A. Pimenta and F. A. Faria contributed equally to this work
(co-first authorship).

Monitoring programs by government agencies and non-
profit institutions were created to help the conservation of trop-
ical forests. These programs use remote sensing imagery, im-
age processing, machine learning methods, and experts’ photo-
interpretation to analyze, identify and quantify changes in the
environment [1]. Some monitoring programs are PRODES,
DETER, SipamSAR, SAD, and GLAD.

PRODES (Amazon Deforestation Monitoring Project), a
program created in 1988 by the INPE, uses experts’ photo-
interpretation of satellites imagery to map and calculate the
annual deforestation rate of BLA. Most of the analyzed images
are from Landsat satellites [4], providing 30 meters of spatial
resolution and 16 days of revisit time. PRODES methodology
can be divided into three steps: (1) image selection and
enhancing of the scenes with little cloud cover acquired near
August, 1; (2) mapping of deforestation polygons by the
experts’ photo-interpretation; and (3) calculation of the annual
deforestation rate [5]. The classified mosaic and deforestation
rates come from the TerraBrasilis platform [6]. PRODES data
don’t infer on regenerated areas, therefore deforested segments
are included in an exclusion mask used in subsequent years.
This mask also takes into account different vegetation and
hydrography areas.

DETER program, also held by INPE, was created in 2004 to
stop or mitigate the beginning or extension of a deforestation
process. Images with little cloud cover are daily collected with
64 meters of spatial resolution from sensor WFI/CBERS-4.
Soil, shadow, and vegetation fractions are estimated through
a Linear Spectral Mixing Model, considering an image com-
posed of red, near-infrared, and green bands. Soil and shade
fractions are photo-interpreted and analyzed by experts users
implying possible alerts sent to the authorities [5]. To comple-
ment DETER alerts, the Ministry of Brazil created the program
SipamSAR [7], [8] which uses data from Synthetic Aperture
Radar, enabling the detection of deforestation in areas and
periods with high cloud cover.

SAD and GLAD programs are maintained by the non-profit
institutions Imazon and Global Forest Watch, respectively. The
first analyzes the pixels from optical and radar images of
Landsat and Sentinel satellites according to a threshold of a
spectral index called Normalized Difference Fraction Index
(NDFI) [9], [10]. The estimates are available every month on
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the program’s website. GLAD program uses Landsat images
and bagged decision trees to calculate the pixel’s median
likelihood of forest cover loss which is thresholded at higher
than 50%, generating an alert. This program also monitors
other tropical forests such as Congo Basin and Southeast
Asia [11].

Recently, the ForestEyes project [12]–[14] was proposed
as an alternative solution to support monitoring program of
detecting deforestation in tropical forests. It uses classifiers
based on support vector machines (SVM), however it doesn’t
use PRODES labeling as groundtruth for the training set. In-
stead, it applies Citizen Science [15], [16] concept, which uses
volunteers to classify remote sensing images from Landsat-
8 into Forest or Non-forest and the majority vote of these
volunteer classifications to define the final label of the samples.
The main goal of ForestEyes is to train classifiers with
small but efficient datasets to detect deforestation in tropical
forests, complementing data for official monitoring programs
or generating data where this kind of program does not exist.

In literature, other initiatives have been proposed to improve
deforestation detection tasks which could make the monitoring
more agile, helping the official programs and the experts.
Some of these initiatives rely on traditional machine learning
methods [14], [17], [18] and more recently, deep learning
architectures [19]–[21].

Several deep learning techniques were compared in [19]–
[21] for detecting deforestation in BLA. Images from Landsat-
8 [19]–[21] and Sentinel-2 [21] were used as input of the
models and PRODES data were used as groundtruth. The re-
sults look promising however [19] found that the performance
is inferior with small datasets which could complicate the
process of building a model for broader use. Another challenge
is the detection of recent deforestation in the Amazon, as
remaining vegetation commonly found in its deforestation
process hinders detection [20].

Aiming to improve the classification results in deforestation
detection tasks using a reduced training set, this paper pro-
poses the use of ANN classifiers based on the neuroevolution
technique as well as a framework for combining those ANN
classifiers, which might provide complementary information
to the final ensemble of classifiers.

II. ENSEMBLE OF CLASSIFIERS BASED ON
NEUROEVOLUTION TECHNIQUE

The ensemble of classifiers consists of combining base clas-
sifiers focusing on solving a target problem. They use several
combined classifiers to create a unique and stronger model,
allowing them to accomplish more effective learning [22].
The generalization ability of an ensemble method is usually
higher than the base classifiers, due to the increase in the
diversity of features extracted and decisions made [23]. An
ensemble of classifiers is composed of several base classifiers
such as decision trees (DT), support vector machines (SVM),
and artificial neural networks (ANNs).

A successful technique to create ANNs incrementally
through evolutionary processes is called NEAT (NeuroEvolu-

tion of Augmenting Topologies). NEAT operates by modifying
both connection weights and network structure, to design low-
complexity networks. Such an algorithm proved to be suc-
cessful mainly when applied to tasks involving reinforcement
learning [24].

In the process of evolving ANNs through the neuroevolution
technique, different iteractions are perform during the evolu-
tionary steps, resulting in networks with distinct topologies.
Since diversity between base classifiers is deemed to be a key
factor in the ensemble of classifiers, this paper proposes a
framework for combining NEAT-based ANNs called e-NEAT
(Ensemble based on NEAT) to achieve better results when
compared with other single or multiple classification models.

e-NEAT consists of an ensemble method composed of a
set of ANNs created through the neuroevolution technique
implemented by the NEAT technique. Each ANN belonging to
e-NEAT is created by targeting topologies that differ from each
other so that the vote of the set when combined with some
aggregation strategy can present better classification results
than the vote of a single ANN. To address the diversity among
the ANNs, e-NEAT focuses on two steps in the construction
of the ensemble model: (1) the creation of the ANNs; and (2)
the vote aggregation strategy. Figure 1 illustrates the e-NEAT
method proposed in this work.

A. Steps of the e-NEAT Approach

The steps for building the final e-NEAT model are presented
in Figure 1 through the numbers incorporated into the connec-
tions between the blocks, in total there are five steps detailed
in the following sections.

1) Splitting the Dataset: the first step of the method
consists of creating the two subsets (training and test). In this
work, the deforestation dataset has already been defined in
Section III-A. However, in the other dataset, this step occurs
in stratified sampling, meaning that the proportion between the
classes in each subset is maintained. The number of samples
in the training and test subsets is defined by the user in a
crossvalidation protocol.

2) Neuroevolution using NEAT Technique: The NEAT
technique has been introduced by Kenneth O. Stanley and
Risto Miikkulainen [24]. First, an initial population of ANNs
is created. The second step consists in calculating a measure
of structural similarity between the ANNs to group them into
species that will compete primarily within their niches. Next,
different genetic operations (e.g., selections, reproduction, and
mutation) are applied to create new artificial neural networks
(ANNs) that will compose a new population. This process is
repeated until stop criteria (e.g., the fitness threshold or the
number of generations) is reached. Finally, the best neural
network is found and trained as the NEAT outcome.

The objective of this step is to create neural networks
with simplified topologies as well as they can achieve good
classification results to the target task. Therefore, the method
used by the NEAT technique already covers the evolution
of ANNs gradually, in which the complexity of the final



Fig. 1. Diagram of the e-NEAT method proposed in this work.

neural network is proportional to the difficulty of the problem
exposed to the NEAT technique.

To promote greater diversity among the neural networks
present in the ensemble method (e-NEAT), some parameters
of NEAT technique are changed during the creation of each
ANN, such as population size and the set of available activa-
tion functions. Consequently, the neuroevolution process will
tend to establish distinct paths during evolutionary steps, since
the components available for the creation of the topology and
the conditions are not the same.

During the creation of the final ensemble model (e-NEAT),
n different instances of NEAT technique are initiated, corre-
sponding to the number of ANNs that will compose the final e-
NEAT approach. These instances can occur either sequentially
or in parallel, thus each artificial neural network is the product
of an independent evolution process. At the end of this step,
the model will have n ANNs of different topologies, which
they are combined by an aggregation strategy to provide the
final classification of the ensemble method.

As fitness function (evaluation criteria), the balanced accu-
racy measure is adopted in order to guide the evolutionary
process used in the NEAT technique. The main parameters
assigned to this step consist of defining the fitness value and
the maximum number of generations.

According to Kenneth O. Stanley and Risto Miikku-
lainen [24], due to NEAT technique adds topological elements
(nodes and connections) to the ANN throughout its training,
it is less susceptible to get trapped in local optimum.

3) Creating the Pool of ANNs: at the end of the neuroevo-
lution process, the ANN with the best performance during
training is extracted in the last generation. This procedure
is performed for n different instances of NEAT technique,
resulting in a pool of n ANNs for being combined by an
aggregation strategy (aggregator).

4) Classifier Aggregation Strategies (Aggregator): this
step defines an aggregator that combines the ANNs created

in the previous step, in order to achieve better classification
results when the model is exposed to unseen samples. The
choice of the aggregation strategy is related to its performance
on the validation subset, using balanced accuracy as evaluation
measure. In this work, the aggregation strategy adopted is the
mode of different opinions of base classifiers. This strategy
assigns the classification of the model to the class that received
the highest number of votes (majority voting) from the n
ANNs. In case of tie, the strategy randomly grants the final
vote within the set that presented the same number of votes.

5) Building the Final Ensemble Model: Since the process
of creating the pool of ANNs and the definition of the
aggregation strategies during training have been performed,
the final ensemble model is ready to predict the class of the
unseen samples.

III. EXPERIMENTAL METHODOLOGY

This section describes the experimental methodology
adopted in this paper.

A. Dataset

The dataset consists of images from 5 areas of the State
of Rondônia (Brazil) [14]. Figure 2 shows the study areas
where one area was used as training set (in red) and the
others were used as test set (in blue). As the areas belong
to BLA, PRODES mosaic from the year of 2017 was used to
build the groundtruth images and the remote sensing images
(Figure 3(a)) were the same analyzed by INPE’s experts which
means Landsat-8 images with little cloud cover acquired near
July 31, 2017.

Fig. 2. The five areas from State of Rondônia (Brazil) used in this work.

As this paper focuses on detecting recent deforestation
area, a mask was created to exclude the pixels that received
PRODES’ classification as deforested before August 1, 2016
(the black regions in Figure 3(b)). The pixels outside the
exclusion mask were segmented by MaskSLIC [25] algorithm
with the inputs being a 3-band image built by dimensionality
reduction (Principal Component Analysis, PCA [26]) of 7
Landsat-8 bands and the desired number of segments, which



(a) (b)

Fig. 3. The regions of interest (ROIs) used in this paper. In (a) is a false-composition of the remote sensing image and in (b) is a groundtruth image based
on PRODES mosaic of 2017, which red regions are Non-forest class, green regions are Forest class and black regions are regions no relevant for this paper.

was defined as the number of pixels outside the mask divided
by the minimum size area of deforestation tracked by PRODES
(6.25 hectares, which corresponds to approximately 70 pixels).

In this paper, the segments are classified as Forest (F) or
Non-Forest (NF). The label of each segment is defined by
the majority class of its pixels. So, if a segment has 10 Forest
pixels and 5 Non-Forest pixels, it will have Forest label. Table I
presents the number of segments for each area. Both training
and test areas are unbalanced since the exclusion mask covered
all Non-forest areas before August 1, 2016.

For the training subset just a few segments were collected
from the training area: 29 segments that only present Non-
Forest pixels, segments that are mainly composed by Forest
pixels, and some segments that only present Forest pixels.
Therefore, in this paper, a reduced training scenario has been
adopted meaning that each learning technique has only 91
segments to train a learning model and to classify 57, 646
segments on the test set. Table I presents the number of Non-
Forest and Forest segments for each area of the dataset.

TABLE I
DATASET OF IMAGE SEGMENTS FOR RECENT DEFORESTATION DETECTION

PROPOSED IN [14].

Classes Areas
Training Test 1 Test 2 Test 3 Test 4

Forest (F) 62 7,767 3,166 33,613 8,556
Non-Forest (NF) 29 167 487 3,086 804

Total 91 57,646

Furthermore, due to the reduced size of the training set,
more complex description approaches in the literature (e.g.,
deep learning architectures) were not considered in this paper.
Therefore, the well-known Haralick texture descriptor has
been chosen as image descriptor to code the visual proper-
ties of the segments into feature vectors. Thirteen Haralick’s
coefficients were extracted for each Landsat-8 band. An ex-
haustive study has been conducted in [14] comparing 135 band
combinations to define which bands should to be adopted to
represent those segments. The best results were obtained by

the combination of Landsat-8 bands b4 (red) and b6 (shortwave
infrared I).

B. Learning Methods

In order to compare the performance of the e-NEAT
approach, twelve different machine learning methods were
applied, covering both single classifiers and ensemble meth-
ods. Regarding the single classifiers, were compared MLP
Classifier [27], K-Nearest Neighbors [28], Gaussian NB [29],
Decision Tree [30], and three SVM-based classifiers using
linear, polynomial, and RBF kernels [31]. For the ensemble
methods, were employed: AdaBoost [32], Random Forest [33],
Bagging Classifier [34], Extra Trees and Gradient Boosting
[35]. All of learning methods were implemented through the
Scikit-learn [36] library, without any changes in their default
parameters.

C. Evaluation Measure

Since the database used in this paper is highly unbalanced
between the Forest and Non-forest classes, the balanced ac-
curacy measure (BAcc) has been adopted to compute the real
performance of the methods. The balanced accuracy equation
for binary classification problems is defined by:

BAcc =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
, (1)

where, TP is equal to the number true positives; TN indi-
cates the number of true negatives; FP corresponds to false
positives, and FN is equal to the number of false negatives.
The score ranges from 0 to 1, the higher the score, the greater
the performance.

D. Experimental Setup

The e-NEAT method uses a NEAT implementation called
neat-python [37] to perform experiments with the neuroevo-
lution technique. The main set of parameters defined in the
NEAT technique are: (1) population size is equal to 200;
(2) number of generation is equal to 75; (3) fitness value



is equal to 100% of balanced accuracy; (4) activation func-
tions (sigmoid, tanh, relu, log, clamped, hat, identity, and
softplus); (5) neurons in the hidden layer is equal to 8; and
(6) network configuration is fully conected. Additionally, in
the proposed e-NEAT method one more parameter needs to
define: number of ANNs that compose the ensemble is equal
to 15. All parameters were found through an exhaustive set
of experiments carried out, which take into account the trade-
off between effectiveness (maximize balanced accuracy) and
efficiency (minimize time consumption).

IV. RESULT AND DISCUSSION

In this section, three comparative analyses were performed
in a five-round protocol and the balanced accuracy measure
was computed for each of them. First, an analysis among
single classifiers baselines and the best ANN-based NEAT
technique. Second, a comparison among the ensemble baseline
methods and the proposed e-NEAT. Third, an analysis of the
performance of ANNs based on NEAT technique.

A. Analysis of Single Classifiers

Figure 4 shows the classification results of seven single
baseline classifiers existing in the literature and the best ANN
based on NEAT technique. As can be observed, the best
ANN classifier created by NEAT technique achieved 91.5% of
balanced accuracy against 88.7% achieved by the best baseline
method (SVM using linear kernel) proposed in [14].

Fig. 4. The best classification results for all of baseline single classifiers
compared with the ANN based on NEAT technique.

B. Analysis of Ensemble Methods

Table II shows the classification results of four different
baseline methods existing in literature and the e-NEAT method
proposed in this paper. As can be observed, e-NEAT method
achieved the best results against all of baseline methods.
Furthermore, e-NEAT method showed to be the best ensemble
of classifier with 89.6% of balanced accuracy against 84.4%
achieved by the best baseline method (Bagging Classifier)
using the same amount of base classifiers (15), representing
6.2% of relative gain between them. It is very important to
note that e-NEAT even reduces standard deviation (Std) value,
as well as, it achieves greater balanced accuracies in minimal
(Min.) and maximal (Max.) values.

TABLE II
CLASSIFICATION RESULTS OF FIVE DIFFERENT ENSEMBLE METHODS

BASELINES AND OUR PROPOSED ENSEMBLE METHODS (E-NEAT) FOR 5
ROUNDS OF PERFORMED EXPERIMENTS.

Ensemble Methods Balanced Accuracy
Mean Std Min. Max.

AdaBoost 47.2 0.0 47.2 47.2
Bagging (best baseline) 84.4 3.7 78.8 89.7
Extra Trees 81.9 4.2 76.0 87.1
Gradient Boosting 79.4 1.2 78.3 81.1
Random Forest 81.5 3.9 77.9 87.9

e-NEAT 89.6 0.9 88.3 90.7

In literature, a method can be considered a good ensemble of
classifiers whether it performance at least above the average of
its base classifiers in a target task. Therefore, Figure 5 presents
the classification results extracted from one of the five rounds
of the performed experiments, showing the performance of
fifteen ANNs individually, as well as, the aggregation strategy
(e-NEAT) which combines them. Notice that the pool of
ANNs achieved an average balanced accuracy of 81.4%, while
the e-NEAT method obtained 90.7%. Therefore, it means
that, on average, the classification results achieved by ANNs
(individually created by NEAT) are 11.4% (relative gain)
worse than the ensemble method proposed in this work (e-
NEAT).

Fig. 5. Classification results of the fifteen different ANNs created by NEAT
technique and their combination method represented by e-NEAT for only
one round of the experiments. The mean of balanced accuracy and standard
deviation of ANN-based NEAT are 81.4% and 9.4%, respectively.

V. CONCLUSION

In this paper, a framework for combining artificial neural
networks based on neuroevolution technique (NEAT) has been
proposed. Furthermore, the aggregation strategy has been
developed to combine the NEAT-based ANNs and to improve
the classification results in the recent deforestation detection
task. In performed experiments it was possible to see that



the NEAT technique is able to create more diverse ANNs to
be combined by the aggregation strategy. In addition, the e-
NEAT approach, which uses the mode as aggregation strategy,
achieved the best results with a relative gain of 7.6% against
the best ensemble baseline compared in this paper. Finally,
it was possible to observe that the proposed e-NEAT method
might be a good solution for classifying image segments in
scenarios of reduced training set as the recent deforestation
detection task.

ACKNOWLEDGEMENTS

Authors would like to thank the research funding agen-
cies CAPES, CNPq through the Universal Project (grant
#408919/2016-7). This research is part of the INCT of the
Future Internet for Smart Cities funded by CNPq (grant
#465446/2014-0), CAPES (Finance Code 001), and FAPESP
(grants #2014/50937-1, #2015/24485-9, #2017/25908-6, and
#2018/23908-1 ).

REFERENCES

[1] E. F. Luz, F. R. Correa, D. L. González, F. Grey, and F. M. Ramos,
“The forestwatchers: a citizen cyberscience project for deforestation
monitoring in the tropics,” Human Computation, vol. 1, no. 2, pp. 137–
145, 2014.

[2] C. Martin, On the Edge: The State and Fate of the World’s Tropical
Rainforests. Greystone Books Ltd, 2015.

[3] INPE, “The consolidated rate of clear-cut deforestation for the nine
states of the legal amazon in 2020 was 10, 851km2,” http://www.inpe.
br/noticias/noticia.php?Cod Noticia=5811, 2021, accessed: 2021-01-10.

[4] USGS, Landsat Surface Reflectance-Derived Spectral Indices, Product
Guide, Version 3.6, 2017.

[5] A. Souza, A. M. Vieira Monteiro, C. Daleles Rennó, C. A. Almeida,
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Brasileira,” Master’s thesis, Universidade Federal do Amazonas, 2015.

[8] A. Crosta, C. Carneiro, W. Paradella, and A. Santos, “Mapsar simulation
campaign evaluation of the sivam/sipam sar system for geologic mapping
in carajas mineral province,” in Anais XIII Simposio Brasileiro de
Sensoriamento Remoto. INPE, 2007, pp. 4841–4848.

[9] C. M. Souza, D. A. Roberts, and M. A. Cochrane, “Combining spectral
and spatial information to map canopy damage from selective logging
and forest fires,” Remote Sensing of Environment, vol. 98, no. 2, pp. 329
– 343, 2005.

[10] C. M. de Souza Jr, S. Hayashi, and A. Verı́ssimo, “Near real-time
deforestation detection for enforcement of forest reserves in mato
grosso,” in Proceedings of Land Governance in Support of the Millen-
nium Development Goals Responding to New Challenges, World Bank
Conference, Washington, DC, 2009.

[11] M. C. Hansen, A. Krylov, A. Tyukavina, P. V. Potapov, S. Turubanova,
B. Zutta, S. Ifo, B. Margono, F. Stolle, and R. Moore, “Humid tropical
forest disturbance alerts using landsat data,” Environmental Research
Letters, vol. 11, no. 3, p. 034008, 2016.

[12] F. Dallaqua, A. Fazenda, and F. Faria, “ForestEyes project: Can citizen
scientists help rainforests?” in IEEE 15th International Conference on
eScience, 9 2019, pp. 18–27.

[13] F. B. Dallaqua, A. L. Fazenda, and F. A. Faria, “Foresteyes project:
Conception, enhancements, and challenges,” Future Generation Com-
puter Systems, 2021.

[14] F. B. J. R. Dallaqua, F. A. Faria, and A. L. Fazenda, “Building data sets
for rainforest deforestation detection through a citizen science project,”
IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.

[15] F. Grey, “Viewpoint: The age of citizen cyberscience,” Cern Courier,
vol. 29, 2009.

[16] J. Silvertown, “A new dawn for citizen science,” Trends in ecology &
evolution, vol. 24, no. 9, pp. 467–471, 2009.

[17] Z. Zhu and C. E. Woodcock, “Continuous change detection and classi-
fication of land cover using all available landsat data,” Remote sensing
of Environment, vol. 144, pp. 152–171, 2014.

[18] A. Schneider, “Monitoring land cover change in urban and peri-urban
areas using dense time stacks of landsat satellite data and a data mining
approach,” Remote Sensing of Environment, vol. 124, pp. 689–704, 2012.

[19] P. P. De Bem, O. A. de Carvalho Junior, R. Fontes Guimarães, and R. A.
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