A Scalable Data Integration Architecture for Smart Cities:
Implementation and Evaluation

Murilo B. Ribeiro, Kelly R. Braghetto

Department of Computer Science — Institute of Mathematics and Statistics
University of Sdo Paulo (USP)

{muriloribeiro,kellyrb}@ime.usp.br

Abstract. The collection, processing, and analysis of data generated by varied sources can help us better understand
the functioning and demands of the cities. However, developing efficient solutions to explore urban data is challenging
due to the large volume, heterogeneity, and lack of accessibility and integration of this kind of data. In this work,
we identify the main requirements of a data integration system to support decision-making in cities, focusing on its
challenges. We analyze some existing data integration solutions, to uncover their features and limitations. Based
on these results, we propose a new microservice architecture to support the development of software platforms for
integrating smart cities’ heterogeneous data and a guideline to assess their performance. We also present details of a
proof-of-concept implementation of the proposed architecture and its performance evaluation. The results demonstrate
that the platform can scale horizontally to handle the highly dynamic demands of a smart city while maintaining low
response times.

Categories and Subject Descriptors: H.2.8 [Database Management|: Database Applications; H.3.4 [Information
Storage and Retrieval|: Systems and Software; H.3.5 [Information Storage and Retrieval|: Online Information
Services

Keywords: Smart Cities, Data Integration, Data Management

1. INTRODUCTION

The smart cities concept has emerged from the idea of applying information and communication
technology to make cities more efficient. There is no clear and consensual definition for smart cities,
but one of their main characteristics is the use of technology to promote environmental sustainability
and improve the quality of life for citizens [Albino et al. 2015; Al Nuaimi et al. 2015].

The urban data, i.e. data gathered in the cities, has a paramount importance in the building of
smart cities. The increasing availability of electronic devices with sensing capacity and computational
power, capable of receiving and sending information, causes a large amount of data from different
sources and in different structures to be continuously produced in cities. Cities also accumulate data
generated by government entities, citizens and systems.

[Zheng et al. 2014] classify urban data into five categories: (i) urban mobility data such as traffic
data [Yue et al. 2016], displacement, and mobile telephony; (ii) geographic data such as information
about the transport network, road network, and areas of interest; (iii) social media data such as text,
photos, and videos; (iv) environmental data such as those from weather and energy consumption;
and (v) data from other sources not necessarily related to the urban context such as public service,
Health [Klemm et al. 2016], and Economy.
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The collection, cleaning, integration, transformation, and analysis of large amounts of data gen-
erated by different sources can help us to have a better understanding of the deficiencies of cities.
Urban data can be used to assist the evidence-based decision-making and the development of public
policies aimed at making the best use of the available resources and the improvement in the quality of
life of the population. For example, the crossing of records of the municipal health department with
sociodemographic, meteorological, and social networks data can be used to monitor and prevent the
evolution of endemic diseases such as Dengue.

In order to gather and extract value from urban data, smart cities rely on sophisticated hardware
and software infrastructures. [Silva et al. 2018] described these infrastructures as a layered architecture
where the lowest layer, Sensing Layer, refers to the available sources, detection and data collection.
The second layer, Transmission Layer, is responsible for the data transmission using wireless tech-
nology (3G, 4G, 5G, Bluetooth), wired or via satellite. The third layer, Data Management Layer, is
considered the brain of any smart city as it is responsible for the storage, organization, manipulation,
and analysis of data; event management; and decision making. The fourth layer, Application Layer,
is responsible for providing services to citizens based on the data management layer.

The development of solutions to explore urban data faces difficulties due to the lack of accessibility
and integration of data [Raghavan et al. 2020]. This happens because many systems are built in
silos: they are closed and developed for specific needs. Data integration systems for smart cities
have already been the subject of several research works [Psyllidis et al. 2015; Consoli et al. 2015;
Cheng et al. 2015; Rathore et al. 2016; Hashem et al. 2016; Costa and Santos 2017; Mehmood et al.
2019]. Despite these works present some approaches for the different stages of data integration (such
as ingesting, processing, storing, analyzing, and visualizing data), there are still open issues and
place for improvement in such systems. Examples of issues are the insufficient support for metadata
management and the lack of data query facilities for non-specialist users, which makes the discovery
and the reuse of urban data more difficult.

In this work, we analyze some of the data integration solutions for smart cities reported in scientific
literature, to uncover their features and limitations. Two main research questions have guided our
analyses:

(1) What are the main challenges and issues identified by the researchers for data integration in smart
cities?

(2) What are the functional and non-functional requirements of a software platform for data integra-
tion in smart cities?

Based on this analysis, we propose a microservices architecture to guide the development of software
platforms for integrating smart cities’ heterogeneous data and facilitating its use. This architecture
was designed to support all the required services (i.e. data ingestion, metadata management, data
processing, data analysis, and data visualization) while providing scalability, availability, security, and
privacy. We also present a guideline to assess performance of systems that implement the proposed
architecture. The guideline follows the Cloud Evaluation Experiment Methodology (CEEM) [Li et al.
2013], used for systematically evaluating cloud services’ performance through experiments.

This article is an extended version of the work presented in [Ribeiro and Braghetto 2021]. Here,
we present as new contributions the description of a proof-of-concept implementation of the core
microservices of the proposed architecture and results of their experimental performance evaluation.
The results showed that the architecture keeps response times and latency in acceptable ranges and
is capable of scale horizontally to handle a varying workload.

The remainder of this paper is organized as follows. Section 2 analyzes the related works, iden-
tifying the requirements of the data integration platforms. Section 3 introduces our microservices
architecture, providing details of each one of its services. The guideline for the performance evalu-
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ation of implementations of the architecture is presented in Section 4. We present in Section 5 the
implementation details of the proof of concept and the results of the load and scalability experiments.
Finally, Section 6 presents the concluding remarks.

2. SOFTWARE PLATFORMS FOR DATA INTEGRATION IN SMART CITIES

This section discuss some representative research works that present different software approaches to
data integration in smart cities. First, we describe the existing platforms and systems. After, we
present the functional and non-functional requirements extracted from the analysis of these works,
and discuss the challenges and issues identified.

2.1 Related Work

We have searched Google Scholar! for works published from 2015 until 2021 using the search string:
((“data integration” or “semantic data integration” or “data warehouse” or “data lake” or “big data”)
and “smart cities”). This search string covers both conceptual works (i.e., discussing approaches and
proposing data models) and practical works (i.e., that present system architectures and tools). Among
the found practical works, we observed that most are domain-specific solutions for some smart city
application. Despite the large number of publications related to data integration in smart cities, only
a few works present general-purpose data integration software solutions that can support the various
types of applications a smart city may have. This section analyzes the general-purpose solutions only.

We have analyzed the abstract, keywords, and the introduction (when necessary) of each of the
returned papers to filter those that present software architectures to integrate heterogeneous data
in smart cities. From this filtering, we reached the works of [Psyllidis et al. 2015], [Consoli et al.
2015], [Cheng et al. 2015], [Rathore et al. 2016], [Hashem et al. 2016], [Costa and Santos 2017, and
[Mehmood et al. 2019]. Most of them developed distributed, multi-tiered systems, capable of handling
data both in batch and real time, and supporting a large variety of services for applications and final
users.

[Psyllidis et al. 2015] developed SocialGlass, a web platform that offers resources for analysis, in-
tegration, and visualization of heterogeneous urban data in order to assist in urban planning and
decision-making. The SocialGlass architecture is divided into three main modules: ingestion, integra-
tion and exploration. The ingestion module refers to the acquisition, cleaning, and processing of social
and sensor data. The integration module is responsible for enabling interoperability between different
data sources. To achieve that, an ontology-based knowledge representation model was developed,
which represents urban systems, the relationships between them, and the corresponding data sources.
The exploration module offers a map-based web interface for data visualization and exploration, mak-
ing it possible to obtain insights about spatial and temporal parameters of the urban context. Details
of the technologies used in the implementation were not provided. The system does not support data
processing and access via external platforms.

[Consoli et al. 2015] presented an ontology integration approach using Linked Data (a set of practices
for publishing and connecting data on the Web). In their work, each dataset was converted to an
RDF (Resource Description Framework) data model using custom processes. With the help of domain
experts, ontologies were generated for each dataset, to achieve conceptual interoperability. Data and
ontology are accessible by querying the SPARQL API. The ingestion, processing, and visualization of
data were out of the scope of their work.

[Cheng et al. 2015] proposed a Big Data architecture integrated with the IoT SmartSantander ex-
perimental test environment. This architecture is divided into four main modules: (1) data collection,

'https://scholar.google.com/ (Retrieved: 05/20/2022)
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(2) data storage, (3) data processing and analysis, and (4) API for communicating with external ap-
plications. The data collection module is represented by a broker, which is responsible for receiving
data from different sources. A NoSQL database is used for data storage. Data processing and analysis
are done in batch or stream by using a distributed computing tool. The module for communicating
with external applications has a RESTful API to allow external applications to make simple queries,
complex queries, and subscriptions. A simple query might request aggregated results about the latest
status of all sensors, while a complex query might request aggregated results about historical data
within a specified time frame. Subscription is the mechanism used for apps to receive notifications
with the latest results, preventing the apps from querying the data all the time. This architecture
does not feature a visualization module for stored data and metadata, making it difficult for public
managers to use it.

[Rathore et al. 2016] proposed a system for collecting, aggregating, filtering, sorting, pre-processing,
computing, and decision-making using the Data Lake approach combined with Data Warehouse. The
proposed system is divided into four layers: (1) data generation and collection, (2) data transmission,
(3) data management and processing, and (4) data analysis. The first and second layers are responsible
for collecting data using sensors and transferring the data to the storage platform; therefore, they are
in a lower level than the services considered in this work. The third layer, data management and
processing, use a distributed file system (HDFS — Hadoop Distributed File System) and distributed
computing tools for real-time data processing. For historical data, the authors suggested the use of
a tool for Data Warehouses (Apache Hive?) and distributed databases (Apache HBase®). The fourth
layer is composed of several applications, each one for a different type of planning. The architecture
does not support metadata management and data analysis.

Similarly, the smart cities Big Data architecture proposed by [Hashem et al. 2016] is divided into
four layers. The first is composed of sources and transferring of data, while the second is responsible
for storing the data in a distributed and fault-tolerant database. In the latter, the stored data is
processed according to the queries received using a parallel and distributed processing programming
model. The third layer, intelligent analytics, was designed to support the use of machine learning and
data mining to extract patterns and knowledge from large amounts of data. The last layer is made up
of applications that use the stored data for varied purposes, such as intelligent management of public
resources.

[Costa and Santos 2017] presented an approach to design and implement a Big Data Warehouse in
the context of smart cities, with a repository that stores data in raw format. The proposed architecture
is divided into four major modules responsible for data collection, preparation and enrichment, storage
and access, analysis and visualization. Data can be collected in real-time using a broker (Apache
Kafka?), or in batch using an ETL tool, e.g. Talend® and HDFS Upload. The data collected in batch
is directly stored in files on a distributed system, prepared and enriched using a distributed computing
tool (Apache Spark®), and then stored in a Data Warehouse (Apache Hive). Data collected in real time
is also stored in a distributed file system, prepared and enriched using a distributed computing tool,
and later stored in a distributed database (Apache Cassandra’). The stored data can be accessed
by a distributed SQL query tool (Presto®) and by a data visualization tool. The proposed model
was implemented in the SusCity research project and was used to analyze data collected in the city
of Lisbon. The solution does not support metadata management and accessing data via external
platforms.

Similarly, [Mehmood et al. 2019] proposed an architecture divided into five modules responsible for
data collection, ingestion, storage, exploration and analysis, and visualization. For data ingestion,

2https://hive.apache.org (Retrieved: 05/20/2022) Shttps://spark.apache.org (Retrieved: 05/20/2022)
Shttps://hbase.apache.org (Retrieved: 05/20/2022) "https://cassandra.apache.org (Retrieved: 05/20/2022)
4nttps://kafka.apache.org (Retrieved: 05/20/2022) 8https://prestodb.io (Retrieved: 05/20/2022)

Shttps://www.talend.com (Retrieved: 05/20,/2022)
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they proposed the use of a stream processing tool (Apache Flume®) with storage in a distributed
file system (HDFS). Data analysis and exploration were performed using a distributed indexing tool
(Apache Solr'?) and distributed computing (Apache Spark). For data visualization, a SQL query web
tool (Hue!!') and the Matplotlib!? library were used. The presented metadata management requires
data uniformity, making it difficult to analyze the data from the different sectors of the city.

2.2 Requirements for Data Integration Software Platforms

2.2.1  Functional Requirements. The main goal of a platform for data integration in smart cities
is to facilitate the development of applications that use data combined from different sources. To this
end, most of the analyzed platforms implement requirements for data ingestion, processing, analysis,
visualization, and data sharing. Table I provides an overview of how the related works cover these
functional requirements. Each requirement is described in the sequence.

Table I. Functional Requirements

Ingestion | Metadata | Processing | Machine | Analysis and | External
Learning | Visualization Access
[Psyllidis et al. 2015] X X X
[Consoli et al. 2015] X X
[Cheng et al. 2015] X
[Rathore et al. 2016]
[Hashem et al. 2016]
[Costa and Santos 2017]
[Mehmood et al. 2019]

X| X X[ X[ X
X| X[ X[ X[ X
X
X

Data ingestion is the process of importing real-time or batch data into the storage platform. Data
can come from different sources, in different formats, such as CSV, TXT, JSON, and others.

Metadata management is the process of collecting and managing information about data stored
on the platform. Metadata must contain information about the semantics and structure of data
collections. Metadata should also keep information about the mappings needed to standardize data
and guarantee backward compatibility, in order to enable data integration and ease of use.

The data arriving at the platform may be inaccurate, incomplete, inconsistent, or redundant. Ad-
ditionally, this data may need aggregation, filtering, or analysis before enabling knowledge discovery.
Thus, platforms must offer resources for creating and executing data processing procedures.

Extracting knowledge and insights of data is of paramount importance to enable better decision-
making in cities and support the implementation of efficient public policies. Therefore, data integration
platforms must enable the creation, maintenance, and execution of custom machine learning models.

Data analysis and visualization refer to the presentation of data in user-friendly graphical
formats, to help users understand the behavior of cities and the use of resources. A data integration
platform must offer features to support the creation of custom reports and dashboards for managers
to convert data into knowledge.

The external access refers to the possibility of external systems consuming the data stored on
the platform, allowing the development of new applications to improve the services provided to the

9https://flume.apache.org (Retrieved: 05/20/2022) Uhttps://gethue.com (Retrieved: 05/20,/2022)
Ohttps://solr.apache.org (Retrieved: 05/20/2022) 2nttps://matplotlib.org (Retrieved: 05/20/2022)
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population or to optimize the use of available resources. Only authorized users or systems should have
access to the data.

2.2.2  Non-functional Requirements. Table II shows the non-functional requirements mentioned in
the related work of Section 2.1. We describe each one of the requirements in the sequence.

Table II. Non-functional Requirements

Scalability | Availability | Security and Privacy
[Psyllidis et al. 2015] X
[Consoli et al. 2015]
[Cheng et al. 2015] X
[Rathore et al. 2016] X X
Hashem et al. 2016] X
Costa and Santos 2017] X
[Mehmood et al. 2019] X X

Scalability refers to the ability to increase or decrease computational resources according to the
need of the system. Scalability can be vertical, meaning adding (removing) resources to (from) a
single node; or horizontal, when adding (removing) nodes to (from) a distributed system.

Availability refers to the ability of the platform to be resilient to hardware, software, and power
failures to keep services available for as long as possible.

Security and privacy refer to restrict access to the stored data to authorized users and systems,
preventing leakage and misuse of information. It also includes the platform’s ability to comply with
data protection policies so that sensitive data is properly anonymized and secured.

The implementation of these requirements imposes challenges due to the large volume of data and
the heterogeneity of sources and formats. According to [Cheng et al. 2015], scalability is an important
issue as the amount of data greatly increases over time, with the availability of new services and
technology, and also with the population growth. Security and privacy are important issues as well
since there is a lot of sensitive data being collected in smart cities, and the cyber attack attempts
become each day more frequent [Cheng et al. 2015; Hashem et al. 2016].

3. A MICROSERVICE ARCHITECTURE FOR DATA INTEGRATION IN SMART CITIES

A microservice architecture is a distributed application where all its modules are small services,
each of them being a cohesive, independent process that communicates with others via lightweight
mechanisms [Dragoni et al. 2017].

We adopted the microservice architectural style in the development of the system architecture
proposed in this work in order to achieve scalability and evolvability. Moreover, we have followed the
same set of design principles adopted and evaluated in the development of InterSCity, an open-source
platform for smart cities [Del Esposte et al. 2017; Del Esposte et al. 2019]. In the following, we briefly
describe these principles, which are aligned with the microservices patterns [Taibi et al. 2018]:

—Modularity: consists of dividing the system into smaller functional units (microservices) that com-
municate using lightweight APIs;

—Distributed models and data: each microservice has its own database and models, allowing the use
of the technology that best adapts to each context;
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Fig. 1. The proposed software architecture for data integration in smart cities. Microservices with features not provided
by the solutions of the related work are highlighted in bold.

—Decentralized evolution: microservices must be autonomous, with well-defined boundaries and com-
munication APIs so that they can evolve and be maintained independently. Microservices must be
able to scale independently, possibly using different strategies;

—Reuse of open source projects: reusing software components allows to increase software productivity,
economy and reliability;

—Adoption of open standards: open standards aim to provide interoperability at different levels,
avoiding technology and vendor lock-in;

—Asynchronous communication: whenever possible, services should use asynchronous communica-
tion, to avoid blocking in synchronous request-response interactions, provide low latency, and allow
scalability. This can be made through notifications, the publish-subscribe design pattern, and
event-based communication strategies;

—Stateless service: services should be stateless to allow any service instance to respond to any request,
facilitating load distribution, elasticity, and scalability. State data, such as context and session data,
should be separated to be managed by an external component whenever possible.

Considering the microservice architectural style and the design principles adopted, we divided the
proposed system into a distributed file system (DFS) and seven microservices: Data Ingestion, Meta-
data Management, Data Query, User Management, and Public UIL. Figure 1 shows the diagram of the
proposed architecture. This architecture was initially derived from the architectures of related works,
and then it was significantly improved to address the requirements and issues discussed in Section 2.2.

3.1 Components of the Architecture

The lowest-level component in the proposed architecture is the Data Lake Storage, a distributed
storage system responsible for storing data as close as possible to its original format, so that end-
users do not need to understand details of how data is stored in order to be able to use it. To
prevent the storage system from being a bottleneck for query engines, data must be stored in a
standardized, compressed format that facilitates analytical querying and reduces storage size and
cost, but information cannot be discarded or lost. The most used open-source distributed file system
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is HDFS. Data can be standardized into Avro'3 or Parquet'* format and compressed using Snappy or
Gzip compression.

The Data Ingestion microservice is responsible for asynchronously consuming data from the mes-
sage queues, converting the original data to a standardized and compressed file format, and then
sending it to Data Lake Storage by using a pre-established communication channel. It is necessary
to have at least two message queues, one for real-time data (i.e. from sensors and social networks)
and one for batch data. The separation of queues is important to enable the prioritization of the
ingestion of data in real-time and to improve the scalability of the system. This microservice can be
implemented using Kafka, RabbitMQ'® and Spark streaming.

The Metadata Manager is a metadata catalog with features for registering data sources and
information about data schema, data origin, privacy policies, schema versioning, and data mapping
rules. It is also responsible for requesting the creation or updating of the data view for the Data
Query microservice whenever a new version of the metadata is created. The latter is important
to make data from different schema versions compatible, so that even legacy data can be easily
discovered and used by the authorized persons. The metadata model must follow the World Wide
Web Consortium (W3C) standards. We suggest the adoption of standard models such as the RDF
vocabulary Data Catalog Vocabulary (DCAT)!6. DCAT facilitates the consumption and aggregation
of metadata from multiple catalogs. It is integrated with other standards, such as Schema.org!”
and PROV Ontology (PROV-O'®). The catalog is maintained in the microservice’s own database
(preferably NoSQL, to facilitate the storage of metadata in JSON).

The Data Query is the microservice responsible for processing the creation orders of visualization
of data stored in Metadata Manager and synchronously executing SQL queries on the data in Data
Lake Storage. Query statistics such as execution frequency and response time should be stored to
allow the use of automatic indexing and caching techniques to speed up the access to frequently used
data. Softwares like Hive and Spark SQL can be used to implement this microservice.

The analysis and processing of data in real-time are made by the Stream Processing microservice.
This microservice enables the execution of tasks on data as soon it enters the platform. It provides
an interface for developers to create and manage their jobs. Results of the data processing must be
stored, enabling their use by other applications. This microservice can be implemented using tools
such as Kafka and Spark Streaming.

The Smart Analyzer microservice provides tools to support data mining and the creation, man-
agement, and execution of machine learning models on the datasets in the Data Lake Storage and
data streams provided by the Stream Processing. It can generate notification events in a message
queue for consumption by other applications. To implement this microservice, Spark ML and Scikit
Learn'? can be used.

Batch Processing is responsible for enabling the processing of large datasets stored in Data
Lake Storage, providing an interface for the creation, management, and execution of tasks. The
processing results can be saved in Data Lake Storage or published in a message queue so that they
can be consulted by APIs and visualization tools, or consumed by other applications. For batch data
processing, MapReduce can be used.

Data Visualization supports graphical interfaces for presenting and analyzing data stored in Data
Lake Storage and data generated by Stream Processing and Smart Analyzer. It allows users

3https://avro.apache.org/ (Retrieved: 05/20,/2022) 1Thttps://schema.org/ (Retrieved: 05/20/2022)
Mhttps://parquet.apache.org/ (Retrieved: 05/20/2022) 1®nhttps://www.w3.org/TR/prov-o
Bhttps://wuw.rabbitmg.com (Retrieved: 05/20/2022) (Retrieved: 05/20/2022)
Ohttps://wuw.w3.org/TR/vocab-dcat-3 Ohttps://scikit-learn.org/ (Retrieved: 05/20/2022)

(Retrieved: 05/20/2022)

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.



JIDM - Journal of Information and Data Management . 215

to create reports and dashboards. This service can be made available using tools such as Apache

Superset?® or Kibana?!.

The API Gateway provides for external applications a single access point (with load balancing) to the
others microservices. The communication between the API Gateway and the external applications
must use an encrypted communication channel. Furthermore, every request must consult the Auth
Server microservice, which authenticates the user and generates a cryptographic token to be used
in future requests. After successful authentication, the request is enriched with user information and
forwarded to the targeted microservice. The gateway can be implemented using Apache Knox?? or
Kong?3, for example. The Auth Server can be implemented using Apache Syncope?* or Auth02°.

The Public UI is responsible for enabling users to access the web interface of other microservices
in a single web interface. This way, each microservice offers the type of interface that suits it best.
This microservice is public and uses a single access point, the API Gateway, with an encrypted
communication channel and identified user. Among the technologies that can be used to implement the
Web interface and integrate it with the functionalities provided by other microservices are NodeJS26,
React®”, and HTMLS.

There are several concerns that an implementation of these microservices have to address. For
example, Data Ingestion must be able to handle large data volumes and heterogeneity. Metadata
Management must couple with structural and semantic data changes, to provide data compatibiliza-
tion. Data Query must provide good performance (with automatic indexing, caching, etc.). API
Gateway must balance load to handle requests in the most efficient manner. All the microservices
must be scalable and fault-tolerant, while ensuring data security and privacy.

To increase the productivity and reliability of the platform’s development, we suggest reusing free
software in its implementation, mainly those that have an active community of developers; support
to stable versions; evolutionary versions; a rich documentation; as well as integration with security
and data privacy tools. To facilitate the operation and maintenance of the platform, we suggest the
adoption of DevOps best practices, such as continuous integration, continuous delivery, continuous
deployment, and monitoring.

3.2 Comparison with Related Architectures

Our architecture supports functionalities for data ingestion and physical integration using approaches
similar to those of the works analyzed in Section 2. However, it extends the related works by supporting
some unique features, such as: a single point of access to microservices by external applications; an
authentication and access authorization service; a centralizing interface for the services; the creation
of new data collections based on existing ones; and compatibilization of data in collections that
have suffered structural or semantic changes over time, using the metadata modification history and
mapping rules.

[Mehmood et al. 2019] had also proposed using metadata to support the data integration. Their
architecture works with data models to provide unified vocabulary among data sources and align
syntactic and semantic differences, demanding the definition of data models for each city sector (e.g.,
environmental, social, and economic data). In our work, we made a more comprehensive proposal
for metadata management, using DCAT to describe the data sources. Moreover, we do not enforce
uniformization in data ingestion. The data is stored as it comes from the source. Then, it can be

2Onttps://superset.apache.org (Retrieved: 05/20/2022) 2*https://syncope.apache.org (Retrieved: 05/20/2022)

2Inttps://www.elastic.co/pt/kibana 25https://auth0.com (Retrieved: 05/20,/2022)
(Retrieved: 05/20/2022) 26https://nodejs.org (Retrieved: 05/20/2022)
22https://knox.apache.org (Retrieved: 05/20/2022) 2Thttps://reactjs.org (Retrieved: 05/20/2022)

23https://konghq.com/kong (Retrieved: 05/20/2022)
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compatibilized when it is queried. Views of compatibilized data can be materialized to speed up
queries.

Another distinguishable feature of the data integration platform presented in this work (compared
to those analyzed in Section 2.1) is its microservice architecture. This type of architecture minimizes
the dependency between the components, enables independent development and scalability of the
services, and facilitates the platform’s implementation, testing, and maintenance.

4. GUIDELINES FOR PERFORMANCE EVALUATION

To evaluate the performance of a system that implements the proposed architecture, the Cloud Eval-
uation Experiment Methodology (CEEM) [Li et al. 2013] can be used. CEEM is a methodology
for systematically evaluating the performance of cloud services by experiments, which can be easily
replicated or extended to any environment.

The methodology proposes ten steps to evaluate a service: (1) Requirement Recognition — define
the problem and objectives of the assessment; (2) Service Feature Identification — identify the services
and features to be evaluated; (3) Metrics and Benchmarks Listing — list the metrics and bench-
marks that can be used; (4) Metrics and Benchmarks Selection — select the appropriate metrics and
benchmarks for evaluation; (5) Experimental Factors Listing — list factors that may impact in the
experiments’ evaluation; (6) Ezperimental Factors Selection — select the factors to be studied and
define the acceptance criteria; (7) Ezperimental Design — design the experiments based on the pre-
vious steps; (8) Experimental Implementation — prepare the test environment and run the designed
experiments; (9) Ezperimental Analysis — analyze and statistically interpret the experimental results;
and (10) Conclusion and Reporting.

In the following, we present a guideline for applying CEEM to evaluate the performance of mi-
croservices of our data integration software architecture.

4.1 Requirement Recognition and Service Feature Identification

We want to assess the individual capacity of each microservice to function under both normal and
above-normal workload conditions. In particular, we want to evaluate the effectiveness of self-
scalability to support an increase in the number of users or simultaneous requests for the microservice’s
main functionalities, while keeping an acceptable quality of service.

The main functionalities to be evaluated through the experiments are: ingestion of data streams
and batches received by the API in the Data Ingestion microservice; creating, querying, and com-
patibilizing metadata in the Metadata Manager microservice; and recovery of data from the Data
Lake Storage in the Data Query microservice.

The number of users and requests per time interval to be supported by a microservice instance
must be defined according to the smart city platform to which the system is coupled. These values
will be used as parameters for the execution and analysis of the experiments. Therefore, they must
be defined for each microservice to be analyzed.

This guideline does not include experimental scenarios for the API Gateway, Auth Server,
Stream Processing, Batch Processing, Smart Analyzer and Data Visualization microservices
because we assume that open-source tools with assessed good performance will be used in their
implementation. The Public UI will not be considered either because it is a front-end application,
thus it impacts the system’s general performance less than the other components.
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4.2 Metrics and Benchmarks Listing and Selection

In this analysis, we will consider the catalog of metrics presented by [Li et al. 2012b]. Four metrics
of the catalog are particularly appropriate to assess the performance of the microservices: CPU
utilization, RAM utilization, latency, and the number of requests processed per time interval. These
metrics enable us to validate whether the developed system is capable of serving the expected number
of users and requests with low latency.

4.3 Experimental Factors Listing and Selection

[Li et al. 2012a] point out the operating system and container manager versions as experimental factors
to be considered. CPU clock speed and number of cores, type and capacity of RAM memory, and
storage capacity are important factors as well, since both software and hardware changes can affect
the performance results. To avoid the microservices’ instances competing for computing resources, we
suggestt running them in containers with limited resources.

4.4 Experimental Design and Implementation

This section describes three experiments designed to evaluate the microservices’ performance. Each
one of the experiments must be run with three different configurations:

4.4.1 Configuration 1. Execution with a single instance of the microservice with auto-scaling dis-
abled, and a workload that gradually increases over time, until reaching the maximum size expected
for the system. The goal in this configuration is to measure the microservice’s performance under
normal workloads.

4.4.2  Configuration 2. Execution of the microservice with auto-scaling enabled, and a workload
varying between the lower and the upper limit values supported by a given fixed number of instances.
In this configuration, the goal is to assess the capacity of the microservice to self-adjust to the current
demand, increasing or decreasing the number of instances according to the variations in the workload.

4.4.3 Configuration 3. Execution with a single instance of the microservice with auto-scaling dis-
abled, and a workload that gradually increases over time (both in the number of users and in the
number of concurrent requests per time unit), until CPU or RAM usage is close to 100%. In this
configuration, the goal is to identify the maximum number of users and concurrent requests that a
single instance can handle.

During the execution of the experiments, information about the CPU and RAM usage, request
processing time, and number of messages processed per time unit (throughput) must be collected
and recorded. The number of replications of each experiment should be defined taking into account
the resources available, and the desired sensitivity and confidence of the performance indexes to be
obtained from the measurements. Generally, the sensitivity increases with the number of replications
of the experiment.

4.4.4  Experiment 1 — Data Intake Latency. Start a single instance of the Data Ingestion mi-
croservice and trigger real-time or batch data provisioning, varying the number of requests over time
according to the configuration being executed.

4.4.5 FExperiment 2 — Response Time For Operations on Metadata. Start a single instance of the
Metadata Manager microservice and simulate the simultaneous execution of metadata creation,
query, and compatibilization requests for different data collections, varying the number of simulated
users and requests over time according to the experiment configuration being executed.
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4.4.6 FExperiment 3 — Response Time of Data Queries. To evaluate the Data Query, first initialize
the Data Lake Storage with data from different collections and sources until reaching a considerable
percentage of use of its storage capacity, to make possible the evaluation of the response time of
queries over a large volume of data. Then, for each data collection stored, create a view in the Data
Query. After this initialization, launch an instance of Data Query. Use a simulator to generate and
execute queries with filters and random aggregations over the pre-existing views, varying the number
of simulated users and requests over time according to the experiment configuration being executed.

4.5 FExperimental Analysis

To analyze data collected in the experiments and drawn conclusions, it is strongly recommended the
use of statistical methods to ensure robustness [Li et al. 2013]. Nevertheless, even simple graphical
tools (e.g. dot plots, histograms, and box plots) showing the response time, throughput, CPU usage,
and RAM usage over time may help to visualize how well a microservice self-adjust to workload
variations.

5. AN IMPLEMENTATION OF THE ARCHITECTURE AND ITS EXPERIMENTAL EVALUA-
TION

In this section, we describe a proof-of-concept implementation of the core of the architecture intro-
duced in Section 3, entirely built using open-source tools. The source code of this implementation
is available at https://gitlab.com/interscity/data-integration (Retrieved: 05/20/2022). The
performance of the system was evaluated following the guidelines presented in Section 4.

5.1 Implementation Details

The architecture has as foundation the Data Lake Storage for storing historical data. This service
was made available in an HDFS cluster consisting of a NameNode and one or more DataNodes?®.

To offer capabilities to transmit data to the platform, we implemented a Data Ingestion service
using the Go programming language??, a language focused on simplicity, reliability, and efficiency, used
to build robust-performance scalable software. The Data Ingestion is composed of the Datalnges-
tionProducer and DatalngestionConsumer microservices. Segregating Data Ingestion into two
microservices makes it possible to reduce the response time for clients and improve the scalability of
the service.

DatalngestionProducer provides a RESTful API for sending data collections in JSON or CSV
format and publish them into the topic data-batch of Kafka, where they are maintained and tuned
to deliver real-time responses to clients. Kafka is a high-performance messaging platform that handles
real-time streaming for fast, scalable operations. The real-time data is published in Kafka’s data-
stream topic. DatalngestionConsumer consumes data from Kafka and store it in the Data Lake
Storage. It gets data from Kafka topics in microbatches and inserts it into HDFS.

We also implemented for Metadata Management a RESTful API that receives the metadata of
a data collection in JSON format, inserts it in MongoDB3° database, and generates a notification of
a new version in Kafka’s metadata-version topic. The notifications in this topic are consumed, for
example, by the component responsible to provide data visualization in the Data Query microservice.

The model of the mandatory metadata is based on the Data Catalog Vocabulary (DCAT) and has
attributes to identify the organizations that generated the data and to describe the data schemas. The

28Tn an HDF'S cluster, a NameNode is a master server that the nodes.
manages the file system namespace and access to files by 2%https://go.dev/ (Retrieved: 05/20,/2022)
clients, while the DataNodes manage storage attached to 3°https://www.mongodb.com (Retrieved: 05/20,/2022)
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model also has attributes to support metadata version management, such as version ID and version
creation date, in order to register how schemas evolve over time. Figure 2 shows the data model of

the database of the Metadata Management.

) Attribute Attribute_has_attribute |
Catalog Version Id Int Hv<]AttributeId Int
Id Int —H—1d Int ——<versionId Int Lé%ParentAttributeId Int
Name String CatalogId Int Name String i
Description String Name String Type ENUM( )
Format ENUM(CSV, JSON) Description |String Optional ENUM(Y,N)
URI String CreationDate [String Indexable ENUM(Y,N)
Owner String InitialDate |Date Unique ENUM(Y,N)
IdPublisher Int EndDate Date Defaultvalue |String
CreationDate Date Unit String
LasttAccessDateDate Decodevalue |JSON
|SensitiveData ENUM(Y,N) |
+
P
} A : - ~
catalog_has_tag {Tag Attrlbute has_tag
catalogId |Int ‘,+ Id \_JAttrlbuteId Int
TagId Int S Name Strlng TagId

Description String

Fig. 2. Data model used for metadata management.

The API Gateway was made available as a Kong container. Kong is an open-source distributed
and scalable gateway that acts as middleware between clients and API-centric applications. In our
platform, it redirects all requests to the internal microservices so that clients have a single access point.
The API Gateway receives all requests, determines which microservice instance should respond to
each request (based on the URI and load balancing rules), and then forwards the request.

All implemented microservices are available as Docker containers?'. The open-source tools used in
the project (i.e., Kafka, Kong, and MongoDB) were also used in containers provided by the community.
We used Kubernetes? to automatize the deployment of the Docker containers in a cluster of virtual
machines in a cloud platform and to provide individual scaling for the services, to appropriately
support the workload fluctuations.

The other microservices of the proposed architecture were not included in the proof-of-concept.

5.2  Performance Evaluation and Analysis

5.2.1 Data Ingestion. The experiments were executed in Docker containers deployed in virtual
machines in the Digital Ocean®? cloud platform. Each service instance was hosted on its own virtual
machine, ensuring a fixed amount of machine resources per service. To run the experiment, we used
an Ubuntu 20.04 (LTS) x64 machine with a shared CPU, 25GB of SSD, and 2GB of RAM for each
instanced service. All machines were provisioned in the same region (New York).

To measure the latency of the DatalngestionProducer and DatalngestionConsumer microser-
vices, we performed an isolated experiment for each microservice using a single active instance and
with autoscaling disabled. We ran each experiment for five minutes and repeated it 15 times in order
to minimize the effects of uncontrollable variables inherent to the environment in which the exper-
iments were performed. The experiment was performed using real-world data, the Travel Sensors3*

3lhttps://wuw.docker.com (Retrieved: 05/20,/2022)
32nttps://kubernetes.io (Retrieved: 05/20/2022)
33https://digitalocean.com/ (Retrieved: 05/20/2022)

34https ://catalog.data.gov/dataset/travel-sensors
(Retrieved: 05/20/2022)
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Fig. 3. DatalngestionProducer average response time degradation as the number of simultaneous requests increases.

dataset from the city of Austin (Texas, USA). This dataset contains information about travel sensors
used by the City of Austin Department of Transportation to monitor traffic conditions across the city.

To analyze the degradation of DatalngestionProducer, we ran a load test simulating concurrent
requests with Apache Jmeter3®, for workloads ranging from 200 to 1600 requests per second, and
collected the response time from the client’s point of view. Figure 3 shows the response time degrada-
tion as the number of concurrent requests increases. The response time, in this case, is the difference
between the time of arrival of the request in the DatalngestionProducer and the time of arrival
of the response to client. Each box-plot in Figure 3 summarizes the results of the 15 rounds of the
experiment using a fixed number of requests per second. From each round, an average response time
was calculated. The box-plot shows the minimum, first quartile, median (green line), third quartile,
and the maximum of the rounds’ average response times. The best median was 187 milliseconds for
200 concurrent requests. The median average response time remained below 1 second for all test
scenarios, which is an excellent result according to [Del Esposte et al. 2019].

To evaluate the DataIngestionConsumer, we entered 960 thousand messages of the same size
(4096 bytes) in the topic data-stream of Kafka. We started an instance of the microservice and
let it run for 5 minutes. Figure 4 shows how the latency varied in each one of the 15 rounds of the
experiment. The latency is the difference between the timestamp of the arrival of the message in the
DatalngestionConsumer and the timestamp of its insertion in HDFS. The highest median latency
was 8 milliseconds and the lowest 7 milliseconds.

We run Experiment 1 with Configuration 2 (described in Section 4.4) to evaluate the horizontal
scalability of DatalngestionProducer and DatalngestionConsumer. We started an instance of
each microservice and triggered simultaneous requests, ranging from 0 to 500 requests per second.
Every time a container reached an average of 30% of CPU usage during the last 30-second interval,
a new container of the microservice was instantiated. Contrarily, every time the average CPU usage
of all the containers of a microservice during the last 30-second interval became less than 20%, one

35https://jmeter.apache.org (Retrieved: 05/20/2022)
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Fig. 4. DatalngestionConsumer latencies in all the 15 rounds of the experiment.

of the containers was destroyed and its workload was transferred to the remaining containers. Thus,
the system increased or decreased the number of containers per service by balancing the workload
to match the desired average CPU usage in the 30-second interval. Figure 5 shows the creation and
destruction of the DatalngestionConsumer microservice containers due to the application of the
auto-scaling strategy in a single round of the experiment. Initially, each service had only one container.
The number of containers varied between 1 and 4 as a response of the elasticity mechanism to the
demand fluctuations.

6. CONCLUSION

The contribution of this work is twofold. First, it provides a panorama of the requirements of data
integration for smart cities and state-of-the-art solutions. Second, it presents an architecture to help
researchers and developers to approach the implementation of these requirements and also guidance
to assess its performance.

We have identified functional and non-functional requirements of data integration in smart cities
and the challenges involved in their implementation by analyzing the related literature. Then, we have
proposed a microservices architecture for a data integration platform that meets these requirements.
We have also specified the software components needed to implement them. Our software architecture
extends those of related work by providing a solution for metadata management that keeps the history
of changes in the structure and semantics of attributes, to enable the compatibilization of data in
queries. Another differentiated feature of the architecture is the API Gateway, which provides a secure
data access point for external applications (through encrypted and authenticated communication
channels).

Following the CEEM methodology, we have designed a set of experiments that can be used to
evaluate the performance of the microservices of the architecture under both normal and above-normal
workload conditions. With these experiments, one can assess the effectiveness of self-scalability to keep
acceptable quality of service while the number of users and requests vary over time.
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Fig. 5. DatalngestionConsumer auto-scaling (variation of the number of containers of the microservice in function of
the workload fluctuation).

We have implemented a proof of concept of the core microservices of the proposed architecture
using open-source tools. In the experimental performance evaluation of the platform, the implemented
microservices (DataIngestionProducer and DataIngestionConsumer) presented response times
within the expected range and had horizontally scaled according to the workload fluctuations. These
results show the architecture can meet the performance demands of a smart city. We are currently
working on implementing the remaining components of the architecture in InterSCity, an open source
platform for smart cities.
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