
Journal of Internet Services and Applications, 2023, 14:1, doi: 10.5753/jisa.2023.3084
 This work is licensed under a Creative Commons Attribution 4.0 International License.

STEER: An Architecture to Support Self-adaptive IoT Networks
for Indoor Monitoring Applications
Bruna M. O. S. Cordeiro [Federal University of Goiás | brunamos.bm@gmail.com]
Roberto Rodrigues Filho [University of Campinas | robertor@ic.unicamp.br]
Iwens G. S. Júnior [Federal University of Goiás | iwens@inf.ufg.br]
Fábio M. Costa [Federal University of Goiás | fmc@inf.ufg.br]

 Instituto de Informática, Universidade Federal de Goiás, Alameda Palmeiras, Quadra D, Campus Samambaia, Goiâ-
nia, GO, 74690-900, Brazil.

Received: 29 December 2022 • Accepted: 16 May 2023 • Published: 27 July 2023

Abstract IoT infrastructures are becoming increasingly more difficult to manage. One of the main issues is the high
volatility present in the infrastruture, which increasingly demands self-adaptive solutions. As a proposal to handle
this challenge, this paper presents STEER (Sdn-based inTEnt drivEn iot netwoRks), a new approach for the dynamic
adaptation of IoT networks for indoor monitoring applications, based on the unification of Intent-Driven Networks
(IDN) and Software-Defined Networks (SDN). Particularly, we explore the ability of IDNs to dynamically interpret
an application’s intent, using an IDN-based mediator attached to an SDN-controller to autonomously adapt the IoT
network behavior at runtime, thus realizing the intent according to the current operating context of the network. We
demonstrate the approach using a representative application scenario related to IoT indoor environment monitoring
in the domain of indoor air quality monitoring. The experiments allowed us to validate the applicability of the
approach and show the system-wide effect of dynamic adaptation to the current operating environment on improving
performance according to the metric under consideration, in this case, the number of application-level messages
exchanged in the network.

Keywords: Intent-Driven Networks, Software-Defined Networks, Internet of Things, Self-Adaptive Systems

1 Introduction
IoT infrastructures are becoming more and more complex
and challenging to manage. One of the main reasons for this
complexity is the high volatility of contemporary distributed
systems (Blair (2018)), notably caused by frequent changes
in the network environment. In order to preserve functional-
ity and satisfy application demands, IoT networks, therefore,
need to adapt at runtime. Such adaptation must consider the
application’s goals as it interacts with the network and the ap-
plication constraints as the operational environment changes.
Thus, autonomic approaches must be in place to enable the
network to determine the need to change and rapidly adapt
to better configurations without human intervention.

In this context, approaches such as self-driving networks,
as in Mai et al. (2021), have gained popularity. They mainly
focus on mechanisms to enable runtime adaptation of the net-
work without disrupting its services, such as classification of
the network execution context and the use of machine learn-
ing to predict change and to plan adaptations accordingly.
However, an important, albeit less explored aspect of the
decision-making process refers to the goals of the applica-
tions that interact with the network.

By combining the concepts of Software-Defined Net-
works (SDN) and Intent-Driven Networks (IDN), this paper
proposes a novel approach for programmable self-adaptive
IoT networks. The approach, which we call STEER (Sdn-
based inTEnt drivEn iot netwoRks), enables self-adaptation
of the network at runtime, without requiring predefined rules
and taking into account only the network operational context

and high-level goals, referred to as intents, set by the appli-
cations using a declarative syntax. We exploit the IDN con-
cept to enable interpretation of the application intents, along
with SDN as the mechanism to adapt network behavior ac-
cordingly. Our implementation of IDN is centered around a
Mediator, which interprets application intents to decide, at
runtime, which behavior should be installed on the network.
Behavior installation, in turn, is carried out by the Mediator
using a third-party SDN controller.

The Mediator implements a control loop for selecting the
network behavior that yields maximum performance, consid-
ering a given performance metric, the network environment,
and an application intent. The network behavior selection
algorithm selects the optimal behavior without human inter-
ference or predefined domain-specific information. The al-
gorithm has two main phases, exploration and exploitation.
The exploration phase is responsible for locating the optimal
behavior by executing the available behaviors and monitor-
ing their performance. The exploitation phase, in turn, exe-
cutes the optimal behavior and monitors it to detect perfor-
mance degradation and changes in the network operating en-
vironment, which in turn may trigger a new exploration.

We evaluate our approach in the context of indoor moni-
toring applications. Particularly, we use a real dataset from
an indoor air quality application to create representative sce-
narios to explore our approach. The proposed solution ad-
dresses self-adaptation in such scenarios and is motivated by
the wide adoption of networked sensors to monitor indoor en-
vironments, coupled with their demands for dynamic adapta-

https://doi.org/10.5753/jisa.2023.3084
https://orcid.org/0000-0003-2660-7989
mailto:brunamos.bm@gmail.com
https://orcid.org/0000-0002-3323-0246
mailto:robertor@ic.unicamp.br
https://orcid.org/0000-0001-7605-0205
mailto:iwens@inf.ufg.br
https://orcid.org/0000-0003-1038-8873
mailto:fmc@inf.ufg.br

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

tion. In this context, we evaluate our selection algorithm in
terms of convergence time (i.e., how long it takes to converge
to the optimal behavior) and accuracy (i.e., if theMediator se-
lects the correct behavior). We also evaluate the overhead in
the network performance incurred by network behavior adap-
tation. The findings suggest that our end-to-end approach
manages to accurately select the optimal behavior and detect
environment changes for the chosen scenarios. We also dis-
cuss the different parameter settings for the proposed algo-
rithm and their effect to lower the overhead as measured by
the chosen performance metric.

The paper is organized as follows. Section 2 discusses re-
lated work. Section 3 describes our approach for SDN-based
intent-driven IoT networks, followed by the proposed archi-
tecture to realize it. Section 4 describes an application sce-
nario and use case in the domain of air quality monitoring,
which we use to both illustrate the approach and evaluate its
performance. Section 5 presents the results obtained through
a set of experiments that use the air quality monitoring appli-
cation with real data on a simulated network environment.
Section 7 concludes the paper and discusses future work.

2 Background and Related Work
This section introduces important terms used throughout the
text and contrasts the proposed approach with other relevant
and related work in the literature.

This work focuses on providing an approach to support
self-adaptive IoT (Internet of Things) Networks. According
to Gubbi et al.Gubbi et al. (2013), IoT refers to a collection of
objects with networking capabilities able to exchange infor-
mation with one another. In this context, an IoT network is a
local network formed out of the connection of such devices.
Moreover, the self-adaptation of such networks (e.g., Min
et al. (2021)) entails the ability to change the behavior of its
devices as (often unexpected) events happen. Enabling self-
adaption is becoming increasingly important as the scale at
which these devices are deployed is becoming increasingly
large (e.g., at city scale, as described by Zanella et al. (2014)),
making human-led decision-making approaches infeasible
for managing and adapting the network.

As we describe later in this section, many techniques have
been applied to allow the adaptation of behavior in IoT net-
works. In our approach, detailed in Sec. 3, we apply an in-
creasingly popular approach for adapting IoT network be-
havior (see Bera et al. (2017)), namely Software Defined-
Networks (SDN). In general, the concept of SDN, as dis-
cussed by (Kreutz et al. (2015)) separates the network data
plane (that forwards data packets) from the control plane (a
logically centralized module that defines how to handle net-
work traffic), allowing more flexibility in adapting the net-
work to handle dynamic traffic. Furthermore, we explore
the concept of Intent-Driven Network, as defined by Elkhatib
et al. (2017), which consists in the application defining how
it intends to exchange data in the network and making such
intents available to the network so that it can adapt to better
suit the generated traffic. This enables a promising alterna-
tive to the current opaque traffic generated by applications,
about which the network has no information and thus cannot

adapt itself to better manage traffic. In Section 3, we describe
our vision to unify both approaches in order to support self-
adaptive IoT networks.

The remaining of this section discusses and compares rele-
vant work in the literature that falls within three key areas for
realizing our approach: adaptation mechanisms for IoT net-
works (Sec. 2.1) ; autonomic management of IoT networks
(Sec. 2.2); and intent-driven networks (Sec. 2.3).

2.1 Adaptation Mechanisms

Adaptation in IoT networks may happen at different lev-
els on network devices: at the operating system level, as
in Rodriguez-Zurrunero et al. (2018); at the level of commu-
nication protocols, as in Junior et al. (2020); and at the appli-
cation level, as in Shafi et al. (2012) and Aschenbruck et al.
(2012). Rodriguez-Zurrunero et al. (2018) describe an adap-
tive operating system for wireless sensor networks that en-
ables the adaptation of modules running on the OS to reduce
the use of computing resources. By disabling modules, the
running system reduces CPU and memory utilization. Junior
et al. (2020), on the other hand, explore changes in the RPL
routing algorithm. The proposed solution is able to switch
between existing RPL instances to accommodate sudden de-
mands of temporary critical applications. When a critical ap-
plication is started, the scheduler changes the RPL instance
for regular applications and assigns a new instance to the crit-
ical application, meeting the requirements of both kinds of
applications. Finally, Shafi et al. (2012) and Aschenbruck
et al. (2012) describe an over-the-air code-shipping approach
to reprogram nodes in the network.

There are also approaches that enable (re)programming of
the network behavior as a whole, as in Noor et al. (2019) and
Azzara et al. (2014). Both introduce macroprogramming lan-
guage models that abstract the programming of the network
by abstracting the interaction with the nodes. These abstrac-
tions allow developers to focus on the network behavior as a
whole, instead of focusing on fine-grain coordination of node
tasks to achieve the intended network behavior, thus facilitat-
ing the creation of dynamic and large-scale IoT systems.

Moreover, as an alternative mechanism for changing net-
work behavior, the use of SDN for IoT networks is becom-
ing increasingly popular. Centralized controllers calculate
and specify flow tables in IoT devices to determine how in-
coming packets should be routed. Controllers are also able
to recalculate and change network data routes according to
new data flows and events in the network (Galluccio et al.
(2015); Bera et al. (2017)). In our work, we leverage the log-
ically centralized controllers to collect metrics from the IoT
network and install behavior to change IoT devices at the
application level. Although the above approaches deal with
OS-level adaptation, they may be seen as complementary to
ours as our mechanism to adapt application-level behavior
could also be used to change OS-level components. On the
other hand, we believe the use of SDN makes our approach
more generic as compared to applying adaptation to a spe-
cific routing algorithm (e.g., adaptive RPL).

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

2.2 Autonomic Management of IoT Networks
Autonomic management of IoT networks has become a topic
of interest in the literature. This is due to the volatility (i.e.,
constant and often unexpected changes) of IoT infrastruc-
tures, which makes rapid and assertive network adaptation
of paramount importance. In such changing large-scale in-
frastructures, human-centric approaches to support reconfig-
uration are insufficient to timely react to changes.

In this context, Self-driving Networks (Júnior et al. (2021),
Mai et al. (2021), Jacobs et al. (2018))is an approach that
has gained traction. Important elements of the approach in-
clude the use of decision making techniques (e.g., machine
learning), high level network goals defined by the network
manager and an adaptation mechanism to change network
configuration and behavior at runtime.

In particular, Júnior et al. (2021) propose an interesting
self-managing solution mixing context-awareness and SDN
to adapt IoT networks and compare it with human-led man-
agement. Mai et al. (2021), on the hand, levarage in-network
machine learning to optimize network functions such as load
balancing, congestion control and DDoS attack detection. Fi-
nally, Jacobs et al. (2018) describe the use of high-level
network intents, as an alternative to the low-level defini-
tion of network policies and to determine network behavior.
They also explore an approach based on machine-learning
to rightly identify network configurations from intents ex-
pressed in natural language according to operators feedback.

Similarly, our work employs an approach based on user
intents, which are effected on the network at runtime and au-
tonomously, using a decision-making algorithm and network
metrics collected at runtime. Differently, however, our ap-
proach is inspired on emergent software systems (Rodrigues-
Filho and Porter (2017)), which allows the dynamic explo-
ration of the search space of possible solutions.

2.3 Intent-Driven Networks
Specifically considering the use of intents to drive runtime
adaptation of the network, different approaches have been
proposed (Cerroni et al. (2017); Pang et al. (2020)). An
important design decision refers to who defines the intents,
which may be the network manager or the application devel-
opers. Also, the scope of intents needs to be considered.

Pang et al. (2020) survey important work that explores
Intent-driven Network for realizing self-managing networks.
The majority of reviewed approaches use intents to express
network requirements that are translated into policies for net-
work execution. Cerroni et al. (2017), on the other hand, fo-
cus on defining an interoperable and vendor-agnostic intent-
based northbound interface (NBI) for service orchestration in
different domains. These works show the importance of ab-
stracting network requirements and goals through intents to
either be used as goals to guide network self-management or
abstract details of the NBI to support interoperability across
domains.

In our work, we follow the definition of intent-driven net-
works (IDN) proposed by Elkhatib et al. (2017), in which
intents are defined by application developers with the goal
of informing the network about how a given application in-

tends to use it, allowing the network to adapt and accommo-
date the specific needs of each application. This approach
contrasts to similar proposals in which intents are defined by
the network manager and specify high-level policies on how
the network should behave with respect to all applications
currently executing on it (Jacobs et al. (2018)).

3 SDN-based Intent-Driven IoT Net-
works

Software-defined intent-driven IoT networks are character-
ized by the ability of self-adaptation guided by high-level
goals (i.e., intents) defined by the applications that interact
with the network. Network functions are defined in the form
of a predefined set of behaviors, and there can be a number of
alternative behaviors for a given function. The requirements
and goals of an application regarding a given network func-
tion are expressed in the form of an intent, which is trans-
parently translated at runtime into the most appropriate be-
havior, considering the current operating context of the net-
work. This allows dynamic adaptation of the network behav-
ior as the operating context changes. Network managers are
responsible for defining and implementing the set of avail-
able behaviors, while the specification of intents is carried
out by application developers. As a result, application devel-
opers do not need to know the configuration of the network
in order to program its dynamic behavior.

Communication

Southbound Interface
SDN CONTROLLER

Northbound Interface

Sink Sensor Node

IoT network

Data Control Communication with the controller

Infrastructure
Sublayer

Control
Sublayer

SD
N

 fo
r

Io
T

La
ye

r

Observation

Deployment

Analysis and
Planning

Intent Intent Intent

Application

Behaviors

Application

Behaviors
Behavior

Mediator
Manager

Application

ID
N

 fo
r

Io
T

La
ye

r

IDN Agent

Network Manager

Application
D

eveloper

Ap
pl

ic
at

io
n

La
ye

r

RESTful API

BehaviorsIntent
Templates

Application

Figure 1. STEER architecture.

Fig 1 presents the STEER architecture, composed by three
layers:

• the SDN for IoT Layer, which consists of an existing
SDN solution for IoT and is further subdivided into two
sub-layers: infrastructure and control;

• the IDN for IoT Layer, composed by a Manager, which
maintains a set of templates for intent definition, along
with the set of available behaviors, a Mediator, which
is responsible for interpreting intents and deploying the
most appropriate behavior on the network, and a Com-
munication module, responsible for the interaction with
the SDN layer; and

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

• the Application Layer, which is composed by the user
applications and tools to create intents and behaviors.

In the SDN for IoT Layer, we use SDN-WISE (Galluccio
et al. (2015)), whose control plane enables the deployment
and adaptation of application functions in the data plane of
IoT network nodes. Moreover, the fact that SDN-WISE is
open source enabled its extension for the purposes of this
work, as described below. The infrastructure sub-layer com-
prises the IoT network nodes, which are of two kinds: sen-
sor nodes, which capture data from the physical environment,
and sink nodes, responsible for sending data to and receiving
requests from the SDNController. In this work, we extended
SDN-WISE nodes by adding an agent that carries out the dy-
namic change of network behavior at the application level
on each network node. At the control sub-layer, in turn, the
SDN Controller carries out network configuration by means
of control packets sent to the nodes via the southbound inter-
face. The control packets are created from commands (pro-
duced from the interpretation of intents) received from the
IDN for IoT Layer via the northbound interface.

In the IDN for IoT Layer, which represents the main con-
tribution of this work, the Manager module is responsible
for receiving, via a RESTful API, the intents and behaviors,
which are sent to the Mediator for interpretation and to the
Manager for storage in the repository, respectively. The
Mediator runs the Observation, Analysis & Planning, and
Deployment loop, which is inspired by the control loop of
emergent software systems proposed by Rodrigues-Filho and
Porter (2017) and described next.

The control loop executed by the Mediator aims to locate
the most suitable network behavior given the operating en-
vironment to which the network is subjected at the time. In
case the operating environment changes, the loop is respon-
sible for identifying such changes and locating the optimal
behavior for the new environment without human interfer-
ence or domain-specific information. Hereafter, we refer to
the control loop executed by the Mediator as the behavior
selection algorithm. Note that due to the modular nature of
STEER, we can easily replace the selection algorithm pre-
sented in this paper with any other suitable decision-making
algorithm.

The behavior selection algorithm is a loop that alternates
between the execution of two main phases: the exploration
and exploitation phases. The algorithms that drive these
phases are shown in Fig 2 and Fig 3, respectively. Because
the Mediator has no predefined information about the net-
work behaviors or the operating environments, whenever the
network is exposed to a new environment, it has to exper-
iment with the available behaviors to learn how well they
perform. The exploration phase consists of the sequential ex-
ecution of each available network behavior for a brief period
of time (namely, the observation window). After executing
each behavior, the Mediator collects performance measure-
ments from the network. At the end of the exploration phase,
the algorithm selects the behavior with the best performance,
which is then deployed and executed in the network.

Fig 2 presents the algorithm for the exploration phase.
This algorithm receives, as input parameters, the intent,
the set of network behaviors that realizes the intent, the

1 int[] exploration(Intent intent,
2 Behavior behaviors[],
3 Communication com,
4 Observation obs) {
5 int metrics[] = new int[behaviors.length()];
6 for (int i = 0; i < behaviors.length(); i++) {
7 obs.metricMonitor().start();
8 behaviors[i].execute(com,intent,obs);
9 thread_sleep(OBS_WINDOW); // 30000

10 obs.metricMonitor().stop();
11 behaviors[i].stop();
12 metrics[i] = obs.metricMonitor().getMetric();
13 }
14 int result[] = obs.metricCalcResult(metrics);
15 // metricCalcResult() always returns a 2-position
16 // array, where result[0] points to the best
17 // behavior in behaviors and result[1] holds the
18 // metric value of the best behavior
19 return result;
20 } // after this, the exploitation algorithm starts

Figure 2. The exploration phase of the behavior selection algorithm.

Communication object, which allows interaction with the
network, and the Observation object, which allows the al-
gorithm to collect metrics from the network and imple-
ments three functions that assist the behavior selection algo-
rithm in deciding which behavior has the best performance:
metricCalcResult(), which determines the best value from
an array of metric values (e.g., best performance may mean
the lowest or the highest value, depending on the seman-
tics of the metric); metricThreshold(), which sets the met-
ric threshold that indicates performance degradation (e.g.,
twice as higher than the known best metric value means
performance degradation); and newBest(), which, given a
new metric value and the previously known best, determines
whether or not the new value is better. The Observation ob-
ject thus encapsulates the logic that handles metric process-
ing and analysis, freeing the selection algorithm from the
need to have code to handle specific metrics and making it
reusable for any network-wide metric.

The exploration algorithm consists of a loop that iterates
through all behaviors, executes each one in the network for
the observation window time frame (e.g., 30 seconds), and
collects the performance measurements. As a result, the al-
gorithm returns an array with two elements. The first ele-
ment points to the best-performing behavior in the behaviors
array, and the second element holds the performance mea-
surement corresponding to the best behavior. After the ex-
ploration phase locates the best-performing network behav-
ior, the exploitation phase starts. This phase is when the net-
work executes the best behavior for the environment. If the
environment would never change, this phase would consist
of only executing the best behavior. However, since IoT net-
work environments are constantly changing, this phase is re-
sponsible for identifying environment changes and restarting
the exploration phase.

Fig 3 presents the exploitation phase algorithm, which re-
ceives the same input as the exploration phase plus a pointer
to the best behavior in the behaviors array and the best be-
havior’s performance measurement, which are both results
of the exploration phase. The exploitation algorithm exe-
cutes the best-performing behavior for the observation win-

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

dow time frame and extracts the performance metric from
the network. After this observation window, the exploitation
algorithm decides whether it should finish execution and re-
turn to the exploration phase (because the network has been
subjected to a new environment) or continues to observe the
best-performing behavior for another observation window.
The exploitation algorithm uses two mechanisms to detect
a new environment, the detection of degraded performance
and periodic exploration.

The code starting in line 21 of Fig 3 detects sequential
degraded performance metrics. Suppose the best behavior
presents three consecutive degraded metrics (i.e., a measure-
ment twice as large as the optimal behavior’s performance).
In that case, the exploitation algorithm determines that there
has been a change in the network’s operating environment.
We defined 3 as the anomaly threshold in the presented al-
gorithm, but note that this is a parameter for the exploitation
algorithm. For unstable environments that suddenly gener-
ate high measurements for a defined short period of time, a
higher threshold may be more suitable. On the other hand, if
the environment is extremely stable and never generates sud-
denly degraded measurements, the anomaly threshold should
be set to a lower value.

Periodic exploration, in turn, is presented in line 30 of
Fig. 3. Sometimes a change in the environment does not neg-
atively impact the performance metric. In this case, the only
mechanism that the exploitation algorithm has to detect a
change in the environment is to periodically experiment with
a known sub-optimal behavior to verify whether it continues
to perform sub-optimally. In the case where a known sub-
optimal behavior performs better than the previously opti-
mal behavior, the exploitation algorithm understands that the
environment has changed and that a new exploration phase
should start.

The main parameter for the periodic exploration algorithm
defines how frequently the exploitation phase has to test a
different known sub-optimal behavior. This parameter is ex-
pressed in terms of the number of metric collection cycles,
e.g., after 15 metric collections, test a known sub-optimal
behavior. If the frequency of environment changes is high,
this parameter should be set to a low value so that it can de-
tect a change sooner. As the frequency decreases, the pa-
rameter should be set to a higher value so that the network
stays executing the optimal behavior longer. Also, note that a
strategy for selecting sub-optimal behaviors during periodic
exploration is required. In this work, we opted for a round-
robin-based selection of the next sub-optimal behavior, but
other strategies could also be used (e.g., random selection).

The observation window time frame, the periodic explo-
ration threshold, and the anomaly threshold are parameters of
the exploitation phase of the selection algorithm and should
be set to specific values according to the behavior, intents,
and operating environment. In this work, we define these pa-
rameters manually when executing the experiments and af-
ter analyzing their impact. We discuss the impact of defin-
ing these parameters in Sec. 5 when evaluating the approach.
A methodology for defining such parameters is outside the
scope of this work.

The Application Layer, besides hosting the actual user ap-
plications, provides the tools and APIs for the definition and

1 void exploitation(Intent intent,
2 Behavior behaviors[],
3 Communication com,
4 Observation obs,
5 int bestBehavior[]) {
6 bool exploiting = true;
7 int anomaly_count = 0;
8 int periodic_exp = 0;
9 int metric = 0;

10 bool behaviorExecuting = false;
11 while (exploiting) {
12 obs.metricMonitor().start();
13 if (!behaviorExecuting) {
14 behaviors[bestBehavior[0]].execute(com,
15 intent,obs);
16 behaviorExecuting = true;
17 }
18 thread_sleep(OBS_WINDOW); // 30000
19 obs.metricMonitor().stop();
20 metric = obs.metricMonitor().getMetric();
21 // degraded performance
22 bool degraded = obs.metricThreshold(metric,
23 bestBehavior[1]);
24 if (degraded) {
25 anomaly_count++;
26 if (anomaly_count == ANOMALY_THRESHOLD) {
27 behaviors[bestBehavior[0]].stop();
28 behaviorExecuting = false;
29 exploiting = false;
30 }
31 } else { anomaly_count = 0; }
32 // periodic exploration
33 if (periodic_exp == PE_THRESHOLD) {
34 behaviors[bestBehavior[0]].stop();
35 behaviorExecuting = false;
36 int newMetric = executeNextBehavior(
37 behaviors,
38 bestBehavior,
39 intent, com, obs);
40 if (obs.newBest(newMetric,
41 bestBehavior[1])) {
42 // a known better sub-optimal behavior
43 exploiting = false;
44 }
45 periodic_exp = -1;
46 }
47 periodic_exp++;
48 }
49 } // after this, the exploration algorithm starts

Figure 3. The exploitation phase of the behavior selection algorithm.

installation of intents and behaviors. Behaviors provide al-
ternative implementations for each network function and im-
plement the interface shown in Fig 4. They are defined by
the network manager, which sends them to the IDN for IoT
Layer, via its RESTful interface, for registration in the behav-
iors repository. Intents, in turn, are defined by application de-
velopers and sent to the IDN for IoT Layer, via its RESTful
interface, for interpretation by the Mediator. When defining
a new intent, the application developer queries the IDN for
IoT Layer to get an intent template, as well as a list of the
capabilities (e.g., sensor types) available on the network. In-
tents are defined in JSON (JavaScript Object Notation) in the
form of attribute-value pairs. An example intent definition is
presented in Section 4.

Furthermore, the behavior is implemented using network
communication functions to interact with the agent software
running on the sensor nodes. The communication functions

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

1 interface Behavior {
2 void execute(Communication com,
3 Intent intent,
4 Observation obs);
5 void stop();
6 }

Figure 4. The network behavior interface.

interface is shown in Fig. 5, and they are part of theCommuni-
cationmodule in the IDN for IoT Layer. There are three func-
tions: poll(), periodic_collection() and define_alert().

The poll() function collects sensed data from a specific
sensor node. The execution of this function generates a mes-
sage to a specific node asking for sensed data. Once it gets to
the node, the agent measures the requested data and sends it
back to the behavior. Since all communication between the
behavior and the sensor nodes is asynchronous, all communi-
cation functions, including poll(), have a callback object that
has the logic that gets executed when the sensed data returns
to the behavior.

On the other hand, the periodic_collection() is used to
register a periodic function that executes in a specific sensor
node. The execution of this function generates a message
to the agent of a specific sensor node to register a collec-
tion function. This collection function executes periodically,
given the time specified in the function. Once the function
is registered on the sensor node, sensed data is periodically
sent from the sensor node to the behavior until the behavior
sends a message to delete the periodic function.

Finally, the define_alert() function is used to register an
alert function in a specific sensor node. The execution of this
function generates a message to the agent in the sensor node
and registers an alert function. This alert function is executed
every second in the sensor node. The alert function collects
sensed data and verifies whether the new data falls outside
the defined limit. If that occurs, the sensor sends the newly
sensed data back to the behavior, alerting it that the newly
sensed data has surpassed the alert threshold.

Note that the selection algorithm can locate multiple best
behaviors for multiple intents by executing the selection al-
gorithm multiple times in different threads – each thread for
a different intent. Also note that, for each new intent, an
instance of the selection algorithm explores a set of behav-
iors to verify which one has the best performance and, while
doing so, it may disturb the performance of the already con-
verged instances of the selection algorithm, thus triggering
the exploration phase in them, until, eventually, they all con-
verge. However, this aspect of running multiple intents and
studying the effects of multiple simultaneous instances of the
selection algorithm is outside the scope of this work. Fur-
thermore, there are other ways to cope with the realization
of multiple intents in the network. For instance, with a sin-
gle instance of the selection algorithm for a set of intents to
be realized. The algorithm then considers a combination of
behaviors, one for each of the provided intents. In this case,
the resulting search space of possible behaviors to realize a
set of intents increases exponentially. We further discuss this
issue in Sec. 6. In the next section, we describe a use case
that illustrates the approach.

1 interface Communication {
2 void poll(String sensor_type, String node_id,
3 MessageCallback msgCallback);
4 void periodic_collection(String sensor_type,
5 String node_id, int frequency,
6 MessageCallback msgCallback);
7 void define_alert(String sensor_type,
8 String node_id, float threshold,
9 MessageCallback msgCallback);

10 }

Figure 5. The communication module interface.

4 Use Case: Air Quality Application
This section describes the IoT application and scenario that
we leverage to evaluate our approach. We have chosen the
air quality application domain, in which context we define
the intent template and an intent, and implement a set of al-
ternative network behaviors. We also use this application to
determine the parameters of the behavior selection algorithm
and to design experiments to evaluate the algorithm’s conver-
gence accuracy and time.

The air quality application domain was chosen due to its
importance in maintaining safe indoor environments and its
strict requirements for IoT networks in terms of the quality of
data sensing and the frequency of data collection. This often
requires the IoT network to adapt its behavior depending on
the network operating conditions.

An air quality application mainly consists of a set of phys-
ical sensors collecting the physical environment’s tempera-
ture and detecting compounds that are found suspended in the
air. These applications are often used to monitor the air qual-
ity in locations such as schools (Madureira et al. (2015)), su-
permarkets (Almutairi et al. (2019)), buildings (Floris et al.
(2021)), and other indoor environments (Fernández-Agüera
et al. (2019)).

To evaluate our approach, we designed an air quality ap-
plication that periodically performs measurements of Total
Volatile Organic Compounds (TVOC) in the air. Note that
keeping track of TVOC measurements is important because
long exposure to excessive amounts of TVOC has a nega-
tive impact on individuals’ health (Madureira et al. (2015)).
We built the application using STEER, defining an intent
template, a specific intent, and a set of network behaviors
for the intent template. We also used the COOJA (Eriksson
et al. (2009)) network simulator to emulate the network sen-
sor nodes and evaluate the behavior selection algorithm.

For our experiment, we use a real dataset1 with TVOC val-
ues collected from Goiânia’s city hall corridors and offices
using our application.2 We also configure the simulator to
have one sink node, which serves as a gateway for applica-
tions executing outside the network, and five sensor nodes,
running the STEER IDN agent software. All nodes are orga-
nized in the topology shown in Fig. 6. For the Software De-
fined Network (SDN), we use SDN-WISE (Galluccio et al.
(2015)), which is an SDN controller and an implementation
of a forwarding plane communication protocol specifically
designed to run on low-energy devices.

1Dataset: https://github.com/brunacordeiro/steer.
2Goiânia is the capital city of the state of Goiás, located in the Central-

West region of Brazil.

https://github.com/brunacordeiro/steer

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

2

1

3

4

5 6

Data

Control

Mote

Sink

Figure 6. Network topology for the Air Quality application evaluated in the
COOJA simulator.

An intent template was designed considering the needs of
air quality applications, in particular, the need for periodi-
cally sampling sensor data from the network. The template
has a list of attributes and final or suggested values for them:
a template name (final: “periodic_sampling”), a list of sen-
sor data types (suggestions: temperature, TVOC, humidity,
CO2), a list of nodes that are part of the intent (suggestion:
all, or a list of node IDs), a metric name (final: “mes-
sage_count”), the goal for the metric (final: “minimize”), a
numerical interval for sampling sensor data (suggestion: “5”,
or integer value), and the unit used for the sampling interval
(suggestion: “seconds”, “minutes”, “hours”). The template
serves as a recipe for defining concrete intents. Once an ap-
plication developer obtains a template, they generate a JSON
object with all the template attributes and accordingly pro-
vides values for them, thus defining a concrete intent.

The attributes in the intent template become the names in
the JSON “name-value” pairs, and the suggested or final val-
ues in the template become the values. Final values are un-
changeable, meaning that the application must keep the same
in the intent as they appear in the template. Suggested values,
on the other hand, are chosen by the application developers.

The intent we use in the evaluation is shown in Fig. 7.
The depicted intent is a JSON object consisting of a series
of attribute-value pairs defined for one or more applications
executing outside the network. Network behavior implemen-
tations use the application-provided values to realize the in-
tent in the network. In this use case, the behavior collects
TVOC measurements every 5 seconds from all sensor nodes
and makes them accessible to the applications that specified
or used the intent.

Based on the intent template, a set of network behaviors is
implemented. The network manager defines intent templates
and implements network behaviors that realize the overall
goal expressed in the intent templates. In our case study,
all network behaviors implement the necessary end-to-end
mechanisms to periodically collect sensor data and make the
data available to the applications.

Network behaviors are implemented following the Be-
havior interface, which defines the execute() and stop()
methods (see Fig. 4). For our use case, we have im-
plemented three unique behaviors that leverage the avail-
able network interaction methods defined in the communi-

1 "Intent": {
2 "template_name": "periodic_sampling",
3 "data_type": "TVOC",
4 "nodes": "all",
5 "metric": "message_count",
6 "goal":"minimize",
7 "periodicity": {
8 "value": "5",
9 "unit": "seconds"

10 }
11 }

Figure 7. The air quality use case intent is expressed as a JSON object.
This intent commands the network to retrieve TVOC values every 5s from
all sensor nodes in the network.

cation component (located at the IDN for IoT layer – see
Fig. 1). Given the three network communication functions
(poll(), periodic_collection() and define_alert()), we cre-
ated three unique behaviors that realize the air quality appli-
cations’ intent (shown in Fig. 7).

The first implemented behavior is called “Active Sam-
pling”. This behavior periodically calls the poll() function
to collect data from all the network nodes. To realize the air
quality use case intent, the “Active Sampling” behavior exe-
cutes the poll() function for each of the 5 sensors every 5s to
collect TVOC values.

The second implemented behavior is called “Periodic No-
tification”. It uses the periodic_collection() function to be
notified of sensor data periodically, without having to ac-
tively sample data. To realize the air quality intent, the “Peri-
odic Notification” behavior calls the periodic_collection()
function on the agent running in each of the 5 nodes, setting
the period of notification to 5s and the sensor data to TVOC.
After invoking periodic_collection() on all network nodes,
no other application-level message is generated by the behav-
ior; all subsequent messages are generated from the nodes
that send TVOC values to the behavior every 5s.

Finally, the third and last behavior is called “Notification
with Cache”. The general idea behind its implementation is
to maintain newly sensed data in cache. The behavior can
then provide cached values to the application without hav-
ing to query the IoT network constantly. To maintain the
cached data always fresh, the “Notification with Cache” uses
the define_alert() function to register an alert function on
all nodes, which collects TVOC values every second and ver-
ifies if the newly collected value is different from the cached
value (i.e., the last value sent to the behavior). If the newly
collected value is different, then the sensor notifies the behav-
ior, sending it the newly collected value. Once the cached
value is updated, the behavior deletes the old registered alert
function in the sensors and creates a new one with a new
threshold based on the new cached value. Otherwise, the
sensors do not perform any action and wait another second
to sense a new TVOC value. Note that this behavior only gen-
erates messages in the network when TVOC values change.
When the TVOC value remains unchanged, no application-
level messages are exchanged in the network.

Based on the implementation of the network behaviors
to realize the air quality intent, and considering the amount
of application-level messages generated on the network as
the primary performance metric, we can expect the “Active

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

$FWLYH�
6DPSOLQJ

3HULRGLF�
1RWLILFDWLRQ

1RWLILFDWLRQ�
ZLWK�&DFKH

������� ������ ������

D� E�

����� ����� �����

���� ���� �����

7RWDO�$PRXQW�
RI�0HVVDJHV

$YHUDJH�
0HVVDJHV�SHU�
&ROOHFWLRQ

6WDQGDUG�
'HYLDWLRQ�

0HVVDJHV�SHU�
&ROOHFWLRQ

Figure 8. (a) Graph showing the three available behaviors being exposed to environment A (TVOC measurements collected during the day), showing
“Periodic Notification” as the optimal behavior; (b) number of messages exchanged for each behavior, showing that “Periodic Notification” generates the
minimum amount of messages both in total and on average per collection.

Sampling” and “Periodic Notification” behaviors to generate
a relatively constant amount of messages, as they generate
messages every 5s regardless of the network operating envi-
ronment. On the other hand, the “Notification with Cache”
behavior generates messages as the cached data become stale,
so the number of generated messages is highly dependent
on the variation of the TVOC value sensed by the network.
During periods when the TVOC value changes frequently,
a larger amount of messages is generated in the network to
update the cached value, whereas, during periods when the
TVOC value remains constant, no messages are exchanged
in the network.

5 Evaluation
This section evaluates the Mediator’s behavior selection al-
gorithm. We evaluate the algorithm in terms of convergence
time, accuracy of convergence (i.e., if the Mediator selects
the optimal behavior for the current environment), and over-
head on the performance metric as a result of inadequate pa-
rameter settings.

We divide the evaluation into four parts. The first one
refers to the ground truth, where we explore statically defined
behaviors in two different operating environments, showing
that there are different optimal behaviors for different operat-
ing environments. The two subsequent parts analyze the se-
lection algorithm in static and dynamic environments, show-
ing convergence time (i.e., time to select the optimal behav-
ior) and the algorithm’s accuracy (i.e., if the algorithm se-
lects the correct behavior). Finally, we conclude the section
by providing an analysis of the main parameters of the algo-
rithm and their impact on adding an overhead to the behavior
performance metric.

All experiments were conducted on a computer with a
Core i7-4700MQ 2.40GHz and 16GB of RAM running Win-
dows 10 64 bits. The IoT network was simulated on the
COOJA Wireless Sensor Network simulator (Eriksson et al.
(2009)) in a VM running Ubuntu 14.04 with 4GB of RAM.
On the host operating system, we executed the SDN plat-
form SDN-WISE Galluccio et al. (2015), specially tailored

for controlling wireless sensor networks. The Mediator was
built for SDN-WISE and ran as a Java application on top
of the controller. All experiments were executed in 5 rounds,
and the presented results are an average across all executions.
The code and dataset used to perform the experiments are
open-source and available for download.3

5.1 Ground Truth
This section presents the ground truth that establishes which
network behavior performs optimally when exposed to two
different operating environments. The operating environ-
ments are based on the selected dataset containing measure-
ments of TVOC collected during day and night shifts. The
TVOC measurements vary with different frequencies accord-
ing to the time of day and place where the measurements are
taken, which directly influences the performance of the net-
work behaviors.

The available network behaviors are evaluated according
to the number of messages they generate. The fewer gen-
erated messages being exchanged in the network, the better.
The rationale is that the number of exchanged messages in
the network directly impacts energy consumption and con-
gestion. Thus, minimizing message exchange is generally
desirable and was chosen as the main performance metric.

The “Active Sampling” and “Periodic Notification” be-
haviors maintain the number of generated messages in the
network constant as they generate messages periodically at
predefined intervals specified in the intent. On the other
hand, the “Notification with Cache” behavior only gener-
ates messages when the cached value becomes stale. The
cached value, in turn, only becomes stale when the sensed
data change, and therefore this behavior is impacted by the
frequency of change; otherwise, when sensed data remain un-
changed, there is no reason to update the cached value, and
no message is generated on the network. We, therefore, ex-
pect that the “Notification with Cache” behavior performs
well when the TVOC values remain mostly constant; con-
versely, we expect poor performance when TVOC values

3https://github.com/brunacordeiro/steer

https://github.com/brunacordeiro/steer

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

$FWLYH�
6DPSOLQJ

3HULRGLF�
1RWLILFDWLRQ

1RWLILFDWLRQ�
ZLWK�&DFKH

������� ������ �����

D� E�

����� ����� ����

���� ���� ����

7RWDO�$PRXQW�
RI�0HVVDJHV

$YHUDJH�
0HVVDJHV�SHU�
&ROOHFWLRQ

6WDQGDUG�
'HYLDWLRQ�

0HVVDJHV�SHU�
&ROOHFWLRQ

Figure 9. (a) Graph showing the three available behaviors being exposed to environment B (TVOC measurements collected during the night), showing
“Notification with Cache” as the optimal behavior; (b) number of messages exchanged for each behavior, showing that “Notification with Cache” generates
the minimum amount of messages both in total and on average per collection.

change more frequently.
We performed two experiments, presented in Fig. 8 and

Fig. 9. The experiments were conducted by running each be-
havior on the network statically, meaning that each behavior
was deployed on the network nodes as a regular IoT appli-
cation with no adaptive capabilities. Each behavior was ex-
ecuted for 9.5 minutes (570s) and exposed to two different
datasets, a dataset of TVOC readings collected during day-
time (Fig. 8) and TVOC readings collected during the night
(Fig. 9). Since the TVOC readings were collected from a
government building that is only open during normal work-
ing hours (from 8AM to 6PM), we expect a high frequency
of changes in the TVOC readings during daytime. On the
other hand, TVOC readings collected during the night are
expected to be mostly constant.

The y-axis in both graphs shows the amount of messages
generated at each point of metric collection, while the x-axis
shows the time (in seconds) the metric collection takes place.
Every 30s, we collect the amount of messages for the cur-
rently executing behavior. The amount of messages as dis-
played in the graph is the result of the sum of messages per-
ceived in the 30s that precede the moment when the collec-
tion was made. All the remaining graphs shown in this paper
follow this description, including the ones presented in the
next sections.

Fig. 8(a) shows the number of application messages gen-
erated by the three available behaviors as they are exposed
to the operating environment generated by TVOC values
collected during the day, which change frequently. These
changes in TVOC readings make the “Notification with
Cache” behavior generate more messages than the ”Peri-
odic Notification” behavior because the cache value becomes
stale more often, forcing the network to generate more mes-
sages to update the cache.

The “Active Sampling” and “Periodic Notification” be-
haviors generate a relatively constant number of messages
throughout the experiment because the number of messages
they generate is not dependent on the dataset but rather on
the intent that defines the periodic collection rate (i.e., how
often network nodes send sensed data to the behavior), which,
in this case, is set to 5s. Furthermore, Fig. 8(b) presents

a table with the total number of application-level messages
generated by the network when exposed to the TVOC day-
time dataset environment, showing that “Periodic Notifica-
tion” generates the minimum amount of messages, both in
total and on average per collection, and, therefore, the “Peri-
odic Notification” behavior is the optimal one for that envi-
ronment.

Likewise, Fig. 9 shows a similar graph (a) and table (b)
for the same set of behaviors being exposed to a different
environment. This time, the operating environment is de-
fined by the readings of TVOC values collected during the
night, which remain constant primarily due to the nature of
TVOC. The graph on Fig. 9 (a) shows the “Notification with
Cache” behavior generating the minimum number of mes-
sages in the network throughout the entirety of the experi-
ment. The graph also shows the remaining two behaviors
performing very similarly to how they performed in the pre-
vious environment (depicted in Fig. 8). The table (Fig. 9(b)),
in turn, shows the total number of messages exchanged in
the network, the average number of messages exchanged per
collection, and the standard deviation of the amount of mes-
sages during the entire experiment. The table points to the
“Notification with Cache” behavior as the optimal one as it
generated the least amount of messages.

The two analyzed operating environments were designed
based on real measurements of TVOC. Considering an air
quality application, our ground truth experiments show that
depending on the time of the day, a different implementation
of the network behavior (i.e., how the network nodes collect
TVOC measurements) has a direct impact on the network per-
formance. Also, our experiments suggest that no single be-
havior has optimal performance in all cases, which leads to
the necessity to adapt the network behavior whenever the op-
erating environment changes. The following section shows
how our approach selects the optimal behavior for the two
operating environments without human interference.

5.2 Convergence in Static Environments
This section explores our behavior selection algorithm. We
particularly focus on behavior selection in static environ-

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

Figure 10. The three static network behaviors (lines yellow, blue, and red)
executing under operating environment A (TVOC measurements collected
during the day). The graph also shows the Mediator (green line) exploring
the different behaviors and converging to the optimal behavior from instant
120s onward.

ments (i.e., network operating environments that remain un-
changed). This experiment aims to show that our algorithm
is accurate when converging to optimal behavior for the two
operating environments evaluated in the ground truth exper-
iments (Sec. 5.1).

The experiments were conducted in two parts for each
static operating environment. First, we execute all static
behaviors for each operating environment, resulting in the
ground truth graphs depicted in the previous section. Sec-
ond, we execute the Mediator, which runs the behavior selec-
tion algorithm, deciding which behavior should be deployed.
The goal of the experiments is to show convergence accu-
racy, pointing out the overhead the exploration phase adds
to the performance metric.

As discussed in Section 3, the selection algorithm has two
main phases: exploration and exploitation. In static environ-
ments, the exploration phase executes once, exploring the
different available network behaviors and selecting the one
that yields the maximum reward (in our case, the minimum
message count). After selecting the optimal behavior, the
algorithm switches to the exploitation phase. The exploita-
tion phase must decide when to return to exploration, either
by identifying degradation of the performance metric or per-
forming periodic exploration. For this pair of experiments,
however, we disabled the periodic exploration part of the ex-
ploitation phase. Since the operating environment remains
unchanged, we verify whether the behavior installed by the
Mediator performs identically to the optimal static behavior
after convergence.

Fig. 10 shows the Mediator converging towards the “Pe-
riodic Notification” behavior after the exploration phase,
which occurs during the first three message count collections
(at instants 30s, 60s, and 90s). During exploration, the Medi-
ator executes the available network behaviors to verify how
well each behavior performs in the current environment. The
exploration phase has a fixed duration that allows the Medi-
ator to test each available network behavior. In our exper-
iment, the exploration phase takes 3 consecutive collection
cycles. In the first cycle, the Mediator executes “Active Sam-
pling”. It then executes “Periodic Notification” in the second
cycle. And, finally, at 90s it executes the “Notification with
Cache” behavior. After exploration, the Mediator installs
the “Periodic Notification” behavior in the network, which,
according to the ground truth (Sec. 5.1), is the optimal behav-
ior for the operating environment.

Figure 11. The three static network behaviors (yellow, blue, and red lines)
executing under operating environment B (TVOC measurements collected
during the night). The graph also shows the Mediator (green line) as it ex-
plores the different behaviors and converges to the optimal behavior from
instant 120s onward.

Similarly, Fig. 11 shows the Mediator converging to the
“Notification with Cache” behavior when exposed to envi-
ronment B (when TVOC readings were collected during the
night). The exploration phase also occurs in the first three
message count collection cycles (at 30s, 60s, and 90s). From
120s onward, the Mediator executes the “Notification with
Cache” behavior, which converges to the same number of
messages generated by the static behavior.

The results depicted in Fig. 10 and Fig. 11 demonstrate
that the Mediator is able to accurately converge to the appro-
priate network behavior with no predefined domain-specific
information. The exploration phase with fixed duration ex-
perimenting with each behavior only once works well in the
experiments we tested, mainly because the performance of
each behavior in both operating environments is very dis-
tinctive. This exploration algorithm, however, may not be
adequate for behaviors that start with high metrics and later
stabilize in a low value. For these types of environments and
behavior, algorithms that dynamically change the duration
of the exploration phase may be more suitable. Multi-armed
bandit algorithms such as UCB1 (Auer et al. (2002)) and ϵ-
greedy (Sutton and Barto (2018)) are examples of algorithms
that could work for such environments and behavior. Over-
all, however, our experiments show that our behavior selec-
tion algorithm converges quickly and accurately to the appro-
priate behavior, with an overhead on the number of generated
messages produced only during the exploration phase.

Note that the proposed algorithm works well for the tested
scenarios, and although it is a simple solution, it serves as
a baseline for more complex scenarios. Also, note that for
other, more complex, network behaviors and environments,
performing a single test of each behavior during the explo-
ration phase may not be sufficient for the algorithm to con-
verge toward the optimal solution.

5.3 Convergence in Dynamic Environments

This section presents our experiments with the behavior se-
lection algorithm in dynamic environments. For these experi-
ments, we start in a specific environment; mid-execution, we
change to a different operating environment. These experi-
ments simulate operating environment changes and how our
behavior selection algorithm performs under such dynamic
environments.

We run two distinct experiments illustrated in Fig. 12 and

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

Figure 12. The three network behaviors executing statically, along with the Mediator, which in turn executes in a dynamic operating environment. The
experiment starts in environment A – daytime measurements of TVOC (determined by the blue area) and changes to environment B – nighttime measurements
of TVOC (determined by the red area). The Mediator explores and converges to the optimal behavior for each environment.

Fig. 13. We start the first experiment (Fig. 12) with environ-
ment A (TVOC collected during the day) and change to en-
vironment B (TVOC collected during the night). In the first
part of the experiment, as expected, the Mediator behaves in
the same way as it does when we subject it to environment
A (as depicted in Fig. 10). The Mediator explores the three
available behaviors (at instants 30s, 60s, and 90s) and selects
the “Periodic Notification” behavior.

After converging to the optimal behavior, the behavior
selection algorithm has to decide when to return to the ex-
ploration phase again. Ideally, the best moment to return
to the exploration phase is when the operating environment
changes. For the experiment illustrated in Fig. 12, the pe-
riodic exploration happens at a fixed time interval defined
to occur every 6 minutes (360s) after convergence. This
means that every 6 minutes, the Mediator tests a different
known sub-optimal behavior to ensure that these behaviors
remain sub-optimal and that no changes occurred in the envi-
ronment. This periodic exploration is essential for theMedia-
tor to make sure that the known optimal behavior remains op-
timal and that the operating environment continues the same.
This is crucial for cases where a change in the environment
does not have a direct negative impact on the performance
metric for the currently executing behavior.

In the graph (presented in Fig. 12), periodic exploration oc-
curs at 480s. During periodic exploration, the Mediator tests
a different behavior. In our first experiment, it tests the “No-
tification with Cache” behavior and gets a resulting message
count of 21, which is better than the best-known behavior
message count (≈30 messages per collection) produced by
the “Periodic Notification” behavior. Because the recently
tested behavior yields a better message count, the Mediator
subsequently triggers exploration at 510s, testing all behav-
iors again in order to determine a new best-performing behav-
ior. In our experiment, at 600s, the Mediator converges to
the “Notification with Cache” behavior, which is the optimal
behavior for the new environment (TVOC collected during
the night).

Note that the periodic exploration time span set to 6 min-
utes is ideal for the experiment because it triggers a periodic

exploration right after the operating environment changes.
This was made by design and showed the perfect parameter
definition for the selection algorithm. This may not always
be the case, and if the periodic exploration time span is set to
a higher value, the Mediator will operate sub-optimally for
longer. On the other hand, if the time span for the periodic
exploration is set to a lower value, the Mediator would test
sub-optimal behaviors more often, and if the environment
remains unchanged for longer, this would result in a higher
overhead in terms of message count.

The second experiment is shown in Fig. 13. It starts in en-
vironment B (TVOC collected during the night) and changes,
mid-execution, to environment A. In the first part of the ex-
periment, the Mediator behaves just like it does during the
experiment with environment B (Fig. 11). After the operat-
ing environment changes, the performance of the “Notifica-
tion with Cache” behavior degrades drastically (at 450s). As
part of the Mediator exploitation phase algorithm, the Medi-
ator maintains the execution of the behavior for 3 consecu-
tive metric collection cycles after the metric degrades (450s,
480s, and 510s) and before triggering the exploration phase
(which starts at 540s). This is because the anomaly threshold
parameter makes the Mediator more tolerant to degraded met-
rics before triggering exploration, making the system more
stable when subjected to sporadic oscillations in the perfor-
mance metric.

Setting the anomaly threshold to 3 delays the exploration
phase’s start for 90s, which, in this case, can be seen as too
long since the environment and the network are very stable.
The higher the threshold value, the more tolerant to metric
value outliers the network becomes. However, for stable en-
vironments, setting the threshold to a high value only delays
the triggering of the exploration phase. Finally, after the ex-
ploration phase, the Mediator converges to the optimal be-
havior for the new environment, which, in our experiment,
is“Notification with Cache”.

This pair of experiments demonstrates that our behavior se-
lection algorithm correctly selects optimal behavior even af-
ter the operating environment changes. During the exploita-
tion phase, which starts when the optimal network behavior

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

Figure 13. The graph shows the three network behavior executing statically in a dynamic operating environment and the Meditator. The experiment starts on
environment B – night time measurements of TVOC (determined by the red area) and changes to environment A – daytime measures of TVOC (determined
by the blue area). The mediator explores and converges to the optimal behavior for each different environment.

Figure 14. Convergence of the Mediator to “Periodic Notification” (the
optimal behavior) for environment A (day time collection of TVOC). The
Mediator’s periodic exploration time span is set to 150s, with explorations
at 270s and 420s.

is selected in the exploration phase, theMediator implements
two different mechanisms to detect operating environment
changes. The first mechanism, illustrated in Fig. 12, is peri-
odic exploration, where the Mediator periodically executes
a different known sub-optimal behavior to verify that it re-
mains sub-optimal. The second, shown in Fig. 13, is through
performance metric degradation. Both mechanisms are con-
trolled by parameters, and depending on the parameter set-
tings, the network may suffer from performance overhead
and unnecessarily long convergence time.

5.4 Algorithm’s Parameters Analysis
This section analyses the parameters of the behavior selec-
tion algorithm. We first illustrate and discuss the effects
of the periodic exploration time span for the algorithm, as
shown figures 14, 15, and 16. We conclude the section with
a discussion of the anomaly threshold parameter values and
their consequences for different hypothetical operating envi-
ronments.

The results depicted in Fig. 14 and Fig. 15 show the over-
head in message count due to an overly short value for the
periodic exploration time span, whereas Fig. 16 shows the
delay in triggering exploration after an environment changes
due to a long time span setting for the periodic exploration pa-
rameter. The periodic exploration time span defines how fre-

Figure 15. Convergence of the Mediator to “Notification with Cache” (the
optimal behavior) for environment B (night time collection of TVOC). The
Mediator’s periodic exploration time span is set to 150s, with explorations
at 270s and 420s.

quently a periodic exploration is performed by the Mediator.
Periodic exploration is a mechanism used by the Mediator
to verify whether or not the operating environment changed.
This is necessary due to the fact that some operating environ-
ment changes do not affect the performance metric of some
network behaviors, making it difficult to detect changes.

Fig. 14 shows the three static behaviors (blue, red, and yel-
low lines) executing under operating environment A, where
the optimal behavior is “Periodic Notification”. The graph
also shows the execution of the Mediator (green line), which
runs the exploration phase during the first three collection
cycles (at 30s, 60s, and 90s), converging to the optimal be-
havior at 120s. After collection, due to the setting of the peri-
odic exploration time to 120s, every 120s the Mediator tests
a known sub-optimal behavior to check whether the given
behavior continues to perform sub-optimally. The first time
span count starts at 150s and triggers the periodic exploration
at 270s (120s later), then it starts counting again at 300s and
triggers periodic exploration at 420s. During the first peri-
odic exploration, the Mediator tests the “Notification with
Cache” behavior (at 270s), and during the second periodic
exploration, the Mediator tests the “Active Sampling” behav-
ior (at 420s). Because the environment does not change, test-
ing a sub-optimal behavior every 120s makes the network
behavior become temporarily sub-optimal twice during the
experiment’s lifetime. Ideally, the longer the environment

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

Figure 16. The Mediator and the three network behaviors executing in a
dynamic environment. The experiment starts with operating environment
A and changes to environment B. Periodic exploration is set to 480s, delay-
ing the triggering of the exploration phase after the environment changes at
600s.

remains unchanged, the less frequently the Mediator should
test sub-optimal behaviors to reduce the negative impact of
periodic exploration on the network performance.

Similarly, Fig. 15 also shows the periodic exploration time
span set to a low value, forcing the Mediator to perform pe-
riodic exploration too frequently for the experiment lifetime.
Differently, though, in this experiment, the network behav-
iors were executed under environment B, for which “Notifi-
cation with Cache” is the optimal behavior. After the Media-
tor converges to the optimal behavior (at 120s), the periodic
exploration occurs every 120s, executing at 270s and 420s.
The Mediator tests the “Active Sampling” behavior during
the first periodic exploration (at 270s) and the “Periodic No-
tification” behavior during the second one (at 420s). Be-
sides having the expected peak in performance after testing
known sub-optimal behaviors, frequent periodic exploration
prevents the optimal behavior selected by the Mediator to
stabilize and increase the network message count. Therefore,
at least in the scenario exploited in this experiment, less fre-
quent triggering of periodic exploration allows the selected
optimal behavior to properly converge to a very low message
count.

Fig. 16 shows the opposite effect of mistuning the periodic
exploration time span. Instead of having the effect of gener-
ating a higher message count due to frequent exploration, the
graph shows the Mediator having a slower reaction to envi-
ronment change. Fig. 16 presents the three fixed behaviors
and the Mediator being subjected to a dynamic environment.
In this experiment, the network is first subjected to environ-
ment A (TVOC collected during the day), and at 420s, the
environment changes to B (TVOC nighttime collection). In
this experiment, periodic exploration is set to occur every
480s, starting from the 120s and occurring only at 600s for
the first time. As a consequence, the network remains on
a sub-optimal behavior for over 150s before triggering the
exploration phase and converging to the optimal network be-
havior, which happens at 690s.

The other crucial parameter for the behavior selection al-
gorithm is the anomaly threshold. This parameter determines
how tolerant to outlier performance metric values the Medi-
ator is. A high threshold value is crucial for environments
that randomly generate a series of peaks in the performance
metric, but remain in the same operating environment. Peaks
in performance metrics (i.e., performance degradation) often
are an indication of environment changes, but sometimes it is

just a period of instability generated by unpredictable factors.
Therefore, always reacting to performance degradation (i.e.,
always triggering exploration) may not be the best course
of action, especially if the performance degradation is just a
momentary instability of the operating environment. Execut-
ing a complete exploration phase generates high overhead in
the network performance metric. Thus, being tolerant to de-
graded performance for moments of instability is necessary,
but being too tolerant makes reaction time to environment
change very slow.

An example of the effects of this parameter is shown in
Fig. 13. The anomaly threshold was set to 3, meaning that
the Mediator only triggers a full exploration phase after de-
tecting 3 consecutive measurements of unusually high metric
values (e.g., 3 consecutive measurements of the metric at val-
ues two times higher than the previously collected values). In
that case, the Mediator only triggers exploration 120s after
the environment changes. Considering that the environment
is very stable, the Mediator could trigger exploration sooner
and converge to the new optimal behavior sooner.

This set of experiments with the periodic exploration pa-
rameter shows that this parameter is highly dependant on
the environment and available network behavior character-
istics, and for the different environments or sets of behav-
ior a different parameter value can be more adequate. Better
behavior selection algorithms should use meta-learning ap-
proaches to tune such parameters. Besides online parametric
tuning/learning, a promising line of research is to investigate
coordination between the behavior selection algorithm and
environment classification algorithms to eliminate the need
for periodic exploration and identifying periods of environ-
ment instability and to only trigger exploration when a previ-
ously unknown environment is detected.

6 Discussion
This section discusses the limitations of our approach and
presents opportunities to be explored in future work. We
divide the discussion into three sections: limitations of the
behavior selection algorithm; limitation of the current inte-
gration of the IDN and SDN layers; and a discussion on scal-
ability.

6.1 Behavior Selection Algorithm
The last part of the evaluation of the behavior selection algo-
rithm shows the consequences of not adequately choosing the
algorithm’s parameters. For instance, we have shown situa-
tions in which the algorithm takes too long to react to changes
in the environment or explores too often when it could simply
remain executing the best-known behavior longer. Thus, an
important addition to the selection algorithm is an extension
that explores parameter auto-tuning to adjust their values as
the network encounters new environments. Besides the need
for online parameter tuning, the current approach would also
benefit from classifying operating environments. Environ-
ment classification would enable the selection algorithm to
identify previously seen conditions and remember the deci-
sions made. This allows the algorithm to create a mechanism

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

to avoid exploring behaviors for previously seen conditions
and spend more time exploiting best-known behaviors rather
than searching for them.

The execution of multiple intents in the network was not
investigated in this work. As noted in the approach descrip-
tion section (Sec. 3), multiple instances of the selection al-
gorithm could execute concurrently to locate the best behav-
ior for each intent provided to the network. Furthermore, to
realize multiple intents, a unique network-wide metric (e.g.,
message count, or energy consumption) should be used. This
unique network metric would allow the selection algorithm
to converge towards a set of behaviors that would yield opti-
mal performance for the given network operating condition.
Clearly, however, deploying new behaviors to realize new
intents in the network would impact the network-wide ob-
served metric, disturbing the execution of the multiple in-
stances of the selection algorithm. The multiple executing
instances would eventually converge, as they would make
decisions based on the newly observed metric in the new op-
erating environment created by adding new intents to be re-
alized in the network. Nevertheless, the impact of multiple
simultaneous instances of the selection algorithms needs to
be further investigated.

Other approaches to explore multiple intents in the net-
work can be investigated in future work. Another example is
to update the selection algorithm to receive as input multiple
intents and update the algorithm to execute one behavior for
each intent received. This approach would generate a com-
bination of behaviors to realize a set of intents. For instance,
if there are two intents: I1 and I2, each with two behaviors
I1 − B1, I1 − B2, I2 − B1, I2 − B2, the exploration phase
would execute all combination of behaviors (e.g., I1 − B1
and I2 − B1, then I1 − B1 and I2 − B2, and so on) and
select the combined behaviors with the best performance ac-
cording to the network-wide metric. This approach would
certainly lead to a large search space to explore as the num-
ber of intents to be realized in the network increases.

The multiple intent discussion leads to two concerns: the
exploration of large search spaces and the consideration of
conflicting goals. As the number of intents increases in the
network, the number of combined behaviors to evaluate in-
creases exponentially. Thus, the need to iterate through all
possible combinations of behaviors at least once before mak-
ing decisions becomes impractical in extreme cases. These
extreme situations require a new strategy to cope with larger
search spaces. Reinforcement learning approaches, in turn,
such as the one discussed in Ontanón (2017), could poten-
tially be applied to help navigate through large search spaces
(≈millions of actions). In that paper, the author describes a
multi-armed bandit solution for real-time gaming that is able
to navigate through a search space with millions of actions.

Conflicting goals represent another important challenge.
The realization of multiple intents would lead to conflicting
goal resolution when the metric that determines the criteria
to select behaviors for different intents is different. In this
case, the multi-object optimization (MOO) approach should
be considered instead of our proposed behavior selection al-
gorithm, which is facilitated by the modularity of our ap-
proach, which in turn allows replacing the selection behav-
ior algorithm with other algorithms. This scenario, however,

is outside the scope of this paper, although related research
in the literature could be explored. For instance, Fei et al.
(2017) surveys MOO algorithms for Wireless Sensor Net-
works. Some of these algorithms could potentially be used
to further explore and consolidate STEER when considering
conflicting metrics.

6.2 IDN and SDN integration

For the integration of the IDN and SDN layers, our approach
presents limitations on the extensibility of both metric col-
lection and the execution of the agent on sensor nodes. Al-
though the IDN module is equipped with the Observation
interface that can be implemented to deal with any met-
rics, our current implementation only uses the metrics that
SDN-WISE constantly collects from the network: nodes en-
ergy consumption, nodes RSSI, network topology and other
network-related metrics. To make STEER able to deal with
other types of metric, it would be necessary to create a mech-
anism to extend SDN-WISE‘ metric collection to allow the
collection of new metrics from the sensor nodes and send
them to the controllers as Report Packets. In the current im-
plementation of STEER, arriving Report Packets are made
available to any class implementing the Observation inter-
face. This mechanism would allow the creation of new im-
plementations of Observation for new metrics, without the
need to alter the proposed behavior selection algorithm as
previously described.

The agent running on sensor node, isn turn, is static and
implements network communication functions that are used
by behaviors to interact with the network. To add more flex-
ibility in the way behaviors interact with the network, the
IDN layer could exploit the network function feature of SDN-
WISE and install new agents, as demanded by behaviors,
equipped with new ways to interact with the network. This
would allow executing behaviors to change code in target
sensor nodes at runtime; for instance, to add code that per-
forms a specific aggregation function or a data classifier after
data collection in the node.

Finally, we adapted the sensor node at the application level
only. However, we could further interact with the SDN con-
troller from the behavior to also make changes at the network
level. For instance, we could change the routing algorithm
or install new network functions to perform tasks such as
load balancing among sensor nodes. We could also deploy
a classifier on the sensor node responsible for replying with
processed data instead of sending raw sensing data for the
behavior to process.

These extensions to the integrationo of the IDN and SDN
layers would make our approach more adaptable and generic,
possibly also makin git more useful for a broader range of
application domains.

6.3 Scalability

As a final set of limitations of the approach, we now discuss
some aspects of scalability. The first noticeable aspect of
our experiment is the small number of nodes in the evalu-
ated scenarios. In this paper, we evaluated STEER with only

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

5 executing sensor nodes and a sink node, resulting in a de-
ployment setting with a maximum of 6 nodes. Although 6
nodes are realistic for monitoring the air quality of a single
room in a building, we built our solution to scale past a 6-
node network infrastructure. STEER leverages an SDN for
an IoT-based approach, and we rely on the SDN solution to
scale. In the literature, the controller placement problem has
been widely tackled to scale SDN and demonstrated to be
useful in the real world (Huang et al. (2017); Lange et al.
(2015); Min et al. (2021).

We rely on SDN to bootstrap the network and define and
adapt the flow tables of the sensor nodes, especially to extract
metrics from the network and send application-level com-
mands to agents running at the application level on the nodes.
Considering that the nodes are up and running and a network
is perfectly executing with hundreds of nodes and that we
can reach any node and send application-level commands to
them and collect metrics, we can then focus on the aspects
that directly affect the scalability of STEER. These aspects
are the number of concurrent intents (and the resulting com-
binatorial number of behaviors) and the nature of selected
metrics.

The number of behaviors is determined by the intents, and
the intents may only affect a set of nodes. The selection al-
gorithm could be made to only consider the affected nodes
defined by the intents rather than run all combinations of all
behavior in all nodes. This could be used as a strategy to help
manage scalability. Furthermore, as previously discussed,
strategies to navigate large search spaces could be adopted
to allow the realization of multiple intents in the network.

Finally, the collection of metrics may have a significant
impact on scalability (Gardikis et al. (2016)), and further re-
search should be conducted to explore this in the context
of STEER. The messages exchanged between the network
nodes and the application running outside the network go
through a centralized controller and, thus, do not require ac-
tive metric extraction. However, many other metrics may im-
pact performance. For instance, calculating energy consump-
tion involves querying the energy levels of a set of nodes mul-
tiple times to calculate the total consumption. This impacts
the number of messages in the network, and thus a strategy
to query a subset of nodes may help scale the system.

7 Conclusion
This paper presented an end-to-end implementation of a
novel approach to support autonomous adaptation of IoT net-
works for indoor monitoring applications. The approach is
the result of unifying two concepts that have gained impor-
tance in the literature: Intent-Driven Networks (IDN) and
Software Defined Networks (SDN). The combination of the
two concepts was realized through a layered architecture,
where the SDN layer was built using an existing solution
(SDN-WISE), while the IDN layer is a contribution of this
work. The IDN layer receives and interprets application in-
tents, realizing them through the runtime selection and ex-
ecution of the best-performing network behavior (among a
set of available behaviors), considering the current network
operating environment.

We evaluated the approach using a simulated network and
real IoT indoor monitoring application data. The experi-
ments were conducted in the domain of air quality monitor-
ing. We defined an intent template and a representative intent
instance for an air quality monitoring application, together
with three distinct network behaviors to realize the intent.
We subjected our IoT network to two different operating en-
vironments and evaluated the behavior selection algorithm,
implemented as part of the intent Mediator, in terms of con-
vergence time and accuracy.

Our results show that the proposed selection algorithm cor-
rectly selects the optimal behavior for both environments.
We also show that the convergence time is determined by
the duration of the selection algorithm’s exploration phase
and that our exploration phase is appropriate for the behav-
ior and environment that we used in the experiments. Finally,
we showed that the overhead on the performance metric is
a consequence of adapting the network behavior and that by
properly setting the parameters for the exploitation phase, we
may reduce such overhead.

As we presented a complete end-to-end implementation
of a novel approach, some of its aspects were not fully
addressed. In future work, we envision investigating the
process of generating network behavior implementations di-
rectly from the application’s intent. This work also provides
the opportunity to investigate conflicting intents and how the
network should handle them. Finally, the investigation of re-
inforcement learning algorithms to learn the best performing
network behavior in situations where i) it is not easy to iden-
tify an optimal behavior after executing each behavior once
in the exploration phase, and ii) when the number of avail-
able behaviors is large, which increases the search space and
requires strategies to handle scalability. Finally, although the
intent and behaviors used in the experiments are representa-
tive of an important class of IoT applications, further work is
necessary to validate and evaluate the approach in other sce-
narios, especially those involving other patterns of interac-
tion between application and network besides the collection
of sensing data.

Acknowledgment

This research is also part of the INCT of the Future
Internet for Smart Cities funded by the National Coun-
cil for Scientific and Technological Development (CNPq)
proc. 465446/2014-0, the Coordination for the Im-
provement of Higher Education Personnel (CAPES) proc.
88887.136422/2017-00, and the São Paulo Research Foun-
dation (FAPESP) procs. 14/50937-1 and 15/24485-9. Bruna
Michelly de O. S. Cordeiro thanks CAPES for her masters
scholarship. Roberto Rodrigues Filho thanks FAPESP for
funding his postdoctoral work under the process 2020/07193-
2.

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

Declarations

Authors’ Contributions
All authors contributed to the writing of this article, read and ap-
proved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Data can be made available upon request.

References
Almutairi, A., Alsanad, A., and Alhelailah, H. (2019). Eval-

uation of the indoor air quality in governmental oversight
supermarkets (co-ops) in kuwait. Applied Sciences, 9(22).
DOI: 10.3390/app9224950.

Aschenbruck, N., Bauer, J., Bieling, J., Bothe, A., and
Schwamborn, M. (2012). Selective and secure over-the-
air programming for wireless sensor networks. In 2012
21st International Conference on Computer Communi-
cations and Networks (ICCCN), pages 1–6. IEEE. DOI:
10.1109/ICCCN.2012.6289278.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002).
Finite-time analysis of the multiarmed bandit
problem. Mach. Learn., 47(2–3):235–256. DOI:
10.1023/A:1013689704352.

Azzara, A., Alessandrelli, D., Bocchino, S., Petracca, M.,
and Pagano, P. (2014). Pyot, a macroprogramming
framework for the internet of things. In Proceedings of
the 9th IEEE international symposium on industrial em-
bedded systems (SIES 2014), pages 96–103. IEEE. DOI:
10.1109/SIES.2014.6871193.

Bera, S., Misra, S., and Vasilakos, A. V. (2017). Software-
defined networking for internet of things: A survey.
IEEE Internet of Things Journal, 4(6):1994–2008. DOI:
10.1109/JIOT.2017.2746186.

Blair, G. (2018). Complex distributed systems: The need
for fresh perspectives. In 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS),
pages 1410–1421. DOI: 10.1109/ICDCS.2018.00142.

Cerroni, W., Buratti, C., Cerboni, S., Davoli, G., Contoli,
C., Foresta, F., Callegati, F., and Verdone, R. (2017).
Intent-based management and orchestration of heteroge-
neous openflow/iot sdn domains. In 2017 IEEE Con-
ference on Network Softwarization (NetSoft), pages 1–9.
DOI: 10.1109/NETSOFT.2017.8004109.

Elkhatib, Y., Coulson, G., and Tyson, G. (2017). Charting an
intent driven network. In 2017 13th International Confer-
ence on Network and ServiceManagement (CNSM), pages
1–5. IEEE. DOI: 10.23919/CNSM.2017.8255981.

Eriksson, J., Österlind, F., Finne, N., Tsiftes, N., Dunkels,
A., Voigt, T., Sauter, R., and Marrón, P. J. (2009). Coo-
ja/mspsim: interoperability testing for wireless sensor net-
works. In Proceedings of the 2nd International Confer-

ence on Simulation Tools and Techniques, pages 1–7. DOI:
10.4108/ICST.SIMUTOOLS2009.5637.

Fei, Z., Li, B., Yang, S., Xing, C., Chen, H., and Hanzo,
L. (2017). A survey of multi-objective optimization in
wireless sensor networks: Metrics, algorithms, and open
problems. IEEE Communications Surveys & Tutorials,
19(1):550–586. DOI: 10.1109/COMST.2016.2610578.

Fernández-Agüera, J., Dominguez-Amarillo, S., Fornaciari,
M., and Orlandi, F. (2019). Tvocs and pm 2.5 in natu-
rally ventilated homes: Three case studies in a mild cli-
mate. Sustainability, 11(22). DOI: 10.3390/su11226225.

Floris, A., Porcu, S., Girau, R., and Atzori, L. (2021). An
iot-based smart building solution for indoor environment
management and occupants prediction. Energies, 14(10).
DOI: 10.3390/en14102959.

Galluccio, L., Milardo, S., Morabito, G., and Palazzo, S.
(2015). Sdn-wise: Design, prototyping and experimenta-
tion of a stateful sdn solution for wireless sensor networks.
In 2015 IEEE Conference on Computer Communications
(INFOCOM), pages 513–521. IEEE. DOI: 10.1109/INFO-
COM.2015.7218418.

Gardikis, G., Koutras, I., Mavroudis, G., Costicoglou, S.,
Xilouris, G., Sakkas, C., and Kourtis, A. (2016). An in-
tegrating framework for efficient nfv monitoring. In 2016
IEEE NetSoft Conference and Workshops (NetSoft), pages
1–5. DOI: 10.1109/NETSOFT.2016.7502431.

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami,
M. (2013). Internet of things (iot): A vision, ar-
chitectural elements, and future directions. Future
Generation Computer Systems, 29(7):1645–1660. DOI:
10.1016/j.future.2013.01.010.

Huang, T., Yu, F. R., Zhang, C., Liu, J., Zhang, J., and
Liu, Y. (2017). A survey on large-scale software defined
networking (sdn) testbeds: Approaches and challenges.
IEEE Communications Surveys & Tutorials, 19(2):891–
917. DOI: 10.1109/COMST.2016.2630047.

Jacobs, A. S., Pfitscher, R. J., Ferreira, R. A., and
Granville, L. Z. (2018). Refining network intents for
self-driving networks. In Proceedings of the Afternoon
Workshop on Self-Driving Networks, pages 15–21. DOI:
10.1145/3229584.3229590.

Júnior, J. C., da Cunha, D. C., and Ferraz, C. A. (2021). In-
tegrating context awareness and sdn for a lightweight ap-
proach to adaptive networking. In Anais do XIII Simpósio
Brasileiro de Computação Ubíqua e Pervasiva, pages 91–
101. SBC. DOI: 10.5753/sbcup.2021.16007.

Junior, S., Riker, A., Silvestre, B., Moreira, W., Oliveira-Jr,
A., and Borges, V. (2020). Dynasti—dynamic multiple rpl
instances for multiple iot applications in smart city. Sen-
sors, 20(11):3130. DOI: 10.3390/s20113130.

Kreutz, D., Ramos, F. M. V., Veríssimo, P. E., Rothen-
berg, C. E., Azodolmolky, S., and Uhlig, S. (2015).
Software-defined networking: A comprehensive sur-
vey. Proceedings of the IEEE, 103(1):14–76. DOI:
10.1109/JPROC.2014.2371999.

Lange, S., Gebert, S., Zinner, T., Tran-Gia, P., Hock,
D., Jarschel, M., and Hoffmann, M. (2015). Heuris-
tic approaches to the controller placement problem in
large scale sdn networks. IEEE Transactions on

https://doi.org/10.3390/app9224950
https://ieeexplore.ieee.org/document/6289278
https://doi.org/10.1023/A:1013689704352
https://ieeexplore.ieee.org/document/6871193
https://ieeexplore.ieee.org/document/8017556
https://ieeexplore.ieee.org/document/8416405
https://ieeexplore.ieee.org/document/8004109
https://ieeexplore.ieee.org/document/8255981
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5637
https://ieeexplore.ieee.org/document/7570253
https://doi.org/10.3390/su11226225
https://doi.org/10.3390/en14102959
https://ieeexplore.ieee.org/document/7218418
https://ieeexplore.ieee.org/document/7218418
https://doi.org/10.1016/j.future.2013.01.010
https://ieeexplore.ieee.org/document/7747513
https://doi.org/10.1145/3229584.3229590
https://doi.org/10.5753/sbcup.2021.16007
https://doi.org/10.3390/s20113130
https://ieeexplore.ieee.org/document/6994333

STEER: An Architecture to Support Self-adaptive IoT Networks for Indoor Monitoring Applications Cordeiro et al. 2023

Network and Service Management, 12(1):4–17. DOI:
10.1109/TNSM.2015.2402432.

Madureira, J., Paciência, I., Rufo, J., Ramos, E., Barros, H.,
Teixeira, J. P., and de Oliveira Fernandes, E. (2015). In-
door air quality in schools and its relationship with chil-
dren’s respiratory symptoms. Atmospheric Environment,
118:145–156. DOI: 10.1016/j.atmosenv.2015.07.028.

Mai, T., Garg, S., Yao, H., Nie, J., Kaddoum, G., and Xiong,
Z. (2021). In-network intelligence control: Toward a self-
driving networking architecture. IEEENetwork, 35(2):53–
59. DOI: 10.1109/MNET.011.2000412.

Min, Z., Sun, H., Bao, S., Gokhale, A. S., and Gokhale,
S. S. (2021). A self-adaptive load balancing approach
for software-defined networks in iot. In 2021 IEEE
International Conference on Autonomic Computing and
Self-Organizing Systems (ACSOS), pages 11–20. DOI:
10.1109/ACSOS52086.2021.00034.

Noor, J., Tseng, H.-Y., Garcia, L., and Srivastava, M. (2019).
Ddflow: visualized declarative programming for hetero-
geneous iot networks. In Proceedings of the International
Conference on Internet of Things Design and Implementa-
tion, pages 172–177. DOI: 10.1145/3302505.3310079.

Ontanón, S. (2017). Combinatorial multi-armed bandits for
real-time strategy games. Journal of Artificial Intelligence
Research, 58:665–702. DOI: 10.1613/jair.5398.

Pang, L., Yang, C., Chen, D., Song, Y., and Guizani, M.
(2020). A survey on intent-driven networks. IEEE Access,
8:22862–22873. DOI: 10.1109/ACCESS.2020.2969208.

Rodrigues-Filho, R. and Porter, B. (2017). Defining
emergent software using continuous self-assembly, per-
ception, and learning. ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS), 12(3):1–25. DOI:
10.1145/3092691.

Rodriguez-Zurrunero, R., Tirado-Andrés, F., and Araujo, A.
(2018). Yetios: An adaptive operating system for wireless
sensor networks. In 2018 IEEE 43rd Conference on Local
Computer Networks Workshops (LCN Workshops), pages
16–22. IEEE. DOI: 10.1109/LCNW.2018.8628500.

Shafi, N. B., Ali, K., and Hassanein, H. S. (2012). No-reboot
and zero-flash over-the-air programming for wireless sen-
sor networks. In 2012 9th Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Commu-
nications and Networks (SECON), pages 371–379. IEEE.
DOI: 10.1109/SECON.2012.6275799.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learn-
ing: An introduction. MIT press.

Zanella, A., Bui, N., Castellani, A., Vangelista, L., and
Zorzi, M. (2014). Internet of things for smart cities.
IEEE Internet of Things Journal, 1(1):22–32. DOI:
10.1109/JIOT.2014.2306328.

https://doi.org/10.1016/j.atmosenv.2015.07.028
https://ieeexplore.ieee.org/document/9387694
https://ieeexplore.ieee.org/document/9659533
https://doi.org/10.1145/3302505.3310079
https://doi.org/10.1613/jair.5398
https://doi.org/10.1145/3092691
https://ieeexplore.ieee.org/document/8628500
https://ieeexplore.ieee.org/document/6275799
https://ieeexplore.ieee.org/document/6740844

	Introduction
	Background and Related Work
	Adaptation Mechanisms
	Autonomic Management of IoT Networks
	Intent-Driven Networks

	SDN-based Intent-Driven IoT Networks
	Use Case: Air Quality Application
	Evaluation
	Ground Truth
	Convergence in Static Environments
	Convergence in Dynamic Environments
	Algorithm's Parameters Analysis

	Discussion
	Behavior Selection Algorithm
	IDN and SDN integration
	Scalability

	Conclusion

