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Abstract Cybernetic attacks have been increasingly
common and cause great harm to people and organi-
zations. Late detection of such attacks increases the
possibility of irreparable damage, with high financial
losses being a common occurrence. This article proposes
TeMIA-NT (ThrEat Monitoring and Intelligent data
Analytics of Network Traffic), a real-time flow analy-
sis system that uses parallel flow processing. The main
contributions of the TeMIA-NT are: i) the proposal of
an architecture for real-time detection of network in-
trusions that supports high traffic rates, ii) the use of
the structured streaming library, and iii) two modes
of operation: offline and online. The offline operation
mode allows evaluating the performance of multiple ma-
chine learning algorithms over a given dataset, includ-
ing metrics such as accuracy, Fl-score, and area under
the curve (AUC). The proposed system uses dataframes
and the structured streaming engine in online mode,
which allows detection of threats in real-time and a
quick reaction to attacks. To prevent or minimize the
damage caused by security attacks, TeMIA-NT achieves
flow-processing rates that reach 50 GB/s.
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1 Introduction

Cybercrime is one of the major challenges introduced
by the exponential growth of the Internet. According to
Cybersecurity Ventures [1], damages related to cyber-
attacks are projected to reach US$6 trillion by 2021.
Besides, the growth and popularization of areas such
as Big Data and the Internet of Things pose even more
significant challenges to cybersecurity. The introduction
of billions of low power computing devices connected to
the network increases the impact of possible attacks, as
these devices can be easily hacked and compromised
on a large scale [2,3,4]. The large volume of data to
be analyzed in real-time also increases the complexity
of classifying network traffic and detecting threats [5].
Finally, the average time to detect an attack is a cru-
cial factor in the impact of cyber threats. More than a
quarter of cyber-attacks take a long time before being
discovered, with this time often ranging from weeks to
months [6]. The late detection of an attack exponen-
tially increases the risk of financial losses and the risk
of irreparable damage. The long time is due to the need
for human intervention in these situations, significantly
affecting the efficiency of dealing with threats.

In this scenario in which security is a fundamen-
tal aspect, the need for systems capable of guarantee-
ing safe and reliable network use is increasing. Solu-
tions based on Security Information and Event Man-
agement (SIEM) tools partially mitigate the problem
by providing real-time network monitoring. This type
of solution, however, is still highly dependent on the
intervention of experts and is based on threat signature
databases, therefore being inefficient in the detection
of new attacks. Using machine learning algorithms for
threat detection, on the other hand, automates the de-
tection process and meets the required agility to pre-
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vent and mitigate network attacks. It is of utmost im-
portance to select algorithms that perform well in the
classification process, without harming accuracy and
other evaluation metrics. Previously, our research group
(GTA/UFRJ) proposed CATRACA 7], a tool that uses
machine learning to detect threats in real-time.

This paper proposes TeMIA-NT: Threat Monitoring
and Intelligent Data Analytics of Network Traffic, an in-
telligent threat monitoring and detection system based
on machine learning and distributed processing in clus-
ters. TeMIA-NT proposes and develops an entirely new
distributed processing system with significant improve-
ments in machine learning processing optimization. Our
proposal focuses on the intelligence, scalability, and
performance required to process large volumes of data
while optimizing multiple machine learning algorithms
to meet the diversity of new attacks. To increase perfor-
mance, TeMIA-NT implements distributed processing
entirely in Scala language and uses dataframe struc-
tures, instead of the standard Resilient Distributed
Datasets (RDD) structure on the open-source Apache
Spark platform. TeMIA-NT offers many options for ma-
chine learning algorithms and the possibility of optimiz-
ing hyperparameters, allowing testing, selecting, and
adjusting the parameters of the best algorithm for each
type of scenario. We implement the offline threat de-
tection using the structured streaming library, which
allows flow processing in micro-batches, with fault tol-
erance and reduced intervals. Online threat detection
uses the continuous processing mode, which enables our
proposal to perform similar to a native stream process-
ing tool.

The rest of the article is organized as follows. Sec-
tion 2 presents papers with themes related to the ar-
ticle. Section 3 introduces the Apache Spark platform,
as well as its data structures and its machine learning
library. Section 4 presents the machine learning algo-
rithms used during the performance analysis, as well as
a brief look at their hyperparameters. Section 5 offers
a detailed look at the network traffic dataset used to
test the proposed system, while Section 6 presents the
system’s architecture and features. Section 7 presents
and analyzes the performance tests and their results,
and Section 8 presents the author’s final considerations
and concludes the work.

2 Related Works

New challenges in the intrusion detection area arise
due to the high volume of traffic, a large number of
IoT devices, distributed denial of service attacks, and
zero-day attacks [8,9,10]. To meet these challenges, the
use of machine learning techniques to classify flows in

real-time became popular [7,11,12,13]. The classifica-
tion of large volumes of data at high speeds available
employs three main distributed processing platforms:
Apache Spark, Apache Storm, and Apache Flink. The
fundamental difference between the platforms is that
Spark performs batch processing while the Storm and
Flink platforms perform native flow processing.

The  Open  Security  Operations  Center
(OpenSOC) [14] is an analytical security frame-
work for monitoring large amounts of data. OpenSOC
originated a new project, Apache Metron [15], that is a
tool that comprises the acquisition of different types of
data, distributed processing, enrichment, storage, and
visualization of results. Metron allows the correlation
of security events from various sources, such as logs of
applications and network packages. For this purpose,
the framework uses distributed data sources, such as
sensors on the network, logs of security element events,
and enriched data called telemetry sources. The tool
also provides a historical base of Cisco network threats.

Based on the Apache Spark Platform [16], there
are the Apache Spot, Stream4Flow [17], and Hogzilla.
Apache Spot is a project still in the incubation stage
that uses telemetry and machine learning techniques for
analyzing packages to detect threats. The Stream4Flow
prototype uses the Elastic stack to view network pa-
rameters, however, it lacks the intelligence to perform
anomaly detection. The Hogzilla tool provides support
for Snort, SFlows, GrayLog, Apache Spark, HBase, and
libnDPI, offering network anomaly detection. Hogzilla
also allows visualizing network traffic, using Snort to
capture packets, and obtaining features through deep
packet inspection. Stream4Flow captures packets using
IPFIXcol and only considers header information. In our
work, we use the flowtbag software, which captures var-
ious flow statistics. In addition, our offline processing
mode allows updates to the machine learning model,
further promoting the detection of new threats.

We select the Apache Spark platform to develop the
TeMIA-NT because it is the most adopted among the
examined Big Data processing platforms. Spark offers
more possibilities for machine learning algorithms and
is the one with the largest active community. Never-
theless, to the best of our knowledge, TeMIA-NT is
the only available system to use the recent structured
streaming technology in batch and continuous modes
in Apache Spark, allowing the selection among several
machine learning algorithms, and operating in offline
and online modes.
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3 The Apache Spark Platform

We use Apache Spark [16], a distributed processing
platform for Big Data, providing an interface for pro-
gramming in clusters with parallelism and fault toler-
ance, to develop the system in this paper. We chose
the Spark platform due to its efficiency, its great ac-
ceptance in the market, and because it has a wide
library of machine learning algorithms. The platform
also supports multiple programming languages, includ-
ing Python, Scala, R, and Java.

The main feature of Apache Spark is how it pro-
cesses data: all operations that involve reading and
writing intermediate results are done in memory. Spark
is efficient for applications that perform multiple data
transformation iterations in a distributed environment,
avoiding time-consuming disk operations [18].

The Spark platform provides several libraries, such
as Spark Streaming for real-time flow processing and
GraphX for parallel graph computing. Also, Spark pro-
vides MLIib, a library that implements parallelizable
and efficient machine learning algorithms in a dis-
tributed environment, making the platform an option
for classifying network traffic. We use algorithms from
the MLIib library to do performance analysis, which
creates the machine learning models used for traffic
classification.

3.1 Data Structures

Because of the growing impact of Big Data, Zaharia
et al. designed and developed Apache Spark to pro-
vide enterprise-level distributed processing for large
datasets [16]. The data structures used by Spark play
an essential role in the fast and efficient data process-
ing, being responsible for its organization, management,
and storage; they also provide functions and operations
to make more efficient data processing.

3.1.1 Resilient Distributed Datasets

The first Spark data structure developed for distributed
processing was resilient and distributed datasets
(RDD). This structure is an immutable and, there-
fore, resilient dataset, partitioned in the cluster nodes.
It can be operated by a low-level API, offering multi-
ple transformations and functions. A crucial feature of
this data structure is to provide computing resources in
memory, providing the agility observed in Spark oper-
ations. Another essential feature is the use of lazy eval-
uation, which computes expressions or functions only
when their results are needed, optimizing the execution
time by avoiding unnecessary calculations. RDD also

offers fault tolerance: each RDD can reconstruct lost
data automatically, based on data within other nodes
in the cluster. Since RDDs are immutable, they can be
created or retrieved at any time, making data sharing
and replication a simple process.

3.1.2 DataFrame € Dataset

DataFrames and Datasets are the other data structures
implemented by Apache Spark. These structures dif-
fer from RDD in that they are structured as tables in
a relational database: RDDs do not specify rows and
columns, thus queries in RDDs with a large number
of records require longer periods to complete. On the
other hand, DataFrames and Datasets follow a schema,
which lists the columns and the information they con-
tain. As the data implemented through DataFrames
and Datasets are structured, Spark implements perfor-
mance optimizations in terms of processing time and
memory consumption through the Tungsten [19] and
Catalyst Optimizer [20] projects.

These data structures act similarly, differing only in
terms of type handling: Datasets implement a strongly
typed API, while DataFrames implement an untyped
API. An untyped API allows parsing errors to go un-
noticed during compilation time. Differently, a strongly-
typed API detects these errors at compile-time, reduc-
ing the possibility of errors occurring during the execu-
tion of the program. Since Python and R do not have
compile-time type security, these languages only imple-
ment DataFrames.

3.2 MLIib Library

The purpose of the MLIib [21] library is to allow the use
of machine learning techniques on the Apache Spark
platform, implementing them in an efficient and scal-
able way through a high-level API. These techniques
include standard classification, regression, clustering,
and collaborative filtering machine learning algorithms,
such as decision tree, linear regression, k-means, alter-
nating least square, among others.

The library also offers featurization methods, allow-
ing the Apache Spark platform to carry out the pre-
processing of datasets before machine learning methods
are applied. The application includes techniques that
reduce dimensionality and rely on both the selection
and extraction of features. These methods also allow
the transformation of those features, such as normal-
ization.

MLIib also provides multiple utilities to facilitate
data processing, including statistical methods used to
obtain results in terms of evaluation metrics, such as
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accuracy and AUC, and linear algebra methods. There
are also methods responsible for optimizing the execu-
tion pipelines, allowing algorithms and models to be
saved and loaded from memory as necessary.

4 Machine Learning and Hyperparameters

Since they possess different logics and assume different
characteristics of the input data, machine learning algo-
rithms present different results depending on the target
problem. Therefore, it is important to evaluate which
algorithms offer the best results for analysis and classi-
fication of network traffic. As such, the following algo-
rithms made available through the MLIib library were
implemented in the proposed system, so that the user
can verify which offers the best solution to their dataset:
Naive Bayes, Logistic Regression, Support Vector Ma-
chine, Multilayer Perceptron, Decision Tree, Random
Forest and Gradient-boosted Tree.

Hyperparameter tuning is the optimization of ma-
chine learning models, obtaining the best set of hyper-
parameters of an algorithm for a given dataset. Hy-
perparameters are the parameters that determine the
learning process, and thus are selected prior to the
training, in contrast with regular parameters that are
learned during the training such as weights and bias.
It’s an exhaustive process, since it requires multiple ex-
ecutions of the learning algorithm, each time changing
a specific parameter.

Some hyperparameters are unique to a given algo-
rithm, such as Naive Bayes’s smoothing. However, it is
common for algorithms to share a number of hyperpa-
rameters; this can be seen on Decision Tree-based ones,
all of which include an hyperparameter for setting the
maximum tree depth, as well as on iterative ones, which
all include hyperparameters for the maximum number
of iterations and the minimum threshold necessary for
convergence.

Naive Bayes: The naive Bayes methods are a set
of probabilistic classifiers that work through the appli-
cation of Bayes’ theorem. This theorem, given by

P(c|z) = P(c) (1)
indicates the probability that an event ¢ will occur
knowing that a given event x has happened. The pa-
rameters used by the equation are the a priori proba-
bilities of ¢ and z, as well as their likelihood. Since the
algorithm performs the classification through a simple
mathematical calculation, resulting in linear execution
time, it is easily scalable for large datasets and sev-
eral features. However, the accuracy obtained by this

classifier may be lower than that obtained by other al-
gorithms, since it assumes that analyzed elements are
statistically independent, which may not be valid de-
pending on the chosen dataset.

The implementation of this algorithm on the Apache
Spark platform provides two hyperparameters for tun-
ing: the model type and the smoothing value. The
model types available are: multinomial, complement,
Bernoulli and Gaussian. Multinomial models are com-
monly applied to datasets containing categorical data.
Complement is an adaptation of the multinomial
method, used to better deal with unbalanced datasets.
Bernoulli assumes that the data follows a Bernoulli dis-
tribution; as such, each feature must have binary or
boolean values. Gaussian models assume that the prob-
ability distribution of the records follows a Gaussian
distribution, allowing the models to handle continuous
data. In turn, the smoothing hyperparameter is used to
handle record values not observed during model train-
ing. Finding a new value results in a probability of zero
and, as all probabilities are multiplied in the Bayesian
equation, the final probability is also zero. Thus, the
objective of the smoothing parameter is to ensure that
the probability of each record is always greater than
zero. Setting smoothing to 1 implements the Laplace
smoothing, which is used by default by Apache Spark.
Setting the smoothing parameter to values less than 1,
but greater than 0 implements what is known as the
Lidstone smoothing.

Logistic Regression: Logistic regression is a sta-
tistical algorithm that seeks to model the probability of
a phenomenon, using the sigmoid function as a discrim-
inant function. The function curve generated returns
the likelihood of the data to be positive or negative.
Based on this, the algorithm estimates the probability
of new inputs to be or not in a certain class, making
the binary classification.

The hyperparameters provided by Apache Spark
are: elastic net parameter, regularization parameter,
maximum number of iterations, convergence tolerance,
threshold, fit intercept and standardization.

The elastic net and regularization parameters influ-
ence the regularization applied during the calculation
of the algorithm. The purpose of regularization is to re-
duce the overfitting of the model, adding a penalty to
the loss function. Setting the elastic net parameter to
0 results in the use of the L2 norm as a penalty, while
setting this value to 1 results in the L1 norm; inter-
mediate values result in the proportional application of
both norms. The L1 norm is calculated by adding the
absolute values for each feature, while the L2 norm is
obtained by adding these values squared. The penalty is
then multiplied by the regularization parameter: small
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values for this parameter can still result in overfitting,
while values that are too large may result in underfit-
ting the model. The maximum number of iterations and
the convergence tolerance define stop conditions for the
execution of the algorithm. The convergence tolerance
defines that the execution of the algorithm must be in-
terrupted if the improvement between two iterations is
less than the defined tolerance; the maximum number
of iterations interrupts the algorithm if the tolerance is
not reached after a certain number of iterations. The
threshold defines the value that is used to classify the
records as belonging to a certain class, being a value
between 0 and 1. The fit intercept is a Boolean hy-
perparameter, which defines whether a constant should
be added to the decision function. Finally, standardiza-
tion is another Boolean hyperparameter, which defines
whether the training features are standardized by the
algorithm itself. It is essential that a standardization
method be applied to the dataset if regularization is
used, as regularization is significantly influenced by the
values of the features of the training set [22]. This hy-
perparameter defines that the standardization is done
by the algorithm itself, however it can be set as False
if this step is performed during the preprocessing of the
data.

Support Vector Machine: The support vector
machine (SVM) algorithm maps the training data in
space and performs a binary classification defining a
hyperplane, the decision boundary. This hyperplane is
set to partition the space, aiming to maximize the sep-
aration margin between the closest points of each of the
classes. Altogether a larger margin results in a better
generalization of the model.

A fundamental aspect of this method is the defini-
tion of its kernel function, responsible for the mapping
done in the feature space. There are several kernel func-
tions, the most used of which are: radial base function
(RBF), polynomial, hyperbolic tangent and sigmoid.
However, the SVM algorithm used by Spark presents
the linear kernel as the only available option. Similar
to logistic regression, the stop conditions of the algo-
rithm are determined by the maximum number of itera-
tions and the convergence tolerance. Also present is the
hyperparameter that determines whether the training
features are standardized in the preprocessing, or dur-
ing training, as well whether the fit intercept is used.
Finally, the regularization parameter is also available,
acting on the impact of the penalty; however, unlike
SVM, logistic regression supports only the L1 norm.

Multilayer Perceptron: Multilayer perceptron is
a neural network model that works by employing mul-
tiple perceptrons, which act as the network’s “neurons”,
who are delegated the tasks of performing small calcula-

tions and forwarding their results to other perceptrons.
The perceptrons are organized in layers, with each per-
ceptron in one layer being fully connected to the per-
ceptrons in the next layer. The first layer receives the
input features from the dataset, while the last layer
represents the classification results.

Each perceptron uses an activation function to con-
nect with others, based on the results of the previous
layers and the adjusted weights for each output connec-
tion. These activation functions are non-linear, allowing
the acquisition of non-linear models, but increasing the
time required to obtain the model. One of the most used
activation functions is the logistic (or sigmoid) function.

Another technique used by the multilayer percep-
tron is backpropagation; this algorithm works by calcu-
lating the gradient of the loss function concerning each
weight by the chain rule, iterating one layer at a time
from the last layer to avoid redundant calculations of
intermediate terms. In this way, it is possible to update
the weights of each layer to minimize losses.

The main hyperparameters that must be defined
when using the multilayer perceptron are the number of
hidden layers and the number of neurons in each layer.
Most classification problems can be solved efficiently
with one or two layers, while using many layers tends
to result in considerably longer processing times for ever
lower returns. For the number of neurons in each layer,
a commonly adopted method is to use a single hidden
layer, with the number of neurons being equal to the
average between the number of characteristics and the
number of labels in the data set. Another relevant hy-
perparameter is the learning rate, also known as the
step size. This value acts in updating the weights dur-
ing the execution of the algorithm; using a very low
learning rate can result in long run times and overfit-
ting, while higher learning rates can result in models wit
lesser performance. Other hyperparameters provided by
Apache Spark for this algorithm include the maximum
number of iterations, as well as the minimum tolerance
for optimization, similar to SVM and logistic regression.

Decision Tree: The decision tree algorithm builds
a tree in which each internal node evaluates a data fea-
ture. Each branch represents a decision around a possi-
ble value for the selected feature, and each final node in
a branch indicates the class the element is most likely
to belong to. Thus, the algorithm traverses the tree
branches and evaluates the features of each node to es-
timate the sample probability to belong to a particular
class. A great advantage of the decision tree algorithm
is its ease of understanding and interpretation, being
composed exclusively by rules in the “if-then-else” for-
mat.
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The most important hyperparameters provided by
Apache Spark for the decision tree are the maximum
depth of the tree, the minimum gain of information, the
minimum number of instances per node and the metric
selected to calculate the impurity of each feature. The
maximum depth controls the generalizability of the al-
gorithm and directly influences the training and test
time of the algorithm. Extremely deep trees tend to di-
vide the entire training set into their correct labels, and
as a consequence they are overfitted, while trees with
few levels are unable to capture the variance present in
the dataset and tend to have low classification perfor-
mance. The minimum information gain hyperparameter
is the value that must be obtained in order to consider
the division of a given node, controlling the growth of
the tree by restricting which nodes can be created to
divide the dataset. The minimum number of instances
per node controls the growth of the tree and determines
the minimum number of samples required in the chil-
dren of the node to generate the branch. The node of
the tree that is not able to generate the minimum num-
ber of samples for the right and the left child becomes
a leaf of the tree. A larger minimum number of samples
can positively influence the model’s accuracy for large
datasets, since a low number can lead the model to be-
have randomly. Impurity measures the diversity of chil-
dren raised using characteristics that meet the criteria
for division. Thus, impurity is a criterion for selecting
among all candidates a feature with greater diversity to
perform the division of the node. Impurity is measured
using the Gini index or entropy, the main difference of
which being the slower computation of entropy.

Random Forest: The random forest is an ensem-
ble learning algorithm, proposed by Breiman [23], that
works by creating multiple decision trees. Breiman also
proposed the bagging method to create different deci-
sion tree structures and capture distinct behaviors of a
dataset.

The bagging method comprises two phases: boot-
strap and aggregating [24]. The bootstrap phase con-
sists of generating equally-sized datasets from the orig-
inal training dataset through random sampling. Then,
the method trains decision tree models from each sam-
pled dataset. The goal is to build learning models with
different structures that present different views when
classifying new samples. In the aggregating phase, the
method uses all different model structures of each lo-
cal model to discover the correct class of a new sample.
Each machine learning model classifies the sample, and
the final result is the statistical mode of all classifica-
tions. This way, the method can generalize the behavior
of new samples while minimizing variance.

In a random forest [23] with H trees, the predicted
class ¢ of a sample z is given by:

H
j = f(z)=arg r;leang(y = hj(x)), (2)

where hj(z) returns the predicted class of x by tree
hj. The term I(.) is the indicator function. The set Y’
represents the existing classes, which in our work are
binary: 0 for normal flows and 1 for malicious flows.

The number of trees in the forest and the subsam-
pling rate are the adjustable hyperparameters for ran-
dom forests, in addition to the hyperparameters of de-
cision tree models. As the number of trees grows in
the forest, the classifier’s performance increases due to
the high variance of the built decision trees. However,
after approximately 100 trees the metrics remain statis-
tically equal, only increasing the processing time [25].
The subsampling rate hyperparameter specifies the size
of the dataset used to train each tree in the forest, and
is defined as a fraction of the size of the original dataset.

This algorithm usually presents better results than
those obtained by working with only one decision tree,
in addition to offering less risk of overfitting, but it has a
considerably longer processing time. However, random
forests are extremely parallelizable, since the training
and classification of a single tree are independent of
the set. The adoption of parallel processing reduces the
complexity of the algorithm [26].

Gradient-boosted Tree: As well as the random
forest algorithm, the gradient-boosted tree is an ensem-
ble learning algorithm based on decision tree models.
Unlike random forest, where each tree is trained in-
dividually,the gradient-boosted tree trains all trees it-
eratively, where the new trees uses the prediction of
previous trees to offer a more accurate model.

The gradient-boosted tree uses the Boosting method
to optimize the model after each iteration. Several shal-
low trees are created, calculating the loss based on that
tree created. In the next iteration, the algorithm cre-
ates a tree that aims to reduce the loss value generated
by the previous function. This process is interrupted
if the algorithm reaches a stop condition, such as the
maximum number of trees created or if the next tree
does not improve the model’s metrics.

This algorithm also has a high processing time and
is not ideal for large datasets. As it is a tree-based al-
gorithm, it presents the same set of parameters and
hyperparameters as the decision tree and random for-
est, except for the learning rate, also known as step size
hyperparameter. The learning rate is the hyperparam-
eter that controls how complex the next tree built will
be, giving more relevance to the mistakes done by the
previous tree.
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4.1 Structured Streaming

The real-time processing on the Apache Spark platform
was initially implemented through the Spark Streaming
library, which allows continuous processing of RDDs
through the DStream API. With the introduction of
DataFrame and Dataset as new data structures, the
Structured Streaming library was developed to handle
these structures in real-time while maintaining the op-
timizations they introduced.

Structured Streaming allows the programmer to
program in a similar way to the one in batch data pro-
cessing, with the platform dealing with the implemen-
tation of specific flow processing techniques through a
high-level API. Structured Streaming implements the
micro-batch technique, with data received within a cer-
tain time interval being added to a batch to be pro-
cessed; after processing, the result is added to a table,
and the elements of the processed batch are discarded.
Other advantages of the library include “exactly once”
fault tolerance, as well as end-to-end latency of up to
100 milliseconds.

Another processing method provided by the library
is the continuous processing mode. This mode allows
latency as low as one millisecond but does not offer
all the functions of the main library, supporting only
projection and selection operations. It also has “at least
once” fault tolerance, leaving aside the advantages of
tolerating exactly once of the other processing method.

5 Dataset and Schema

A crucial aspect of the development of an intrusion de-
tection system (IDS) is the need to check its perfor-
mance before it goes into operation. Thus, a dataset is
used that contains both legitimate and malicious traffic.
The most commonly used dataset in IDS development
is the NSL-KDD [27], with other important datasets be-
ing the DARPA98 and the DARPA99. However, these
and other datasets are often not recent, and in addition
to using synthetic attack patterns and threats, may not
portray the features of current network traffic.

The dataset used was obtained from traffic from a
telecommunications operator [28], converted into flows
using the flowtbag tool. Each flow is a sequence of pack-
ets, within a time window, which has certain features
in common. The features used to group packets in flows
were the 5-tuple (source IP, destination IP, source port,
destination port, protocol), set commonly used in traf-
fic analysis works. Grouping packages into flows, the
flowtbag tool extracts 40 features for the construction
of the data schema, including the number of packages
sent and received, the minimum and maximum sizes of

a package, among others. The complete list of features
is presented on Table 1.

In the preprocessing stage, we identified that the
dataset had seven features which contained only null
values; after these columns were removed, we calculated
the Pearson correlation matrix shown in Figure 1 to al-
low a better understanding of the remaining features.
Through this matrix, it is possible to identify that mul-
tiple features possess high correlation between them.
For instance, features 7, 8, and 9 have a high correla-
tion with feature 6, since all these features are related
to the flow size; features 26, 27, 28, and 29 also have a
high correlation, with these four features representing
time measurements of the flow.

The dataset used groups together a series of at-
tacks common on computer networks, such as attacks
focused on the application, transport and network lay-
ers. Most of the observed attacks occurred at the appli-
cation layer, because even though each layer presents
its vulnerabilities, the application layer allows less so-
phisticated attacks to occur, which can be performed
by inexperienced attackers. The types of attacks pre-
sented below bring together the main attacks observed
in the dataset used.

5.1 Application Layer

Attacks at this layer target some protocols such as DNS,
HTTP, IMAP and Telnet. Injection of SQL code, trans-
mission of malware and cross site scripting were some
attacks observed.

SQL code injection: Web pages often make SQL
queries to check the database for a user’s credentials. If
the site does not verify that the data entry corresponds
to the expected one, the text boxes for login and pass-
word can serve as input for actions in the database.
Malicious users can alter, add or remove information
in the database, compromising the integrity of the sys-
tem. This type of malicious request within a database is
configured as an SQL code injection attack, where the
attacker uses text boxes to insert code snippets directly
into the database. The objective is to access sensitive in-
formation and obtain advantages over this information,
such as bank passwords, credit cards, among others.

Malware: Malware is a general term for any type
of malicious software. They can take partial control of
a device by running other scripts in the background.
They are usually developed by teams of malicious enti-
ties seeking profit from the proliferation of malware or
its auction on the Deep Web. There are several types
of malware, such as Adware, Spyware, Ransomware,
Viruses, Trojans and Worms, but always with the same
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Table 1: Meaning of all network dataset rows generated by flowtbag [29].

Category | Number ‘ Name ‘ Description

Identifier 1 srcip Source ip address

Identifier 2 srcport Source port number

Identifier 3 dstip Destination ip address

Identifier 4 dstport Destination port number

Identifier 5 protol Application protocol TCP or UDP

Feature 6 total fpackets Total packets in the forward direction

Feature 7 total fvolume | Total bytes in the forward direction

Feature 8 total bpackets | Total packets in the backward direction

Feature 9 total bvolume | Total bytes in the backward direction

Feature 10 min_fpktl Size of the smallest forward packet

Feature 11 mean_fpktl Mean size of forward packets

Feature 12 max_ fpktl Size of the largest forward packet

Feature 13 std_fpktl Standard deviation from the mean of the forward packets
Feature 14 min_bpktl Size of the smallest backward packet

Feature 15 mean_bpktl Mean size of backward packets

Feature 16 max_ bpktl Size of the largest backward packet

Feature 17 std_bpktl Standard deviation from the mean of the backward packets
Feature 18 min_fiat Minimum amount of time between two forward packets
Feature 19 mean_fiat Mean amount of time between two forward packets
Feature 20 max_fiat Maximum amount of time between two forward packets
Feature 21 std_fiat Standard deviation from the mean time between two forward packets
Feature 22 min_biat Minimum amount of time between two backward packets
Feature 23 mean_biat Mean amount of time between two backward packets
Feature 24 max_ biat Maximum amount of time between two backward packets
Feature 25 std_biat Standard deviation from the mean time between two backward packets
Feature 26 duration Duration of the flow

Feature 27 min_active Minimum time that the flow was active before idle

Feature 28 mean_active Mean time that the flow was active before idle

Feature 29 max_active Maximum time that the flow was active before idle
Feature 30 std_active Standard deviation from the mean time that the flow was active before idle
Feature 31 min _idle Minimum time a flow was idle before becoming active
Feature 32 mean_idle Mean time a flow was idle before becoming active

Feature 33 max_idle Maximum time a flow was idle before becoming active
Feature 34 std_idle Standard devation from the mean time a flow was idle before turn active
Feature 35 sflow fpackets | Average number of packets in a forward sub flow

Feature 36 sflow _fbytes Average number of bytes in a forward sub flow

Feature 37 sflow bpackets | Average number of packets in a backward sub flow

Feature 38 sflow bbytes Average number of packets in a backward sub flow

Feature 39 fpsh _cnt Number of PSH flags in forward packets

Feature 40 bpsh cnt Number of PSH flags in backward packets

Feature 41 furg cnt Number of URG flags in forward packets

Feature 42 burg cnt Number URG flags in backward packets

Feature 43 total fhlen Total bytes used for headers in the forward direction
Feature 44 total bhlen Total bytes used for headers in the backward direction
Feature 45 dscp First set DSCP field for the flow

Label 46 class Flow class, benign or malicious

Adware: Intensive advertising software, displaying
ads based on information collected about the victim.
They can serve as an entry for other malware.

objective of extracting information to obtain advan-

tages on the infected machine.
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Fig. 1: Matrix of Pearson correlation coefficients of all features present in the dataset.

Spyware: Malware used to obtain information,
which can record the online activities of the infected
user, such as access credentials, credit cards and other
financial information.

Ransomware: By blocking and encrypting the infor-
mation on the infected machine, the attacker demands
a payment, often in cryptocurrencies, so that the user
can access his data again.

Virus: Malware that hides in benign files. It can
modify other computer programs and infect them with
its own code, spreading while damaging the system, be-
ing able to delete and corrupt files.

Trojan: Disguised as a legitimate program, the Tro-
jan’s goal is to gain unauthorized access to the system.
They are used as a gateway to other malware, such as
spyware and ransomware, when creating backdoors.

Worms: They are intended to spread via the network
interface and may corrupt files. The more machines are
infected, the faster the Worms proliferate. They can
demand bandwidths that overwhelm networks, in ad-
dition to creating backdoors that leave computers vul-
nerable to other attacks.

Cross Site Scripting: These are malicious code injec-
tion attacks on benign websites in order to steal infor-
mation and credentials from users. Generally, failures
in validating user input data and the response from the
Web server are the causes of these attacks. This type of
attack exploits the trust that a user has in a website,

causing the user to run scripts created by the attacker
believing they are native to the benign website.

5.2 Transport Layer

The flows using TCP and UDP protocols were also ana-
lyzed. Among the observed attacks, there are the scan-
ning of ports, hosts and version of services in use and
flooding attacks.

Vulnerability Scanning - Ports and Service Version:
Scanning tools can be executed by legitimate users, but
results in the extraction of information in search of vul-
nerabilities to carry out an attack in the future. When
scanning doors, the aim is to identify the status of the
doors, which may be closed, listening or open. Service
version scanning has the same purpose, checking if the
victim has any outdated services with known vulnera-
bilities.

Flooding attack: It is a denial of service attack that
causes a high volume of traffic on the victim’s sys-
tem, sending several UDP (User Datagram Protocol)
or ICMP (Internet Control Message Protocol) packets.
The attack congests the bandwidth of the attacked ma-
chine, which tries to process requests from the attack-
ing machine, without being able to process legitimate
requests. This type of attack can slow the system down,
being able to bring it down completely in worse situa-
tions.
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5.3 Network Layer

In summary, attacks such as IP spoofing and man-in-
the-middle attacks were observed, usually created from
the poisoning of ARP tables and vulnerabilities caused
by the execution of malicious programs.

IP Spoofing: It is an attack aimed at masking IP
packets using spoofed sender addresses, being used as a
starting point for other attacks such as denial of service
and data exfiltration. An attacker modifies the source
address in the packet header, making the victim believe
that the packet is from a legitimate source.

Man-in-the-middle attack: It is a group of attacks
that is based on a malicious intermediary between the
interaction of two parties. This intermediate can read,
block and change the information and data exchanged
between two users, hosts or servers that are communi-
cating.

The labeling of the dataset flows as legitimate or
malicious, necessary for the creation of models in super-
vised machine learning algorithms, was done through
IDS Suricata. The dataset was also balanced to avoid
bias during the model training and test phases, there-
fore being composed of equal parts of legitimate and
malicious traffic.

6 The proposed architecture

The proposed system has two operation modes: online
and offline. The online mode performs classification in
real time, whilst the offline mode allows to observe the
performance of multiple classifiers for a given dataset,
making the resulting metrics available in the visualiza-
tion module.

The proposed architecture, shown in Figure 2, is
modular and consists of three main modules: data col-
lection, processing and visualization.

The data collection module captures and abstracts
network traffic flows. It also stores the datasets used in
offline processing. The capture process reflects network
traffic through the libpcap library. Then, the flowtbag
tool abstracts the sequence of packets in the flows and
their 40 features, including the flows length and the to-
tal number of packages for each flow. We use the five
fields of the TCP/IP packet header, source IP address,
destination IP address, source port, destination port,
and protocol to abstract packets into flows. A chan-
nel on the Apache Kafka platform, which acts as a
data buffer, receives the streams of data. We use the
Hadoop Distributed File System (HDFS), a distributed
database, to store the datasets used to train and test
the classification models.

The processing module carries out the process of
classifying these flows. The processing module is im-
plemented in an Apache Spark cluster. This platform
presents advantages to the development of the system,
as it has libraries aimed at the implementation of ma-
chine learning algorithms and the fast processing of
data in real-time, using the micro-batch method with
the structured streaming engine. The training module
extracts the classification model using a dataset labeled
from HDFS. In the online mode of operation, packages
are collected and added to an Apache Kafka channel,
and flows are then classified as legitimate or malicious
by the classification model obtained previously. For ex-
ecution in the offline mode, the classification module
runs tests on various algorithms and datasets, obtain-
ing performance metrics for each combination. The re-
sults of the classification, both online and offline, are
then sent to an Elasticsearch server using the Apache
Spark integration library.

The visualization module allows the network ad-
ministrator to visualize the classifications history and
the current state of the network, as well as the results
of tested algorithms. We implement the visualization
module using the Elasticsearch! and Kibana? software,
both developed by Elastic. Elasticsearch implements a
distributed and efficient search server, based on JSON
documents. It receives and stores the data as the pro-
cessing module sends it after the classification process
is finished. Kibana is responsible for providing a user in-
terface through dashboards, displaying to the network
administrator the data received by Elasticsearch in real-
time for both execution modes. It also allows consulta-
tion by historical data, using the search server features
Elasticsearch.

7 Performance Analysis

A cluster of four computers, one master and three
slaves, using Ubuntu 19.04 operating system, composes
the performance analysis environment. The master is
a biprocessed Xeon X5570 with 4 cores and 96 GB of
DDR3 RAM, and the slaves are biprocessed Xeon E5-
2650 with 8 cores and 32 GB of DDR3 RAM.

The experiments uses accuracy, precision, sensitiv-
ity, F1-score and False Negative Rate (FNR) to evalu-
ate the algorithms performance. Accuracy refers to the
closeness of a measured value to a known value and
precision refers to the closeness of two or more mea-
surements to each other. Therefore, accuracy is given

1 https://github.com /elastic/elasticsearch, accessed in
April 2021.
2 https://github.com/elastic/kibana,

2021.

accessed in April
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Fig. 2: TeMIA-NT modular architecture at online and offline modes.

by the number of flows correctly classified divided by
total number of flows. High accuracy means that posi-
tively rated flows are less likely to be negative. Precision
calculates the ratio of positive flows correctly classified
among all flows classified as positive. Sensitivity calcu-
lates the proportion of all positive flows correctly classi-
fied among the actual positive flows. A high sensitivity
means that most of the real positive flows have been
classified correctly. The F1l-score is the harmonic mean
of precision and sensitivity, being a metric that takes
into account false negatives and positives. The False
Negative Rate detects the amount of false negatives,

being equal to 1 minus the recall. Their equations are

Accuracy = TP+TN (3)
Y"TPYTN+FP+FN

. TP
Precision = TP+ FP (4)

TP
Recall = m (5)

2
F1 score = I 1 (6)
precision + recall

, FN

False Negative Rate = TPLFN (7

where TP = True Positives; TN = True Negatives, FP=
False Positives, and FN = False Negatives.
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7.1 Hyperparameter Tuning

In order to increase the model performance, hyperpa-
rameter tuning was applied using Apache Spark’s im-
plementation of the grid method. This method requires
that all values for a given hyperparameter are set pre-
viously; the method then tests the performance of ev-
ery possible combination of the given hyperparameter
values, and returns the model that offers the best per-
formance in a predetermined performance metric. The
values tested for each hyperparameter are presented on
Table 2, with Spark’s default values highlighted. The
target metrics chosen were the precision, to minimize
the false positive rate, and F1-Score, to obtain a balance
between both false positives and false negatives. The
impact observed due to hyperparameter tuning varied
depending on the algorithm, but in all cases the result-
ing model after tuning was equal to or better than the
model without optimization.

Table 2: Algorithms tested and their hyperparameter
values used on grid optimization.

Naive Bayes

Smoothing [ 10:0,0:25,0.5,0.75,1.0,2.5,5.0]

Logistic Regression

ElasticNet Param [0.0,0.25,0.5,0.75,1.0]

Max Iterations [5,10,20,50,100,200]

Regularization Param [0.0,0.01,0.1,0.3]

Tolerance [10°8,10—5,10~%,10~ 7]

Support Vector Machine

Fit Intercept [True, False|

Max Iterations [5,10,20,50,100,200]

Regularization Param [0.0,0.01,0.1,0.3]

Standardization [True, False|

Tolerance [10°%,10—5,10~%,10~ 7]

Multilayer Perceptron

Max Tterations [5,10,20,50,100,200]

Step Size [0.001,0.01,0.03,0.1]

Tolerance [10-%,10—5,10— 4,10 7]
Decision Tree

Impurity ["Gini", "Entropy"|

Max Depth [3,5,6,0,12,15,18,21,24,27,30]

Min Info Gain [0.0,0.1,0.2,0.3]

Min Instances per Node [1,2,5,10,20,40]

Random Forest

Max Depth [3,5,6,9,12,15,18,21,24,27,30]

Number of Trees [20, 50, 100, 200, 300, 400, 500]

Subsampling Rate [0.5,0.75,1.0]

Gradient-boosted Tree

Max Depth [3,5,6,9,12,15,18,21,24,27,30]
Step Size [0.05,0.1,0.2]
Subsampling Rate [0.5,0.75,1.0]

Figure 3a presents the results of hyperparametric
optimization for naive Bayes. The optimal results for
all tested cases, both with and without optimization,
were the same. This occurred because the default value
offered by the platform for the adjusted hyperparam-
eter, smoothing, already offers the best results for the
dataset used. As can be seen in Figure 3a, the model
has high sensitivity, but the precision results are close
to 50%. This indicates that the model has a high rate
of false positives, which for an application aimed at de-
tecting network threats is catastrophic, as it results in
almost half of the normal flows being erroneously clas-
sified as malicious traffic. This demonstrates the impor-
tance of analyzing multiple metrics in building a model,
as well as why F1-Score is considered a more complete
metric than just accuracy or precision.

Figure 3b presents the performance results obtained
for logistic regression. In the case of optimization for
precision, the optimal hyperparameters follow the stan-
dard values, with the only difference being a conver-
gence tolerance of 1073, By acting as a stopping crite-
rion, a lower tolerance of convergence potentially results
in a model with less overfitting, slightly improving the
classification performance. Optimization for F1-Score,
on the other hand, offered a more significant result,
using 10 maximum iterations, a regularization param-
eter 0.3, and 10™3 convergence tolerance instead of the
default values of 100, 0.0 and 1075, respectively. Us-
ing a smaller number of iterations offers a less accurate
model, but the greater sensitivity and lesser overfitting
resulting from changes in the other two hyperparame-
ters compensate for this loss in the calculation of the
F1-Score.

Figure 3c shows the performance results obtained
for SVM. Similar to logistic regression, the adjusted hy-
perparameters seek to define a better stop condition for
the algorithm. In optimizing for precision, the optimal
model reduced the maximum number of iterations to
50, in addition to also reducing the convergence toler-
ance to 1073, both modifications to reduce overfitting.
In the optimization for F1-Score, the maximum num-
ber of iterations and the convergence tolerance has also
been reduced to 10 and 1073, respectively. Regulariza-
tion was also applied, with the regularization parameter
set to 0.3.

Figure 3d presents the results obtained after opti-
mizing the multilayer perceptron. Similarly to the naive
Bayes case, optimizations targeting both precision and
F1-Score as the target metric offered the same results.
In both cases, the optimal result was achieved by in-
creasing the maximum amount of iterations from 100
to 200, as well as reducing the step size from 0.03 to
0.01. Both results demonstrate how a smaller step size
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Fig. 3: Performance of the metrics of accuracy, precision, sensitivity, F1-score and FNR for the evaluated classifiers,
for cases without optimization and with optimization of precision and F1-Score as target metrics. The FNR is only
calculated for the classifiers with satisfactory performance in the precision and F1-Score metrics.

offers models with better performance without neces-
sarily resulting in overfitting, since the convergence tol-

erance remained 107% even with the larger number of
iterations.



14

Guimaraes, L. C. B.; Rebello, G. A. F.; Camilo, G. F. et al.

RDD

Dataframe

80 100 120 140 160

Time (s)

Fig. 4: Impact of the data structure on the training time of the decision tree.

Figure 3e presents the performance results for the
decision tree. When optimizing for precision, the only
hyperparameter with a value other than the default was
the maximum depth, which went from 5 to 30. In F1-
Score optimization, the maximum depth went from 5
to 18, and the method used to calculate the impurity
was entropy, instead of the Gini method. Both results
demonstrate the importance of the maximum depth hy-
perparameter, with the tree provided by default by the
platform not offering a satisfactory performance. The
model optimized for F1-Score also offered the greatest
gain in FNR when compared to cases without optimiza-
tion, as shown in Figure 3h; this model presented a per-
centage gain of 34.18%.

Figure 3f presents the optimization results obtained
for the random forest algorithm. For optimization with
precision as a target metric, the optimal values of hy-
perparameters were: maximum depth 30, number of
trees 50 and subsampling rate of 0.75. For the opti-
mization aiming at F1-Score, these values were: maxi-
mum depth 24 and number of trees 300. In both cases
the values adjusted for maximum depth and number
of trees are higher than the standard values offered by
Apache Spark. Figure 3h demonstrates how this algo-
rithm offers the lowest FNR after hyperparametric op-
timization; this reduction was accompanied by the sec-
ond highest percentage gain: 31.46% when compared to
the case without optimization.

Figure 3g shows the results of the gradient driven
tree. The hyperparameters that offered the best results
were, for optimization with precision as a target metric:
maximum depth 18, step size equal to 0.2 and subsam-
pling rate equal to 0.75. For the optimization aiming
at F1-Score, the only hyperparameter with final value
different from the standard values was the maximum
depth, which went from 5 to 15. This reinforces the im-
portance of the depth of the tree in the performance of
this family of algorithms, being the only hyperparam-
eter modified to result in the model with the highest
performance in the selected metric in all tree-based al-
gorithms. While the random forest shows the best per-
formance after optimization, the gradient-boosted tree

shows the best performance using the standard values of
hyperparameters, considering both FNR and F1-Score.

7.2 Results and Analysis

The model convergence and training time plus the pro-
cessing speed must be considered in the context of
real-time analysis. To verify the impact of the data
structure used during model training, we compared the
model training time of Dataframe-based TeMIA-NT
with the RDD-based CATRACA, and IDS previously
proposed by our research group. Figure 4 shows that
the DataFrame data structure several performance op-
timizations have a significant impact on the latency.
Training the model with DataFrame is ten times faster
than the same operation made with RDD.

We split the dataset into 70% for the training set
and the other 30% for the test set to obtain the models
in the offline processing mode. Also, we used K-fold
cross-validation, with £ = 10, to guarantee the model’s
generalizability. Finally, we use the grid search method
to tune the hyperparameters in each algorithm. Figure 5
shows the results of each algorithm with weighted F1-
Score set as the target classification metric; based on
Figure 5, random forest, decision tree, and gradient-
boosted tree models offer the best performance.

The online mode of operation uses the model with
the highest processing capacity and good accuracy. Ta-
ble 3 shows that the decision tree algorithm presented
the maximum flow volume rate of 50 GB/s. The ran-
dom forest classification model has a lower performance
due to the need to process multiple trees, and it is nec-
essary to obtain the result for all trees to achieve the
final classification result.

As the decision tree model presents the best results
both in accuracy and in classification capacity, this is
the model used by default in the execution of the pro-
posed system. However, other models can also be used
according to the user’s needs.

The last test observed the impact of parallelism on
the system’s performance, observing how variations in
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Table 3: Models processing efficiency with the best re-
sults in terms of the number and volume of classified
flows per second.

’ ‘ Flows/s ‘ GB/s ‘
Random Forest 586.563,32 21,95
Decision Tree 1.330.732,59 | 49,80
Gradient Boosted Tree | 1.206.962,94 | 45,17

the number of processing nodes affect the results. The
processing time required to classify 10 million network
flows was measured while varying the number of pro-
cessing nodes between 1 and 4 in the Spark environ-
ment; the results can be seen in Figure 6.

As can be seen from Figure 6, increasing the number
of processing nodes reduces the total time required to
process flows for most algorithms. This impact is more
significant in the case of the Random Forest, as this
algorithm works by creating multiple models of trees
that can be executed in parallel during the classification
process. The results of the Decision Tree algorithm are
negatively affected by the increase in the number of
nodes.

8 Conclusion

This article presents the TeMIA-NT system?®, devel-
oped to monitor traffic using parallel flow processing.
TeMIA-NT presents two modes of operation: online and
offline. The online mode of operation allows the network
manager to monitor and detect network security threats
in real-time. The offline mode of operation allows the
performance evaluation of multiple classification mod-
els obtained from different algorithms and datasets.
TeMIA-NT also allows the selection from seven ma-
chine learning algorithms when obtaining classification
models. The detection of threats in real-time with low
latency is achieved thanks to the dataframe data struc-
ture and the continuous processing engine of the struc-
tured streaming library.

The obtained results from a dataset based on legiti-
mate traffic demonstrate the high processing capacity in
flows per second. The performance of each implemented
machine learning algorithm is also observed, with the
decision tree and random forest models presenting high
values in metrics such as accuracy and fl-score. These
two algorithms presented a FNR performance increase
of more than 30% when compared to the cases without
optimization. This reduction was obtained while main-

3 The code, documentation, and license are available at:
https://www.gta.ufrj.br/TeMIA-NT/.

taining good precision and F1-Score rates, indicating
that the models did not result in an excessive amount
of false positives during the classification. It was also
shown how most algorithms scale with an increasing
number of nodes on an Apache Spark cluster.
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