
DAGSec: A hybrid distributed ledger architecture
for the secure management of the Internet of Things

Igor D. Alvarenga, Gustavo F. Camilo, Lucas A. C. de Souza and Otto Carlos M. B. Duarte
Grupo de Teleinformática e Automação

Universidade Federal do Rio de Janeiro – GTA/COPPE/UFRJ
Rio de Janeiro, Brazil

Email: alvarenga@gta.ufrj.br

Abstract—The rise of 5G mobile broadband networks creates
new possibilities for the Internet of Things. Billions of devices will
provide comprehensive services, including e-health applications,
smart grids, and industry 4.0. Distributed ledger technologies
solve most security and privacy threats of current IoT sys-
tems connected to a cloud or multi-access edge communication
(MEC). Unfortunately, the volume of transactions imposed by 5G
networks prevents blockchain-based solutions due to scalability
issues. Nonetheless, emerging solutions based on directed acyclic
graphs (DAG), still require some form of centralization or global
view. This article proposes DAGSec, a hybrid distributed ledger
architecture that provides a secure Internet of Things environ-
ment with high throughput and low latency. Our proposal uses
directed acyclic graphs and local transaction validation instead
of global transaction validation to attain a high transaction rate.
Furthermore, we propose a blockchain-based witness system to
approximate chronological order of independent transactions.

Index Terms—Internet of Things (IoT); blockchain; edge and
cloud computing; next generation networks;

I. INTRODUCTION

The emergence of 5G mobile broadband networks signif-
icantly improves the connectivity, latency, and bandwidth of
the Internet of Things (IoT), enabling billions of IoT devices
to deliver pervasive services. These services include smart
cities, industry 4.0, environmental monitoring, autonomous
agriculture, e-health, and smart transport systems [1]. IoT
systems enable high-quality decision-making support and asset
management. In 2020, the number of connected IoT devices
had reached about 20 billion, and more than 40 petabytes of
daily exchanged data [2]. However, this massive amount of
data and applications raises new security challenges for the
virtualized 5G architectural communication model.

Multiple IoT devices from different manufacturers collect
data and provide services at the edge of the network, from IoT
service providers to IoT service users. These IoT devices are
connected, either directly or by a gateway, to a multi-access
edge computing (MEC) node of a 5G communication net-
work [3]. MEC nodes connect to the cloud and infrastructure
providers at the Internet’s core, either by dedicated private con-
nections or the Internet. Furthermore, services are provided,
and data is aggregated using network functions deployed
and managed by the IoT service providers. Those network
functions are organized with service function chains [4] that
span from the MEC nodes at the edge of the network to
cloud data centers at the network core. In addition, service

functions are typically virtualized either as virtual machines
or containers at MEC nodes and data centers through network
function virtualization (NFV) platforms [3], [5].

IoT systems begin to collect, analyze, control, monitor, and
manage various aspects of everyday life. It is imperative to
provide basic security features for all available systems, such
as authentication, auditability, authenticity, non-repudiation,
and confidentiality and privacy. Blockchain-based systems can
provide these security and privacy capabilities in the cloud
environment [6] but face scalability challenges due to the
consensus mechanism when applied to the edge of the network
and IoT devices [1], [7], [8].

Directed Acyclic Graphs (DAGs) allow high transaction
throughput while preserving the security properties offered by
blockchain-based systems [9]–[11]. Like blockchains, DAGs
are immutable path data structures chained by hash, but each
transaction can be independently chained in a DAG. The
main difference between a blockchain and a DAG is that a
new transaction can reference any predecessor transaction,
not just the last one. Directed acyclic graphs validate and
process transactions without relying on a blocking consensus
mechanism [10], [12]. Hence, DAG-based systems allow dif-
ferent views of the network transaction graph and maintain
the transaction history consistency needed to issue a new
transaction immediately [9], [10].

This paper proposes DAGSec, a hybrid distributed ledger
architecture that provides security and auditability to crucial
aspects of the IoT, such as service orchestration, configuration
management, and storage. We propose a DAG-based ledger
to ensure high-throughput transaction validation, which scales
proportionally to the number of devices. Furthermore, we
combine a blockchain-based ledger with a witness system to
establish the chronology and ordering of DAG transactions.
Our proposed architecture maintains the necessary premises
for IoT security without the need for a global view of the
ledger nor the need for consensus for the validation and
publication of transactions.

The main contributions of this paper is a new architec-
ture that provides: i) security and auditability to network
function virtualization orchestration commands, IoT devices
configuration, and data storage; ii) a high transaction rate by
replacing global view decisions by local view decisions in
a direct acyclic graph structure, and iii) the definition of an

upper bound unit time approximation expression that enables
absolute transaction ordering used by a witness system, which
guarantees the correct system auditability.

We organize this paper as follows. Section II presents
the considered attacker model. Section III presents DAGSec
assumptions and requirements. Section IV presents the pro-
posed architecture and transaction schemes, detailing proposed
mechanisms. Section V presents the related works and state of
the art. Finally, Section VI concludes the paper and presents
future directions.

II. ATTACKER MODEL AND SECURITY ANALYSIS

In this work, we consider the traditional Dolev et al. attacker
model [13], in which the attacker is able to send, discard or
read any packet of the network, hence, an attacker monitor
and interfere with the propagation of ledger transactions. An
attacker may be either passive or active. An active attacker
may connect to the network at any access point and capture all
transmitted packets. An active attacker may actively interfere
with message exchange by means of filtering, injecting, repeat-
ing, or creating packets. Any system participant, henceforth
known as a node, the network, or the ledger, may be attacked
at any time. Attackers may perform attacks on their own or
coordinated with other attackers, with whom they may share
information freely.

Attacks against DLT-based systems are attempts to prevent
a legitimate transaction from being published on the ledger,
publish a fraudulent transaction on the ledger, or stop the
ledger operation. Using a blockchain data structure coupled
with the asymmetric key signature, hashing, and encryption
schemes can effectively hamper the attack surface area and
the attacker success rate [6], [14]. For instance, the use of
signed hashing impedes message modification or corruption,
as well as personification attacks. Furthermore, public key
pseudo-anonymization of user identity and data encryption
severely limits sensitive information available to an attacker
eavesdropping on the network. We assume that nodes have
redundant connectivity to the ledger network through the
Internet or redundant access points and that transaction-
knowledge message exchange use gossip protocols [15]. These
assumptions limit an attacker’s ability to block a transaction
from being widespread effectively [6].

In DAGSec architecture, while attackers may delay access
to transaction information, they have no means to collude to
decide the global valid transaction graph. However, the pro-
posed architecture requires a Byzantine Fault Tolerant (BFT)
consensus algorithm [16], explained afterward in Section IV-B,
to decide on the first time the network saw a transaction,
hence a percentage of well-behaved nodes, according to the
chosen algorithm, is necessary for this purpose. This work
does not address the case where a private key is compromised
due to a node security fault but offers tools to eliminate
listening network services besides the ones that are needed to
interact with the proposed architecture, mitigating this attack
vector [17]. Meanwhile, all active actions performed with

a compromised key will be logged on the ledger, allowing
auditing of the security incident.

III. ASSUMPTIONS AND REQUIREMENTS

We base our proposed architecture on the ETSI NFV [5]
and MEC [18] architectural standards for 5G IoT networks.
In this architecture, network function virtualization (NFV) is
used to build IoT service function chains from Cloud/IoT
platforms at the core of the network to the MEC nodes. A
MEC node is a mirror of Cloud/IoT platform services with
less computational resources at the edge of the network used
to provide low latency and high bandwidth to near devices.
Multiple IoT devices from different manufacturers and IoT
service providers are connected to IoT service users and to
the MEC nodes through edge networks [3], [19].

Our proposed DAGSec architecture makes the usual as-
sumption that data center and MEC node owners are not
malicious. Otherwise, the proposal would not provide security
in an environment where all systems act in coordination
against a specific tenant. Datacenter and MEC node owners
are assumed to act in their best capacity to provide fairness
and isolation to their hosted services. Nevertheless, DAGSec
allows attackers to compromise systems and services under a
data center or MEC node provider. Furthermore, the ability
to audit the legitimate interaction between an IoT service
provider and data center or MEC providers is maintained by
the proposed architecture in either case.

We consider that DAGSec does not require additional invest-
ment in infrastructure because configuration/provision requests
and logs are already required to be provided by cloud and IoT
platforms. Therefore, DAGSec does not rely on economic or
token incentives. Our proposal adds auditability, privacy, and
non-repudiation to configuration/provision requests and logs
that are already present in the current IoT/Cloud platforms.
Then, we advocate a paradigm shift in orchestrating target
systems providing security primitives.

IV. THE PROPOSED ARCHITECTURE

This paper proposes DAGSec, an architecture that enables
the IoT ecosystem to provide the required security primitives
without sacrificing the scalability requirements inherent to IoT.
Our proposal combines a DAG-based ledger to guarantee scal-
ability with a blockchain-based witness system to guarantee
chronology and ordering of transactions.

The proposed architecture, depicted in Figure 1, is based on
the European Telecommunications Standards Institute (ETSI)
standard for Multi-access Edge Computing architecture [18].
The MEC functional structure comprises Cloud/IoT platforms
at the network core connected to MEC Nodes through ded-
icated networks. Cloud/IoT platforms host the IoT services
through NFV technologies. MEC nodes are small deployments
that mirror selected cloud infrastructure and applications but
using fewer resources and are used to provide services to
the devices connected to edge networks [19]. We propose
to extend the ETSI MEC architecture for IoT with five
modules: (i) the DAG module, that hosts the known DAG

Fig. 1: Our DAGSec architecture considers 5G architectural model with five
additional modules: a DAG module, a witness module, a service orchestration
module, an autonomous client module, and a user module. VNF chains
spanning from the core to the edge of the network provide IoT services.
MEC nodes are small scale Cloud/IoT platforms used to accelerate service
performance on network edge.

view and is responsible for validating, forwarding, encoding,
and decoding requests into DAG-units; (ii) the witness module,
responsible for hosting blockchain used for DAG-unit ordering
and observing new units; (iii) the service orchestration module,
that is responsible for authenticating and forward service
provisioning requests; (iv) the autonomous client module, that
is responsible for managing configuration, applying software
updates and publishing data for VNFs and IoT devices. The
proposed modules exchange messages directly using the avail-
able networks or indirectly through gossip protocols.

A. Database structure

The proposed DAG ledger structure is depicted in Figure 2.
The DAG is composed of hash-linked units. Each unit refer-
ences previous units based on their hash and can likewise be
referenced by one or more units. A unit is signed by its author
and may contain one or more ordered transactions from the
same author. The unit author is identified by an auto-generated
public key, which makes its identity pseudo-anonymous. A
transaction is a structured tuple that denotes an operation like
performing a request to other systems or publishing data. The
unit type field dictates how the transaction field is to be
interpreted and is customizable by the IoT service provider
in any way that suits its services. All units are timestamped.
References to parents validate previous units and establish
partial ordering of the transaction on the DAG, which means
we can tell the absolute order of transactions in any path from
the DAG origin to an arbitrary unit, like in a blockchain. Still,

Fig. 2: The proposed DAG is composed of a set of vertices, called units. A
unit is composed of an arbitrary content field and a header field. The header
field contains one or more parent units hashes, the author‘s public key, a
timestamp, and a unit type that signals the evaluation of the unit content.
Finally, a signed hash of the complete unit is appended to the end of the unit.

we are unable to tell the absolute ordering of units in disjointed
paths without consulting a witness federation.

Nodes interact with the DAG using the DAG module. This
module can be either standalone or a part of a role-specific
architectural module. The module features a local database
of known DAG-units, which is not strictly synchronized with
other DAG modules. Thus, it is referred to as a local view of
the DAG. All rules for unit validation are local and based on
known unit types. These rules encompass field-specific valida-
tion for signatures, timestamps, and transactions. A validated
unit is kept in the database and shared with known peers using
a gossip protocol [15], an invalid unit is discarded. When the
module requires knowledge of transaction order to perform
specific validation, a witness module is consulted through
a local-based witness federation list. Only prior knowledge
of a partial unit set and observance of transaction rules are
necessary to create a new unit. The local view validation
and confirmation set the proposed system apart from similar
DAG-based ledgers and allow unrestricted throughput and
validation similar to a ledger-less approach. Created units
are shared through a gossip protocol and directly to the
target recipient when adequate. These module settings, such
as unit retention, communication settings, and trusted witness
list, are tailored to the hosting device, whether a small IoT
device or a large VNF hosting system. It is also important to
note that this rationale avoids any gate-keeping in transaction
propagation and validation by a third party like it is by design
in blockchain-based systems [9].

B. Witnesses: Towards a hybrid distributed ledger system

The current state of the art on DAG-based ledgers allows the
improvement of only two out of three of scalability, through-
put, and confirmation time characteristics over blockchain-
based ledgers [20]. DAGSec opts to forego the absolute
ordering of transactions in the DAG and lifts the usual global
view requirement of distributed ledger systems, which implies

a relaxation of strict confirmation time. Those decisions do not
impact the ability to provide the intended architectural security
and performance features but may impact the auditing of inde-
pendent events on the DAG. Therefore, DAGSec employs an
auxiliary blockchain-based witness system to approximate the
absolute ordering of transactions to cope with this limitation.
This is necessary because the timestamp field of a unit
cannot be trusted, because any network participant may have
an imprecise clock or intentionally lie.

A witness role is to keep track of existing units and
announce when the unit was first seen to its peers. Witness
nodes employ the witness module to perform no validation of a
seen unit, except checking for a valid signature, integrity and if
its unit type falls within the witnessing scope. The witness
module contains a blockchain-based data repository to store
data for the proposed witness system. The proposed blockchain
fields are slightly modified to better cope with deterministic
consensus protocols like the Practical Byzantine Fault Tolerant
(pBFT) protocol [21]. These modifications include the signing
of the hash field by the block proposer and the inclusion of
an acceptance proof field that allows the transparent
auditing of witness behavior by storing exchanged consensus
messages.

Witnesses are organized in federations, and their member
identities and network addresses are expected to be known to
other federation members. There is no limit on the number of
existing witness federations on the proposed architecture. Each
federation is expected to have a limited and definite scope
for witnessing units inside the envisioned IoT environment,
for example, units belonging to a specific type of service or
data center provider. As IoT systems interact, different witness
federations will have intersecting witnessing roles. The ability
to have multiple witness federations looking into different
sections of the DAG allows for the witness blockchains to
cope with the unit throughput of the underlying DAG section
they observe. Witnessing does not impact unit generation
nor validation. Any stakeholder can establish an independent
witness federation, and this possibility can further improve the
transparency and reliance on the system. A malicious or biased
witness federation can be unilaterally be replaced by users with
a more reputable one. System users decide explicitly in which
witness federations they trust and for what services they trust
those witnesses.

Witnesses reach consensus on each block to be appended to
their underlying blockchain using an asynchronous Byzantine
fault-tolerant protocol, such as pBFT, which can offer a high
transaction throughput in a trustless federation environment
if two-thirds of participants are honest [16]. Furthermore, it
leverages the public key signature scheme already present in
blockchains [22].

The role of a witness federation is to establish agreed-upon
bounds for the time a DAG-unit is first observed. We consider
the traditional timestamp and DAG-unit ordering problem at a
fixed moment in time [23]. When determining the unit ordering
between independent units, it is necessary to determine the
lower bound t−(ui) and upper bound t+(ui) creation times

for all independent units ui ∈ I(w), where I represents the
set of all independent units in relation to unit w. Note that the
real creation time t(u) cannot be determined with certainty,
therefore determining absolute ordering of independent units
is only possible when

]t−(ui), t
+(ui)[∩]t−(uj), t

+(uj)[= ∅, ∀{ui, uj}|i6=j ⊆ I.

Hence, the interval between lower and upper bounds for
perceived unit creation time should be as small as possible.
However, given the set A(u) of parent units approved by u,
the lower bound of this interval for a unit u is defined as
max({t+(wi), ∀wi ∈ A(u)}), which results in long con-
flicting intervals. Therefore, we adopt the relaxation t ≡ t+,
which means the unit creation time will be approximated by
its upper bound.

The witnessing time of a DAG-unit is announced by a
witness to its federation members by means of a witnessing
transaction. All transactions are signed. A signed transaction t
from a node i is denoted by 〈t〉σi , which implies that the
transaction cryptographic hash value is signed node i and
appended to to the network message containing transaction
t. A witnessing transaction for a unit u by node i is a tuple
in the form 〈U(u), twi (u)〉σi

, in which U(u) = {uid,uow}
is the identifying set U for a unit u composed by its signed
hash value uid and owner public key uow, and twi (u) is the
witnessing time of unit u by witness node i. Once U(u) for
a given unit u is featured inside a block of the witnessing
blockchain in transactions by one or more witnessing nodes,
t+(u) is given by

t+(u) = twi (ud(n/2)+1e) ∈ ascend({twi (uj),∀j = 1, . . . , n}),

where n is the number of witnesses who answered during
the prepare phase of pBFT protocol or authored a witnessing
transaction for unit u for the current block, and ascend is the
ascending sort function. If a given DAG-unit is not contained
in a witness w transaction for U(u) of a block, we compute
twi (u) for this witness as the time of block proposal. We can
do this because at the prepare phase of pBFT protocol, if a
unit u was previously unknown by some of the witnesses, we
guarantee that u is now known by all witnesses who answered.
This means that t+(u) equals the witnessing time agreed by
the majority of witnesses who reached consensus for the block
that features DAG-unit u. Accordingly, any unit w ∈ P(u)
not witnessed prior to u is witnessed with t+(w) = t+(u),
because t+(w) ≤ t(u) ≤ t+(u). Hence, for absolute ordering
of independent DAG-units, we propose that for two DAG-units
v and u, where v ∈ I(u), u precedes v if t+(u) < t+(v).
In case of t+(u) = t+(v), we propose to select u as the
preceding unit if it has more total witnessing transactions than
v. If the tie still persists, then we propose that for blocks
b and c, containing the witnessing transactions for units u
and v, respectively, u precedes v if (uid ⊕ bid) < (vid ⊕ cid)
where kid denotes the hash value of element k. Nevertheless,
the absolute ordering for independent DAG-units is ultimately
an application or service decision, and other criteria may be

considered based on a witnessing blockchain information and
other trusted sources.

The proof of acceptance field of the block header
stores all witness opinion information on block transactions
and becomes immutable by the addition of a new block. Every
honest node is able to compute this field locally without a new
message exchange because honest nodes remain honest. Oth-
erwise, they were malicious to begin with [16]. The proof
of acceptance enables the identification of all malicious
nodes and registers that information in the blockchain.

C. Secure IoT orchestration, configuration and storage

To provide secure orchestration, configuration, and storage
facilities for IoT in a 5G environment [3], DAGSec employs
three modules: (i) The user module that allows IoT service
providers and IoT device manufacturers to publish data, make
configuration requests and make provision requests; (ii) the
service orchestration module, that receives, authenticate and
forward service provisioning requests for NFV/Container/IoT
management platforms; (iii) the autonomous client module,
that receives and applies configuration requests and software
updates to virtual network functions and IoT devices. Those
three modules may exchange messages directly through the
network address of the receiver and indirectly through gossip
protocols. In either case, messages are always contained within
a DAG-unit transaction on content field. Transactions do
not need to be individually signed nor timestamped. All
transactions on a DAG-unit always belong to the unit author
and follow the presentation order.

Let S(e, r) = {T treq1
e 1, . . . , T

treqi
e n} ∪

{T tresp1
r 1, . . . , T

trespj
r m} be a session of private transactions

exchanged between an emissor e and a recipient r.
Transactions types in are grouped either as request treq
or response tresp types. Response typed transactions
are appended with a reference to corresponding request
transaction in the form {uid, Tn}, in which uid is a DAG-unit
identifier and Tn is the nth transaction in that unit. We denote
the first request transaction from e in S with a type treq1 as
T
treq1
e = 〈message〉ϕr , which implies that: (i) the transaction

is encrypted with a simmetric key k, then k is encripted with
the public key rpubk of r; and (ii) {rpubk, k} is prepended
to the the transaction. Then, we denote the other transactions
from S as T tp = 〈message〉ρS |p ∈ {e, r}, which implies
that the transaction is encrypted with the simmetric key
established in the first transaction of S. For a given session
(S), except the first DAG-unit, each unit from a party must
reference the previous unit from that party, and any unit
containing a response transaction must reference the unit
containing the corresponding request transaction.

IoT orchestration is performed by provision request TPreq

and provision response TPresp transactions exchanged between
IoT service providers using the user module and Virtual Ma-
chine/Container/IoT platforms using the service orchestration
module. Each provision request transaction demands a single
response transaction. We denote a provision request transac-
tion from a user i to a platform p as T

Preq

i = 〈R〉ϕp
, and the

corresponding response transaction as T
Presp
p = 〈A,E〉ρS , in

which R is the provision request command, A in the response
to that request and E is the possible error output.

IoT data storage is performed by data T d transaction from
an IoT service provider using the user module and VNFs or
IoT devices using the autonomous client module. We denote a
data transaction by a user/device/VNF e as T de = 〈D,M,H〉,
in which D is binary data, M is the associated metadata, and
H is the data hash value. Metadata is application-dependent.
When the data to be stored is larger than the allowed unit size,
D shall point to the address of a distributed data repository1.
Data stored or referenced on the DAG is protected from
future modifications, conferring trust to sensor-generated data
repositories and software update binaries.

IoT device and VNF configuration or software updates are
performed by set-configuration TCset and get-configuration
TCget transactions. These transactions are exchanged between
IoT service providers using the user module and VNFs or
IoT devices using the autonomous client module. A set-
configuration transaction from a user i to a device/VNF d is
denoted by TCset

i = 〈C,K〉ϕd
, in which C is either a binary

configuration file or a reference to a data transaction on the
DAG, and K is a symmetric key. If the K field is not blank,
it is the key to encrypt the referenced data transaction D field.
A set-configuration transaction does not demand a response.
A get-configuration transaction from a user i to a device/VNF
v is denoted by T

Cget

i = 〈R,D〉ϕv
, in which R is the target

recipient public key and D is a configuration description. If
T
Cget

i has a blank recipient, it will be answered by a data
storage transaction T dv with D field set as configuration data
and M field containing description D. If T

Cget

i has a set
recipient, it will be answered by a data storage transaction
T dv in which D field is encrypted with the symmetric key for
the session, and M field contains D as an identifier.

V. RELATED WORK

Boudguiga et al. proposed that blockchain based technolo-
gies enable cloud platforms to fulfill security requirements [6].
Hence, several blockchain-based architectures are proposed
to manage orchestration [24]–[26], configuration [14] and
slicing [27] in cloud platforms. However, blockchain-based
ledgers require a global consensus to process pending trans-
actions. Li et al. shows that consensus poses a severe challenge
to service throughput and availability of blockchain-based
systems in IoT scenarios [28], facilitating denial of service
attacks as discussed by Zhao and Yu [12].

From several DAG-based ledgers are proposed in the liter-
ature [20], the most prominent for IoT usage are IOTA, Hash-
graph, and Byteball. Serguei Popov proposes IOTA, a scalable
DAG-based cryptocurrency architecture for the Internet of
things industry [10] that centralizes transaction confirmation
using a coordinator, which severely undermines transaction
confirmation time and trust [20]. Churyumov proposes Byte-
ball, a DAG system in which transaction ordering converge by

1For large data, we recommend IPFS (http://ipfs.io) or Storj (http://storj.io).

using special nodes with reputation-based voting power [9].
Baird and Luykx take a BFT-style approach to DAG system
decentralization in Hashgraph proposal [11]. Nevertheless, in
Byteball and Hashgraph, participants require the same graph
view to perceive the same transaction ordering. Unlike the
previously cited work, DAGSec avoids the global consensus
lock for unit confirmation because our application is not
financial. Thus, there is no double-spending issue. To the best
of our knowledge, DAGSec architecture is the first DAG-
based proposal that allows transaction creation, validation, and
ordering with a restricted local view of the DAG.

VI. CONCLUSION

This paper proposes an architecture called DAGSec that
combines a DAG-based ledger with a blockchain. The DAG-
based ledger guarantees the high scalability and low latency re-
quired by the IoT environment, and the blockchain guarantees
through a witness system the chronology and correct ordering
of transactions. Furthermore, DAGSec provides auditability,
non-repudiation, and traceability of all IoT provisioning and
configuration requests.

Our proposed architecture decouples the creation and valida-
tion of transactions from the consensus mechanism, allowing
DAGSec to reach the required transaction rate and scalability
that are the basis of modern IoT systems.

We propose an upper bound approximation expression that
enables absolute transaction ordering used by a witness sys-
tem, which guarantees the system auditability of a set of
unrelated events stored on the DAG. Furthermore, DAGSec
enables independent auditing bodies through separate witness
federations for further increase of decentralization.

Future directions envision further developing of the witness-
ing system to allow additional facilities like smart contracts,
tokens, and payment channels.

ACKNOWLEDGMENT

This research is part of the INCT of the Future Inter-
net for Smart Cities funded by CNPq proc. 465446/2014-
0, Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior – Brasil (CAPES) – Finance Code 001, FAPESP
proc. 14/50937-1, and FAPESP proc. 15/24485-9. This re-
search is also part of the Advanced and Collaborative Research
Infrastructure for the Secure Internet of the Future (ACCRUE-
SFI) funded by FAPESP proc. 18/23292-0.

REFERENCES

[1] A. Hakiri and B. Dezfouli, “Towards a blockchain-SDN architecture for
secure and trustworthy 5G massive IoT networks,” in Proceedings of
the 2021 ACM International Workshop on Software Defined Networks &
Network Function Virtualization Security, ser. SDN-NFV Sec’21. New
York, NY, USA: Association for Computing Machinery, 2021, p. 11–18.

[2] R. Yugha and S. Chithra, “A survey on technologies and security
protocols: Reference for future generation IoT,” Journal of Network and
Computer Applications, vol. 169, p. 102763, 2020.

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G net-
work edge cloud architecture and orchestration,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[4] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” J. Netw. Comput. Appl., vol. 75, no. C, pp. 138–155,
Nov. 2016.

[5] European Telecommunications Standards Institute (ETSI),
“Network functions virtualisation (NFV),” Oct. 2013,
https://portal.etsi.org/NFV/NFV White Paper.pdf.

[6] A. Boudguiga, N. Bouzerna, L. Granboulan, A. Olivereau, F. Quesnel,
A. Roger, and R. Sirdey, “Towards better availability and accountability
for IoT updates by means of a blockchain,” in IEEE EuroS PW, April
2017, pp. 50–58.

[7] L. Chettri and R. Bera, “A comprehensive survey on Internet of things
(IoT) toward 5G wireless systems,” IEEE Internet of Things Journal,
vol. 7, no. 1, pp. 16–32, 2020.

[8] X. Fu, H. Wang, and P. Shi, “A survey of blockchain consensus algo-
rithms: Mechanism, design and applications,” Science China Information
Sciences, vol. 64, no. 2, p. 121101, Nov 2020.

[9] A. Churyumov, “A decentralized system for storage and transfer of
value,” 2016, ”https://obyte.org/Byteball.pdf”.

[10] S. Popov, “The tangle,” 2018, ”http://www.descryptions.com/Iota.pdf”.
[11] L. Baird and A. Luykx, “The hashgraph protocol: Efficient asynchronous

BFT for high-throughput distributed ledgers,” in 2020 International
Conference on Omni-layer Intelligent Systems (COINS), 2020, pp. 1–
7.

[12] L. Zhao and J. Yu, “Evaluating DAG-based blockchains for IoT,” in 2019
18th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/13th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE), 2019,
pp. 507–513.

[13] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on Information Theory, vol. 29, no. 2, pp. 198–208, Mar
1983.

[14] I. D. Alvarenga, G. A. F. Rebello, and O. C. M. B. Duarte, “Securing
configuration management and migration of virtual network functions
using blockchain,” in IEEE/IFIP NOMS, 2018, pp. 1–9.

[15] A.-M. Kermarrec and M. van Steen, “Gossiping in distributed systems,”
SIGOPS Oper. Syst. Rev., vol. 41, no. 5, p. 2–7, Oct. 2007.

[16] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” J. ACM, vol. 27, no. 2, p. 228–234, Apr. 1980.

[17] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker,
“Off by default,” in Proceedings of the Fourth Workshop on
Hot Topics in Networks (Hotnets-IV), 2005. [Online]. Available:
http://www.icsi.berkeley.edu/pubs/networking/offbydefault05.pdf

[18] European Telecommunications Standards Institute (ETSI), “Multi-access
edge computing (MEC) framework and reference architecture,” Dec.
2020, https://www.etsi.org/deliver/etsi gs/mec/001 099/003/.

[19] B. Ali, M. A. Gregory, and S. Li, “Multi-access edge computing
architecture, data security and privacy: A review,” IEEE Access, vol. 9,
pp. 18 706–18 721, 2021.

[20] Q. Wang, J. Yu, S. Chen, and Y. Xiang, “SoK: Diving into DAG-based
blockchain systems,” 2020, https://arxiv.org/abs/2012.06128v2.

[21] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design and
Implementation, ser. OSDI ’99. USENIX, 1999, pp. 173–186.

[22] M. Vukolić, The Quest for Scalable Blockchain Fabric: Proof-of-Work
vs. BFT Replication. Springer, 2016, pp. 112–125.

[23] S. Popov, “On the timestamps in the tangle,” 2018.
[24] N. Bozic, G. Pujolle, and S. Secci, “A tutorial on blockchain and

applications to secure network control-planes,” in 3rd Smart Cloud
Networks Systems, Dec 2016, pp. 1–8.

[25] R. V. Rosa and C. E. Rothenberg, “Blockchain-based decentralized
applications for multiple administrative domain networking,” IEEE
Communications Standards Magazine, vol. 2, no. 3, pp. 29–37, 2018.

[26] S. Gu, Z. Li, C. Wu, and C. Huang, “An efficient auction mechanism
for service chains in the NFV market,” in IEEE INFOCOM, 2016, pp.
1–9.

[27] L. Zanzi, A. Albanese, V. Sciancalepore, and X. Costa-Pérez, “NS-
Bchain: A Secure Blockchain Framework for Network Slicing Broker-
age,” in IEEE ICC, 2020, pp. 1–7.

[28] Y. Li, B. Cao, M. Peng, L. Zhang, L. Zhang, D. Feng, and J. Yu,
“Direct acyclic graph-based ledger for Internet of things: Performance
and security analysis,” IEEE/ACM Transactions on Networking, vol. 28,
no. 4, pp. 1643–1656, 2020.

