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Introduction
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● Dengue disease: Mosquito-borne tropical disease 

● CDC estimates hundreds of millions infections

○ Tens of thousands deaths per year

● State of Rio de Janeiro, in Brazil

○ Located in a tropical area and most cities are 
frequently under high-risk state of alert

● Prevention of Dengue outbreaks

○ Reduce the mosquito population

○ Work-intensive: requires agents to visit locations

https://pt.wikipedia.org

source: ministry of health



Objectives
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● Develop a Machine Learning model for predicting Dengue outbreaks up to 3 
months in advance

○ Use of multiple features, such as environmental, epidemiological, 
demographic, and spatial

○ Provide explainable predictions for health agents

● Evaluate the model using 6 years of data from Rio de Janeiro metropolis



Related Work
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● Extensive literature on predicting Dengue cases and correlate with climatic and 
socioeconomical variables

○ Most works on tropical countries: Thailand, Indonesia, Malaysia, and Latin America

○ Used different ML techniques, from Linear Models to Neural Networks

● A limitation of existing work is that they provide little explainability of predictions

○ Linear models provide limited interpretability

● A second limitation is the use of different datasets, which are unavailable, and metrics

○ We will make all model code and data publicly available 

○ We evaluate and compare several regression and classification metrics



Data and Feature Extraction
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● Obtained from government agencies, such as
○ National Health Notification Information System (SINAN)

○ National Register of Health Facilities (CNES)

○ National Weather Institute (INMET)

● Dengue cases: last 3 months, prevalence, neighbors
● Environmental
● Mosquito infestation in the city and similar 
● Demographic density and health coverage



Regression Method
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● Boosted-tree regression method: CatBoost
○ Series of simple trees, where each tries to improve the prediction of 

previous trees
○ Captures non-linear relationships between features

● Baseline: Seasonal Autoregressive Integrated Moving Average (SARIMA)
● Used data from 2015 to optimized hyperparameters

https://catboost.ai/



Predictions
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● Predictions for each district, using data from 2016 to 2020
● CatBoost: 5-fold validation, using 4 years for training and 1 for testing

○ 3-month multistep-ahead predictions
● SARIMA model: separate model for each year

○ Used the four previous years to adjust the model

● Evaluated Regression and Classification errors
○ Regression: R2, MAE, MAPE, RMSE 
○ Classification: precision and recall

■ Severe and Mild outbreaks
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RESULTS



Outbreak Predictions 3 months in advance
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● Three months in advance provides enough time 
for health authorities to act

● Predicted no outbreaks 97% of the time
● Recall of 59% (58%) for mild (severe) outbreaks
● When predicting an outbreak as mild

○ 57% chance of a mild or severe outbreak 
● When predicted as severe

○ 86% chance of a mild or severe outbreak 

● SARIMA model had more modest performance
○ Precision of 40% and 38% for mild and 

severe outbreak predictions



Seasonal Effects
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● Dengue has a seasonal pattern
○ High-season (January to May) 
○ Varying outbreak degrees

● Our model captures well the seasonality
○ Results for one month are closer to 

real values, but three-months also 
worked well

○ It tended to overestimate when there 
were fewer cases overall

● SARIMA also captures the seasonality, 
although it tended to overshoot predictions



Evaluation per District
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● MAE error unevenly distributed 
among districts

● Higher for districts which had 
very large number of cases, 
such as Bangu and Realengo

● F-score there were comparable 
to other districts, as the 
outbreaks were detected

● Harder to detect outbreaks in 
districts with fewer cases

● Remain mostly in the borderline 
of the outbreak threshold



Explaining the Results
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● SHAP (SHapley Additive 
exPlanations) values
○ Method to explain the 

contribution of each 
feature on each 
prediction

○ Has many desirable 
features: consistency, 
symmetry, additiviness, 
etc.



Explanations for the Complete Model
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● Summary plot: 
○ Features that most contributed to all predictions and the output direction 

● Dependence plots: 
○ Effects on predictions for feature values and dependence with another feature



Conclusions
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● Developed an explainable machine learning model to predict Dengue outbreaks
○ Predictions three-month in advance provide health agents enough time to act 
○ Combined with explanations for the predictions for better interpretation
○ Can be combined with other information available at health agencies

● Next steps
○ Enhancing the model with better features, such as sorotypes and other indicators
○ Extraction of better time series features and inclusion of data from more regions
○ Provide open-source visualization tool for health authorities
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