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Abstract—The trust centralization in current data sharing sys-
tems restricts the owner’s control over their data. Furthermore,
the owner’s intervention to authorize his/hers data access for
each request makes frequent access to popular data tiresome. In
this paper, we propose AutAvailChain, an architecture based on
software defined networking (SDN) and blockchain to provide
secure, automatic, and distributed sharing of IoT data. We
develop a prototype using the Hyperledger Fabric platform to
implement the blockchain and a smart contract. The results
show a quick, secure, and excellent performance of dozens of
transactions per second.

I. INTRODUCTION

Classic data storage and availability solutions delegate to

centralized authorities, such as governments and companies,

the tasks of sharing, controlling, and ensuring proprietary data

privacy. These authorities charge high fees and impose terms

that compromise data privacy to provide storage and sharing

services. The personal data sharing with centralized authorities

implies a single point of failure, the loss of control, and

the owner’s data traceability. Blockchain technology provides

the required properties to ensure data sharing security in a

distributed and auditable way to maintain owner’s data control.

An approach to access authorization to private or sensitive

data is to distribute certificates for cryptographic access au-

thentication. Thus, the data owner is responsible for issuing a

certificate authorizing the access of another entity that wants

or needs to use data to his private data. Nevertheless, in a

scenario of tens of thousands of data users requiring access,

it is costly to issue certificates manually [1]. Therefore, there

is a need for automating data sharing and updating access

permissions to stored data. In this scenario, without mutual

trust, smart contracts provide the automation needed to receive

a data access request, verify that the data consumer meets

the conditions imposed by a data owner user, and authorize

data access permissions. Software defined networking (SDN)

offers the required flexibility due to its network programming

capacity for access control enforcement to stored data [2].

This paper proposes, develops, and evaluates an architecture

for secure and automatic sharing of IoT data using blockchain

and software defined networking in a multi-domain scenario.

The proposal guarantees the transparency of data access rights,

providing the user with traceability over the data itself. There-

fore, we leverage the property of integrity and auditability of

the blockchain, which stores the access permissions of each

user to IoT data. To prevent personal data leak to the server and

third parties, we assume encrypted data storage. The device

owner can commercialize its data with data scientists interested

in training and creating models based on a real device. The

paper presents a blockchain marketplace proposing three types

of transactions that allow users to advertise and acquire data

by issuing transactions. The proposed transactions guarantee

the effective and automatic marketing of IoT data. Thus,

the architecture does not require the user acknowledgment

of each request. The implementation scenario considers large

data centers interconnected through SDN technology. An SDN

controller implements data access control. We implement

a prototype of the proposed architecture using the open-

source platform Hyperledger Fabric [3] for the blockchain,

the Ryu SDN controller, and the Mininet network emulator. A

smart contract implements the transaction logic proposed in

the paper. Results show transaction throughput performance

comparable to nationwide e-commerce by controlling access

to IoT data securely, automatically, and quickly.

We organize the rest of this paper as follows. Section II

discusses related work. Section III presents the attacker model

considered in this paper for each entity of the proposed

architecture. Section IV details the proposed architecture and

presents the proposed transaction types for automatic and

effective data sharing. Section V presents the development of

the prototype and evaluates the performance of the proposal.

The results of transaction throughput and access time are

measured and analyzed to evaluate the proposal. Finally,

Section VI concludes the paper, presenting the developed work

and the directions for future work.

II. RELATED WORK

Several works propose to use blockchain technology to se-

cure data updates, virtual-network slicing [4], virtual-network

orchestration [5], [6], and resource access.

Ouaddah et al. propose the use of smart contracts for access-

policies implementation in code format and implementation

of authorization tokens, which are digital signatures of the

owner, allowing access to a resource [7]. In their proposal,

each user receives a single-use token. The drawback of tokens

is a long time to access due to the need to consult the owner

with each new access. Pinno et al. propose ControlChain, an

architecture based on four blockchains for authorizing IoT de-

vice access [8]. This architecture requires a large blockchain-

storage availability and can generate high costs on platforms



that charge for running smart contracts, such as Ethereum. Hu

et al. propose a data-sharing tool focused on anonymity [9],

that uses the blockchain as a checkpoint. Their system ro-

bustly guarantees privacy, but requires exaggerated latency

to share data. Shafagh et al. propose a data-sharing system

that separates the storage system into a control plane and a

data plane [10]. The control plane contains the blockchain,

responsible for storing access permissions, and manages and

distributes cryptographic keys. The data plane consists of a

distributed storage system, such as the distributed hash tables

(DHT). The work, however, is not implemented and does not

automate access to users.

Pailisse et al. propose an architecture for access control

between domains using blockchain [1]. In the proposed archi-

tecture, the authors use the blockchain to store the permissions

that users have on a resource and use the locator/ID separation

protocol (LISP) to enforce access control to the requested

resource. The access policies are updated in the blockchain

and stored in the LISP control plane, and then, routers can

verify access permissions. However, the proposal does not

include a reward for the owners for making the data available.

The control and commercialization of data by the owners are

desirable properties for the Internet of things. Besides, owners

are responsible for updating access policies, which is not a

scalable solution for IoT systems.

Truong et al. propose Sash, a framework for sharing IoT

data using blockchain, in which data owners can sell their

data [11]. The properties of immutability and transparency

of the blockchain provide the auditability of access policies.

In Sash, smart contracts evaluate access control requests to

off-chain encrypted data. The authors do not define how to

distribute cryptographic keys to decrypt the acquired data,

which may be a service established by the owner or delegated

to a key authority. The use of a cryptographic key distributor

authority presents problems, such as centralizing the network

and relying on authority, weakening the decentralization prop-

erty, which is one of the main properties of the blockchain.

The purpose of this paper, in turn, is a distributed system

between domains in which SDN controllers enforce access

control automatically.

Unlike the papers above, this paper proposes a simple and

efficient system that is secure, distributed, and automatic for

the secure commercialization of IoT data between domains

using software defined networks. The system simplicity and

efficiency is due to the a single blockchain implementation

and the fast data access time and throughput that the system

presents, reaching 65 transactions/s.

III. ATTACKER MODEL

This work uses the “honest, but curious” model to specify

attacks on the cloud that stores the owner’s data, which

is indicated in the literature to model cloud servers [12],

because it captures the most common data-leakage attacks on

servers. In this model, the entity compromised by an attacker

continues to follow the protocol of the system honestly. In this

scenario, the attacker’s interest is to obtain or leak sensitive

information from the organization, instead of compromising

the data integrity or entity behavior. We consider intrusions

or internal attacks by employees whose main objective is

to remain undiscovered. Therefore, the attackers rarely alter

the behavior of the entity. We assume that the stored data is

encrypted using a symmetric data key. Thus, the data content

is inaccessible to the server, and possible leaks cause less

significant damage.

For the organization behavior in the blockchain and for

the data owner, we consider the Dolev-Yao attacker model,

which predicts the most powerful attackers in an insecure

scenario [13]. The attacker can read, send, and discard a

transaction addressed to the blockchain or any packet on the

network. The attacker can passively connect to the network

and capture message exchanges or actively inject, reproduce,

filter, and exchange information. Blockchain attacks aim to

prevent a legitimate transaction or block from being added to

the blockchain. The fault-tolerant consensus protocol mitigates

this type of attack, requiring the collusion of many participants

to control the network to affect the consensus protocol. Other-

wise, the issuer of the transaction/block can check its presence

in the blockchain. Attacks that require transaction corruption

or tampering are impossible when all transactions include their

corresponding signed hash.

Attacks on sellers or buyers consist of trying to get private

and sensible data information or impersonating the target.

Impersonation attacks are not possible because the issuers

sign all transactions sent to the blockchain. The encryption of

confidential information mitigates attacks that seek to obtain

sensible data, in which the attacker must obtain the private key

of the victim. Moreover, the proposed architecture allows the

audit of all past transactions. Therefore, if an attacker attempts

to modify the blockchain using stolen key pairs, the attempt is

logged. Upon discovery of an incident, the attacker can easily

replace stolen key pairs, restoring security and preventing

further damage.

Network Attacks represent the attempt to isolate a sin-

gle target, thus preventing sellers and buyers from issuing

transactions or from the blockchain controller reading con-

tent. The mitigation of this attack category, which includes

classic network attacks, establishes redundant paths between

the blockchain and organizations, customers, and owners. This

work assumes a redundant public network, such as the Internet,

which interconnects all participants.

IV. THE PROPOSED SYSTEM

We propose a simple, secure, efficient, and distributed

system for the automated commercialization of IoT-personal

data. The system is robust against denial of service attacks

because even if an attacker compromises one node in the

network, other nodes continue to provide the same service.

We also achieve low latency to access the data in the storage

server by automating access control and thus removing the

need for the seller’s intervention on each access request.

The objective of the proposed system is to register data

access requests and authorize access automatically if the user



Fig. 1: The proposed system architecture. The buyer (seller) announces its data (acquires data) by communicating with the

blockchain. The Access Control Module reads the data purchase transactions and changes the buyer’s access permissions to

the resource.

meets the established requirements. We consider a multi-

domain scenario composed of different storage companies,

henceforth called organizations, which interconnect through

the Internet and use the software defined networking (SDN)

technology. Each organization controls a large data center

through an SDN controller. The system uses the blockchain

auditability property to transparently register data access per-

missions in the form of transactions. Smart contracts automate

data commercialization by associating each purchase trans-

action with an advertisement transaction without the need

for seller verification. Then, because the transactions are

associated, the SDN controller automatically reads its users’

advertisement transactions on the blockchain and authorizes

access whenever a buyer completes a purchase transaction.

We assume the seller encrypts the data using a symmetric key

before uploading it to a storage server.

The system architecture is divided into two modules, as

shown in Figure 1: i) the blockchain module, which stores a

record of access permissions of a user to a resource, and ii)

the access control module, which controls access to data by

reading transactions from the blockchain.

The Blockchain Module records data advertisements and

purchases in the system. It contains the blockchain, which

records an immutable history of all transactions issued in the

system, and the global state. The global state is a mutable

database that indexes transactions in a hash table for fast

searches. Data sellers or buyers use the blockchain client com-

mand line interface (CLI) to send or obtain information about

the blockchain. The general-purpose remote procedure calls

(gRPC) establishes the communication between the blockchain

client and the blockchain module.

The Access Control Module manages access permissions

to a resource and contains the control plane and the read-

ing module. The reading module reads transactions in the

blockchain through remote procedure calls (RPC) and provides

the acquired information to the control plane. The control

plane updates access permissions and allows users to connect

to the purchased data in a storage server. The controller stores

the users’ access permissions for a specific storage server

based on the source and destination IP addresses registered

in a transaction. If an unauthorized user attempts to connect

to the server, the controller verifies the blockchain through the

reading module. If the access permissions are out of date, the

controller updates the local version of the access permissions

by processing new transactions. If the version is up to date

or if the user does not have permissions after the update, the

controller discards new packages received from the user.

The blockchain in the proposed architecture acts as a data

marketplace, in which owners advertise, and buyers query the

blockchain looking for IoT data. We define two types of users:

sellers and buyers. Sellers are data owners who advertise their

data expecting a financial reward. Interested buyers query the

blockchain to acquire data. Despite defining two types of users,

a participant can assume both roles, either by advertising their

data or by purchasing data from other owners. The use of smart

contracts allows the implementation of a token-based system

that works as an asset exchange. Organizations can acquire

data by paying the required number of tokens and agreeing to

an off-chain equivalent payment [11].

We propose three types of transactions for securing data

commercialization: i) advertisement transactions, ii) purchase

transactions, and iii) response transactions. Figure 2 shows the

UML sequence that describes the commercialization process.

Fig. 2: A sequence diagram that represents a data sale between

two users. By the end of the process, the blockchain contains

the data sale transactions and the buyer can access the data.



An owner who is interested in selling their data issues

advertisement transactions. The owner, henceforth referred

to as the seller, first uploads the data to a storage server

capable of storing and processing large amounts of data [11].

Then, the seller issues a signed advertisement transaction using

asymmetric encryption to ensure transaction authenticity and

integrity. The advertisement transaction must contain the data

price and a brief description of the data type. We define an

advertisement transaction TXad as:

TXad = [TXIDad
|Sigow|IPsp|Pr|Oow|DTD], (1)

where TXIDad
is the advertisement transaction identifier,

Sigow is the seller’s signature, IPsp is the IP address of the

storage server, Pr is the data price, Oow is the organization

that stores the data and DTD the data type description.

Users who are interested in acquiring advertised data issue

purchase transactions. Such users, henceforth referred to as

buyers, look for data in the blockchain by querying advertise-

ment transactions. The system allows specific queries, such as

queries by data type and queries for all advertisement trans-

actions. In a purchase transaction, the buyer must reference

the identifier of the corresponding advertisement transaction

and inform an IP address for the SDN controller to allow

access to the data. The purchase transaction must also include

the amount to be paid for the data. If the amount offered is

less than the data price in the corresponding advertisement

transaction or if the buyer does not have enough funds to

complete the purchase, the transaction is not valid. We define

a purchase transaction TXpur as:

TXpur = [TXIDpur
|TXIDad

|Sigb|IPb|Pay|Osrc], (2)

where TXIDpur
is the purchase transaction identifier, TXIDad

is the transaction identifier for the corresponding advertise-

ment transaction, Sigb is the buyer’s digital signature, IPb is

the buyer’s IP address, Pay is the amount to be paid for the

data and Osrc is the buyer’s organization.

Sellers automatically issue response transactions after one of

its advertisement transactions receives a purchase transaction.

The response transaction contains the symmetric data key that

decrypts the data. The data key is encrypted using the buyer’s

public key to ensure only the buyer has access to to the

decrypted data. This prevents the storage organization from

accessing, leaking or sharing personal data with third parties.

We define the TXres response transaction as:

TXres = [TXIDres
|TXIDb

|OKEnc{PKb}], (3)

where TXIDres
is the response transaction identifier, TXIDb

is the identifier of the corresponding purchase transaction, and

OKEnc{PKb} is the symmetric data key encrypted with the

buyer’s public key.

Transactions go through the blockchain module for exe-

cution before being added to a block. The smart contract

execution defines whether the transaction is valid or not by

verifying if: i) the amount to be paid Pay is greater than or

equal to the price Pr of the data requested by the seller, and ii)

the organization has enough funds to complete the purchase.

Our proposal validates the transactions that meet the previous

requirements and marks the other transactions as invalid. If

the transaction is valid, the system subtracts the token amount

paid from Osrc and adds it to Oow.

V. PROTOTYPE DEVELOPMENT AND RESULTS

We develop a prototype1 using the open-source Hyperledger

Fabric 2.0 platform [3] for the blockchain, the Mininet network

emulator and the controller Ryu2. Hyperledger Fabric is a

platform for the implementation of permissioned blockchain

for organizations. The Hyperledger platform is available for

free, easily programmable, and without any currency or asso-

ciated cost. The organizational aspect of Hyperledger meets

our multi-domain proposal scenario, in which companies

commercialize the data. An Intel i7-2600 CPU 3.40 GHz

computer with 32 GB RAM and 8 processing cores executes

the blockchain network nodes as Docker containers. All exper-

iments are presented with an average value and a confidence

interval of 95%. We assume 100 transactions per block, as

used in previous work on the performance evaluation of the

Hyperledger Fabric [14] platform. The nodes in the Fabric ar-

chitecture represent the entities that take part in the blockchain.

The Hyperledger Fabric architecture features three types of

nodes: clients, peers, and orderers. Clients represent users and

issue transactions that need to be executed by endorser peers,

who are responsible for verifying the transaction validity. If the

transaction is valid, the client receives the signed transaction

by the endorsing peers and sends it to ordering nodes. The

ordering nodes execute a consensus protocol and order in

a block the transactions by their timestamp. Hyperledger

Fabric uses a special type of node called an anchor peer to

advertise ordered blocks. We configure the prototype used in

the experiments described below using five ordering nodes and

the Raft consensus protocol. Figure 3 shows the architecture

of the Hyperledger Fabric with the scenario used.

A smart contract written as a self-executing code in Go

runs in all peers, eliminating a centralized trust entity and

implementing the transaction logic3 described in the previous

section, in addition to a system of tokens and organization

accounts. These tokens act as currencies that organizations can

use to sell and buy data. The real value of these tokens can

be established off-chain between organizations. We implement

a pending transaction queue, which stores strings in JSON

format containing the IP address of the buyer IPb, the IP

address where the data is stored IPsp, and the identifier of

the purchase transaction TXIDpur
. For every TXpur received,

the contract updates the queue, adding a pending transaction

to be processed by the software-defined network controller.

The pending transaction queue implementation reduces signif-

icantly the required reading time to obtain information about

1Available at https://github.com/GTA-UFRJ-team/blockchain-marketplace
2Available at https://osrg.github.io/ryu/
3The response transaction TXres will be implemented in future works.



Fig. 3: Permissioned blockchain architecture in the Hyper-

ledger Fabric with the controller and server of the proposed

scenario. Users, sellers, and buyers from each organization,

use applications to issue transactions that later are ordered in

a block by the ordering service using a consensus protocol.

access permissions updates, by avoiding the reading of the full

blockchain. The controller, upon receiving a packet from an

unknown IP address, calls a function of the reading module

to collect the strings stored in the queue and update access

permissions. The reading module, written in Python 2.7, reads

from the pending transaction queue, gets the buyer’s and

seller’s IP address, and sends the addresses to the controller.

The controller stores user’s access permissions in a key-value

structure. The key is the storage-server IP address and the

value is a list, which stores the IP addresses that can access

the storage server corresponding to the key. To authorize the

access, the controller checks whether the source IP of the

packet is in the list corresponding to the destination IP.

The first experiment consists of increasing the number of

clients in a single organization and measuring the transaction

rate. This experiment simulates a single organization domi-

nating the majority commercialization operations of the data

in the blockchain. Two organizations with two peers each

compose the blockchain network. We check the transaction

throughput while increasing the number of clients who issue

50, 500, and 5000 transactions to the endorsing peers concur-

rently. The transaction rate corresponds to the ratio between

the total number of transactions issued and the required time

for all clients to issue all transactions. Figure 4a shows that

the transaction rate initially grows until it stabilizes with the

increase in the number of clients. This stabilization occurs

because a low number of clients issuing transactions restricts

the rate in the transaction rate that these clients issue. The

transaction rate stabilizes around 65 transactions per second.

This result proves that the proposed service fits well for

a Brazilian e-commerce national level since MercadoPago

has an average throughput of 30 transactions per second4.

We implement the same environment distributed in three

4MercadoPago had 227 million sales in the third quarter of 2019. Available
at: https: //ideias.mercadolivre.com.br/sobre-mercado-livre/mercado-livre-
cresce-368-em-vendas-e-atinge-us-76-bilhoes-em-volume-de-pagamentos-
com-mercado-pago-no-3o-tri/

computers to simulate a real scenario. An Intel i7-8700 CPU

3.40 GHz with 32 GB RAM hosts Organization 1. We deploy

Organization 2 in an Intel i7-7700 CPU 3.60 GHz with 64 GB

RAM. An Intel i7-2600 CPU 3.40 GHz with 64 GB RAM

hosts the ordering service. We increase the number of clients

issuing 50 and 500 transactions in Organization 1, which is

the only organization issuing transactions, and measure the

transaction rate. Figure 4b depicts the result with an increasing

number of clients running in three computers. The transaction

rate peaks around 162 transactions per second, more than

twice the value in a single computer. The growth in the node

processing power explains the higher transaction rate in the

distributed scenario compared to a single computer.

The second experiment implements a distributed environ-

ment with 6 computers. We deploy Hyperledger Fabric con-

tainers in multiple hosts to simulate a real-world scenario

with multiple organizations. An Intel i7-2600 CPU 3.40 GHz

with 32 GB RAM hosts the ordering service. We deploy

Organization 1 in an Intel i7-8700 CPU 3.20 GHz with 32 GB

RAM and 6 processing cores. An Intel i7-7700 CPU 3.60 GHz

with 64 GB RAM hosts Organization 2. We add three Intel

Xeon E5-2609v4 CPU 1.70 GHz with 8 GB RAM in the

previous scenario as Organizations 3, 4 and 5. Figure 5 illus-

trate the transaction rate for four different number of clients

equally distributed in the organizations. The throughput peaks

around 243 transactions per second, almost twice the single

machine with all clients throughput. The results shows the

transaction rate increases for a scenario that the organizations

issue transactions in the same proportion, twice the results of a

single organization issuing all transactions. The result proves

that, even when the number of organizations increases, the

transaction rate is adequate for a Brazilian national level.

The third experiment evaluates the data access time after

confirmation of the purchase in the blockchain. The experi-

ment involves creating a Mininet network with three hosts,

a switch, and an SDN controller. The host h1 simulates a

server that stores the data for sale in the blockchain. A buyer

client issues a purchase transaction TXpur by sending the IP

address of the host h2, which makes a request to h1 and waits

for a response. The first request time is longer because of the

controller checks and processes the pending transactions in the

queue. The average response time obtained is 0.473 seconds.

This result proves that the access time to the acquired data

is fast and imperceptible, adequately meeting the interaction

with the purchasing customer.

VI. CONCLUSION

This paper presented an architecture based on software

defined networking and blockchain that allows the commer-

cialization of data in a secure, automatic, and distributed way

between users of the system. We designed and realized a smart

contract to securely and automatically control IoT-personal

data trading between domains. We developed a prototype run-

ning on the Hyperledger Fabric platform, in which a personal

data owner can easily announce and commercialize his data

in a secure, efficient, and automatic way. The results prove



(a) Transaction rate for an increasing number of clients,
assuming a single organization running in a single computer.

(b) Transaction rate for an increasing number of clients,
assuming a single organization running in three computers.

Fig. 4: Transaction rate assuming a single organization.

Fig. 5: Transaction rate for an increasing number of clients,

assuming five organizations running in five different servers.

that the proposed system implementation meets the Brazilian

e-commerce demand, reaching over 50 transactions per second

even when a large number of users issue simultaneous trans-

actions with a physical test server. Extending the test scenario

to multiple physical servers with higher processing power can

significantly increase the transaction rate.

As future work, we plan to implement a reputation system

to mitigate malicious behavior such as the sale of corrupted

data or deletion of data from the server after purchase and

implementation in a cluster of servers.
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