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Abstract—Service provisioning in next-generation networks,
such as 5G and 6G, relies on virtualization to carry out multi-
domain and multi-tenant connections. In these scenarios, virtual
network functions (VNF) orchestration becomes susceptible to
security threats once trust between peers cannot be assumed.
This paper1 proposes a blockchain-based system for an agile,
secure, and distributed provisioning of virtual network functions
in scenarios with multiple administrative domains. Our proposal
employs smart contracts to deliver all stages of a service-level-
agreement management life cycle automatically. We develop,
implement, and evaluate a prototype of the proposed system
using smart contracts running on Hyperledger Fabric. The
performance evaluation results show that the system guarantees
high-rate VNF provisioning, reaching hundreds of slice requests
per second in a trustful way.

Index Terms—blockchain; network function virtualization;
service level agreement; smart contract; network slicing.

I. INTRODUCTION

Next-generation mobile networks aim to provide connec-
tivity models that meet user-specific demands. Network func-
tions virtualization (NFV) is key technology to provide these
customized services, allowing the flexible chaining of virtual
network functions that meet the quality of service (QoS)
required by applications. Service function chaining (SFC)
offers a mechanism to connect virtual network functions,
allowing carriers to meet user demands. Despite allowing fast
and flexible service provisioning, service function chaining
presents many security challenges [1]. Service function chains
may include virtual network functions (VNFs) instantiated at
competing service providers. As a consequence, accountability
and punishment of operational failures and malicious behavior
is difficult across multiple administrative domains. Thus, it
is necessary to ensure secure provisioning of service chains,
correctly identifying failures and malicious behavior on the
network. In these no-mutual-trust scenarios, blockchains can
provide a reliable ledger for distributed and immutable log
of operations, providing transparency to users and precise
misbehavior identification.

The customer and the service provider establish a service
level agreement (SLA), which defines the service provider’s
performance levels to tenants. This SLA is essential to guar-
antee that the service provider has correctly provisioned the
resources and honors the contracted services. Nevertheless,

1A preliminary version of this paper was published in Portuguese and is
available at http://www.gta.ufrj.br/ftp/gta/TechReports/CSD21.pdf.

tenants do not have visibility into the network management
and as such are unable to verify and validate the offered
service, which makes the financial reimbursement process for
non-compliance difficult and creates an uneven agreement [2].
Moreover, the service agreement may also contain restrictions
on the user side, therefore it is necessary to verify that the user
acts as determined in the contract. Smart contracts provide
the automation and transparency required for the correct and
reliable verification and validation of service agreements in a
distributed manner.

This paper proposes a blockchain-based system for secure
network slice orchestration, through a transparent and im-
mutable log of operations. Our contributions are three-fold:

• The conception of a secure and fast system to provide
transparency, non-repudiation, and traceability of network
slice-orchestration operations. Our system allows the cor-
rect identification and accountability of errors and mali-
cious behavior. We use smart contracts to automatically
punish malicious behavior in the network.

• The proposal of an efficient model that meets all the
requirements of an SLA management life cycle and
ensures confidentiality without losing transparency.

• The development and implementation of a system pro-
totype through smart contracts developed using the Hy-
perledger Fabric platform. The performance evaluation
results show that the system is agile, recording around
115 slice creation requests per second.

We organize the paper as follows. Section II details the SLA
management life cycle and the attacker model. Section III
describes the proposed system flow, transaction types, and
message exchange. Section IV describes and evaluates the
performance of a prototype of the proposed system. Section V
discusses the related work. Finally, Section VI concludes the
paper and presents future work.

II. SLA MANAGEMENT LIFE CYCLE AND ATTACKER
MODEL

While SLAs are just a contract between the user and
the service provider, the SLA management is much more
complex because it requires the provided services monitoring.
We assume that the service monitoring is performed and that
the service quality verification is recorded in a blockchain.
Besides, we consider the SLA management life cycle proposed



by Sun Microsystems Internet Data Center Group [3]. The life
cycle is divided into six stages [4]:

1) Service provider discovery: The tenant chooses the ser-
vice provider responsible for providing the infrastructure
to run the required services.

2) SLA definition: The service provider and the tenant
agree on the QoS parameters and define the punishments
in case of failure to comply with the agreed levels.

3) Establish agreement: The parties involved establish a
template defining the levels discussed during the SLA
definition step. The service provider and the tenant sign
the agreement, validating the levels and punishments.

4) SLA violation monitoring: The service delivered by the
service provider is tested to verify compliance with the
levels defined in step 2 and agreed upon in step 3.

5) SLA termination: The SLA expires due to previously
agreed timeout or to breaches in contract compliance.

6) SLA punishment enforcement: The provider is pun-
ished according to the clauses defined in the contract, if
he does not comply with the agreed levels.

We consider attacks which target tenants, VNFs, the
blockchain, and the network. The attacker model is similar to
the one defined by Dolev et al., in which an attacker can read,
send and discard a transaction addressed to the blockchain
or any packet on the network [5]. We assume the same attack
models employed by Alvarenga et al. [6], that describes attacks
on the blockchain, tenants and VNFs and, finally, attacks on
the network, which we review in the following.

Blockchain attacks prevent a transaction or a legitimate
block from being added to the blockchain. Our architecture
employs a Byzantine fault tolerant consensus protocol, such as
pBFT [7], that mitigates this type of attack. Transactions have
a signed hash to prevent corruption and tampering attacks.

Attacks on tenants or VNFs attempting to obtain orches-
tration information or impersonation of the target are not
possible, because all transactions are signed, and confidential
information is encrypted. If an attacker tries to modify the
blockchain using stolen key pairs, the attempt is logged. After
an incident is discovered, the victim can replace the stolen key
pairs, restoring security and preventing further damage.

Finally, we assume a redundant public network, such as
the Internet, which interconnects all participants to prevent
network attacks that isolate a single tenant, a group of tenants,
or a group of VNFs from the network.

III. THE PROPOSED SYSTEM

The proposed architecture, shown in Figure 1, ensures secu-
rity in the creation of network slices using two components: a
multi-domain orchestrator (MdO) and a distributed application
(DApp). The MdO provides the management life cycle of
a network service composed and managed across multiple
administrative domains [8]. Tenants and service providers
securely demand, negotiate, and create network slices using the
multi-domain orchestrator. The orchestrator uses the service
providers’ infrastructure to create network slices that meet ten-
ant demands. The proposed architecture includes a reference

monitor that checks key performance indicators to validate
compliance with SLAs. The distributed application executes
smart contracts that automatically validate compliance with
established service level agreements. Thus, the distributed
application records all operations in the SLA management life
cycle in an immutable and distributed way in the blockchain,
providing transparency, non-repudiation and traceability.

Tenant users rely on the distributed application to find
service providers interested in instantiating the demanded
network service. Tenants record key performance indicators
publicly in the blockchain as a form of reverse auction
announcement to find providers. Service providers use map-
ping techniques to transform key performance indicators into
service chains. Thus, service providers who wish to participate
in the auction can plan a network slice that meets the key
indicators and bid on the reverse auction. A bid consists of
the proposed SLA, the offered service price, the financial
restitution from the provider, and a fine from the tenant in case
of non-compliance with the service levels. The tenant checks
the blockchain, selects the service provider with the best bid,
and generates a symmetric key to guarantee confidentiality
when exchanging messages with the selected provider.

Service providers use the distributed application to verify
demands and to offer network slices. The reliable and dis-
tributed log of requests in the blockchain allows for easy
and quick verification of tenants’ requests. After being se-
lected and having established the contract with the tenant, the
provider uses the multi-domain orchestrator (MdO) to create
the service function chain. The orchestration module records
the commands in the blockchain in an encrypted way using
the distributed application, guaranteeing confidentiality, non-
repudiation, and transparency to the tenant user.

Our proposed architecture also defines a reference mon-
itor that communicates with the instantiated service chains,
carrying out active and passive measures. Thus, the monitor
performs evaluations at random times to the key performance
indicators (KPIs) of the allocated chain and records the
obtained values in the blockchain. At least three instances
execute the reference monitor: on the provider’s side, the
customer’s side, and an exempt third party, to measure the
KPIs and even verify a measurement tampering by any of
the parties. A smart contract receives the set of measurements
and uses a predetermined policy to verify if they correspond
to the SLA previously agreed to decide to punish or not
the service provider or the tenant. Different KPIs can be
introduced over time through updates to smart contracts with
more agility and with less operational (OPEX) and capital
(CAPEX) expenditure impact compared with a system not
using smart contracts. We assume that the monitor is secure
and tamper-proof by both the provider and the tenant. The
implementation of this secure monitor, will be the goal of
future work exploring technologies such as Intel software
guard extension (SGX)2.

2Available at https://www.intel.com.br/content/www/br/pt/architecture-and-
technology/software-guard-extensions.html



Fig. 1: The proposed architecture of the distributed network slice creation system. The multi-domain orchestrator accesses the
service provider module to create specific network slices, such as vehicle networks and mobile networks. The orchestrator logs
the SLA life cycle operations in the blockchain-based distributed application to provide non-repudiation and transparency.

A. The Proposed Message and Operation Scheme

We divide the flow of operations in the proposed system
into three phases: (i) reverse auction, (ii) service functions
orchestration, and (iii) SLA verification. The three parts of
the system cover all stages of an SLA management life cycle.
All operations generate signed transactions recorded in the
blockchain, ensuring transparency and non-repudiation.

The reverse auction phase advertises a service demand and
selects the service provider to create the service functions
chain to serve the tenant through an end-to-end service. We
adopt the message notation used by Castro and Liskov [7],
where a signed transaction t from a node j is denoted by
〈t〉σj . Thus, a tenant i interested in receiving a service issues a
reverse auction request transaction, TAreq

i , to the smart contract
informing the desired KPIs and starting a reverse auction
in the blockchain, defined as T

Areq
i = 〈IDauc,KPI, tout〉σi

,
where the IDauc field is a unique identifier for the transaction
that initiated the reverse auction, the KPI field is the set of

key indicators of desired performance, and τout is the reverse
auction timeout.

Service providers can easily verify service requests by con-
sulting the blockchain and can bid on the active auctions. We
employ a two-phase bidding to promote a privacy-preserving
auction and avoid last-minute bids from malicious providers.
In the first phase, each provider generates a secret key SKA

to be used exclusively for the auction and issues an encrypted
bid transaction. Providers issue a bid transaction TBresp

j , defined
as TBresp

j = 〈IDauc,EncPKA
(Vb), tP , CP 〉σj

, where the IDauc
field identifies the reverse auction; the EncSKA

(Vb) field is
the encrypted bid amount using the generated secret key
SKA offered by the provider SPj ; the tP field defines a
minimum threshold for service levels, such as throughput and
latency, that the service provider j (SPj) must comply with;
and the CP field defines the financial restitution or penalty
in case of breach of contract. When issuing the first bid,
the smart contract blocks a value Vstake as a guarantee of



the real intention to proceed with T
Bresp
j . The value Vstake

is agreed among the participants in the blockchain network
initialization. The amount is returned to the provider SPj after
the confirmation of the orchestration transaction TO

σj
or after

another participant has won the auction. If the provider does
not honor the promised TO

j , the value Vstake is credited to the
tenant i. In the second phase of the auction, providers reveal
their generated auction key by issuing a reveal transaction
T revj = 〈IDauc, SKA〉σj . Thus, every participant can easily
verify the winner of the reverse auction without intermediaries.

Fig. 2: Sequence diagram of the proposed system showing all
the steps and proposed phases.

The service function orchestration phase records the or-
chestration of service chains to provide transparency to ten-
ants and service providers. The tenant i selects the winning
service provider from the bids in the reverse auction and
records the agreed service levels by issuing a T SLA

i trans-
action, defined as T SLA

i = 〈IDbid〉σi
, where the IDauc field

identifies the transaction that started the auction. After issuing
this transaction, the service provider SPj sends a message
MO = (IDSLA, CO), containing the transaction identifier
IDSLA and the orchestration command CO. The orchestration
module checks the transaction IDSLA in the blockchain and
passes the command CO to NFV-MANO to create the service
chain. The module then encrypts the command CO using
a secret key SKij shared with the tenant i and generates
the cipher co = EncSKij (CO). Finally, the module issues
an orchestration transaction TO

σj
to register the command in

the blockchain. The orchestration transaction is defined as
TO
j = 〈IDSLA, co〉, where the IDSLA field is the identifier

of the corresponding SLA transaction, and the co field is the
orchestration command encrypted using the secret key SKij

shared between the tenant and service provider. We encrypt
the command to guarantee the confidentiality of the functions
used by tenant i while ensuring transparency to the parties.
When issuing TO

j , the service provider receives the payment
Vb for the service offered. The Vb value is blocked from the
tenant’s account when the tenant issues the transaction T SLA

i

to prevent malicious behavior that results in non-payment.

Service function chains in scenarios with multiple admin-
istrative domains often use functions instantiated in com-
peting domains. Our proposed orchestration phase includes
access control to prevent abuse of domain resources. Service
providers register resource quotas that each of the other
domains can use to orchestrate services in the blockchain when
entering the network. Thus, each time a provider uses the
infrastructure of another domain to host a network function,
the orchestration contract automatically removes the number
of resources used from the quota allocated to that domain.

The service level verification phase registers in the
blockchain the performance measures of the service chain
obtained at random times. A smart contract receives the
measurements and compares them with the SLA previously
registered with the SLA transaction T SLA

i and checks if there
is a measurement less than the registered threshold tP . The
contract automatically punishes the service provider in CP if
the provider fails to comply with the agreed service levels or
issues a fine to the tenant when the tenant is the offender. We
define the transaction TRM

k sent to the smart contract by the
reference monitor as TRM

k = 〈IDSLA,m〉, where the IDSLA
field is the identifier of the transaction in which the blockchain
register the service levels and the m field is the set of measures
for the KPIs in the service chain.

Figure 2 shows the complete sequence diagram of the
proposed system, detailing the steps. The reverse auction phase
covers the Service Providers discovery phase, given that the
tenant Ti discovers the provider SPj that will provide the
service. The transaction TSLAi covers the definition of SLA
and the agreement establishment, once the tenant and the
service provider, Ti and SPj , sign the service levels and
the punishment model for breach of contract. The reference
monitor verifies the service levels, covering the SLA violations
monitoring. Finally, the smart contract verifies the set of mea-
surements and applies the SLA penalties and may terminate
the SLA. Thus, our proposed system secures the complete SLA
lifecycle by registering all the operations in the blockchain.

IV. PROTOTYPE DEVELOPMENT AND EVALUATION

We develop and implement a prototype of the proposed
system3 using the open-source platform Hyperledger Fabric
v2.0 [9] for the development of permissioned blockchain
using the Raft consensus [10]. The organizational aspect of
Hyperledger Fabric fits the scenario of multiple administrative
domains of the proposal [11]. Although the prototype uses
Hyperledger Fabric, the proposed system is agnostic to a
specific blockchain and can be implemented on other platforms
that support smart contracts. An i7-8700 3.20 GHz CPU with
32 GB RAM and 6 cores runs the network nodes as Docker
containers. A self-executing smart contract written in Go
implements the proposed transaction logic. The cryptography
module uses the Rivest-Shamir-Adleman (RSA) public key
cryptographic system with a key size of 2048 bits. We imple-

3The implementation is available at https://github.com/GTA-UFRJ-team/
NFVIaaS-Distributed-Orchestration.



ment the digital signature system using the public key cryptog-
raphy #1 standard probabilistic signature scheme (PKCS#1-
PSS) and advanced encryption standard (AES) symmetric
encryption using the counter mode (CTR) as the operation
mode. The results present a 95% confidence interval.

The first experiment evaluates the time added by the system
in the provisioning of VNF chains. This time is the total
duration of the step in which the tenant creates a secret key
and sends it to the provider (sendSecretKey - #6) and the
step in which the service provider encrypts the orchestration
command (MO - #7). The experiment sends a 32-byte key in
the Message 6 and a 64-byte instruction in the Message 7.
Figure 3a shows that the additional delay of the two proposed
steps is around 0.5 second, a negligible increase in time for
the participants. The overhead is insignificant compared to the
high latency of orchestrating the service chain [12].

The second experiment of the cryptography module eval-
uates the time to encrypt a message with the message size
using AES256 symmetric key cryptography. The experiment
verifies the overhead caused by encryption time in the message
exchange from the service provider to the tenant. As the
messages exchanged do not have a fixed size, the experiment
varies from 1 kB to 16 kB to consider configuration messages
of complex VNF chains. Figure 3b shows that for a 16 kB
message, the overhead is less than 0.35 ms, a small value
when compared to the message delivery time.

The third experiment verifies the impact of the orches-
tration instruction size on the transaction throughput. Ser-
vice providers record the orchestration instructions in the
blockchain through the orchestration module. The experiment
considers that more complex operations, such as instantiating
functions in different domains, imply longer instructions. The
scenario considers eight clients in the blockchain that issue
100 orchestration transactions each, acting as service providers
registering VNF instantiation commands. Figure 3c shows
that the proposed contract is agile and records hundreds of
instructions even with more complex instructions, reaching
117 transactions per second up to 256 B. Our proposed system
performs similarly to other proposals using the same consensus
configuration [13], [11] and does not affect the performance
of the consensus mechanism.

The final experiment of the distributed application assesses
the growth of the blockchain by varying the instruction size.
Figure 3d shows that the growth of the blockchain is stable
with instructions up to 256 B when it starts to grow more
significantly. Except for specific scenarios, orchestration com-
mands on popular platforms are no more than a few dozens
of bytes [14]. Therefore, blockchain growth is slow in the
majority of use cases.

V. RELATED WORK

Selecting service providers to provide the necessary infras-
tructure to support VNFs is the first step in orchestrating
service chains. An efficient way for tenants to discover service
providers is through auctions and electronic markets. Gu et
al. develop an electronic auction for the provision of service

function chains (SFC) in a data center [15]. In the authors’
proposal, service providers are auctioneers who sell service
chains to users who act as bidders. Zhang et al. propose
a stochastic auction mechanism to provide pricing for on-
demand service chains to service providers [16]. The proposed
auction mechanism is centralized, which makes auditability
difficult for tenants. The blockchain provides an immutable
distributed record to auctions and electronic markets [17].

Several works apply blockchain technology to ensure secu-
rity in virtual network environments with multiple administra-
tive domains. Zanzi et al. propose NSBchain, a blockchain-
based framework that supports end-to-end network slice re-
source brokerage [18]. NSBchain logs the resource availability
of intermediary brokers in the blockchain and employs smart
contracts to manage slice requests from tenants. Nevertheless,
the framework does not include the management of SLAs
among participants and is restricted to distributed resource
brokerage. Rebello et al. present BSec-NFVO, a blockchain-
based system to ensure security in the orchestration of virtual
networks [14]. BSec-NFVO stores the VNF orchestration
commands in the blockchain, guaranteeing transparency of
operations. The authors’ proposal, however, does not include
important steps in the provision of VNFs, such as the discovery
of service providers, access control during VNF orchestration
and SLA monitoring. Rosa and Rothenberg present a frame-
work for orchestrating multi-domain services using distributed
blockchain-based applications [8]. The authors present a use
case in which the blockchain is used to store the access
permissions of each domain. A smart contract verifies the
stored access permissions to ensure access control in the VNF
orchestration. The proposed access control, however, is not im-
plemented by the authors, and the proposal does not consider
all stages of an SLA management life cycle. Balachandran
et al. [2] propose EDISON, a system for blockchain-based
authentication and access control to ensure the management
and orchestration of software defined networks (SDN). EDI-
SON uses smart contracts to control tenant access to network
elements, and session keys to ensure confidentiality and for-
ward secrecy in communication between entities. The proposal
guarantees security by encrypting all traffic between tenant
and network element and transparency by logging packets in
the blockchain, but requires a large storage space to support
the complete blockchain. Furthermore, the proposal assumes
that tenants and service providers know each other in advance,
which does not meet the life cycle requirements of an SLA.

Unlike the previous work, we propose an efficient and fast
system to provide orchestration of VNFs in a distributed and
secure manner considering all stages of an SLA lifecycle.
The system logs all provider operations in the blockchain to
provide complete transparency to tenants.

VI. CONCLUSION

Network slicing provides customized end-to-end services to
tenants by chaining virtual network functions instantiated in
multiple competing domains without mutual trust. Therefore,



(a) Evaluation of the time increased by steps 6 and 7 of the proposed
system, divided by cryptographic operations.

(b) Growth of the encryption time using AES256 in relation to the
message size.

(c) Impact of the instruction size in the blockchain throughput. (d) Blockchain growth with an increasing instruction size.

Fig. 3: Performance evaluation of the proposed system.

providers and tenants must identify and hold malicious behav-
ior, whether instantiating the service chain or complying with
the service level agreement. This paper proposes a blockchain-
based system to guarantee a secure orchestration of network
slices quickly and distributed in environments with multiple
administrative domains. The proposed system fulfills all life
cycle requirements for managing an SLA while recording the
orchestration operations in the blockchain to provide trans-
parency, traceability, and non-repudiation. The performance
evaluation results of a developed prototype show that the
system records orchestration operations quickly, achieving
over 100 transactions per second. Moreover, the cryptographic
scheme used guarantees confidentiality in an agile way without
losing transparency of operations between users.
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