
Brazilian natural disasters integrated into
cyber-physical systems: computational challenges

for landslides and floods in urban ecosystems
Alessandro Santiago dos Santos, Alessandra C. Corsi,

Igor C. Teixeira, Vagner L. Gava,
Filipe A. M. Falcetta, and Eduardo S. de Macedo

Institute for Technological Research of the São Paulo State
São Paulo, SP, Brazil

Email: {alesan,accorsi,igort,vlgava,falcetta,esmacedo}@ipt.br

Caio da S. Azevedo,
Karlson T. B. de Lima,

Kelly R. Braghetto
University of São Paulo

São Paulo, SP, Brazil
Email:{caio.aze,ktellicio,kellyrb}@usp.br

Abstract—Natural disasters cause a high impact in society,
resulting in human and economic losses, so much so that
increasing the efficiency in monitoring these phenomena becomes
a necessity. The integration of cyber-physical systems and their
IoT devices, connectivity, machine learning, and Big Data can
help to achieve this efficiency. This paper presents key points
of the phenomenology of these processes, with challenges and
opportunities for applied computing in urban environmental
studies in Brazil, as well as investigates studies and techniques
that have been used to monitor landslides and floods.

Index Terms—Environmental monitoring, IoT, Machine Learn-
ing, Smart Environment

I. INTRODUCTION

Risk management has gone through substantial changes
with technological advances promoted by digital transfor-
mation, using new ways to analyze large volumes of data
and Artificial Intelligence in an Internet of Things context.
New perspectives for the landslides and floods monitoring
are related to the use of cyber-physical systems approach,
which seeks to integrate the physical environment into the
computational world, using the computational tools available
to overcome the challenges in the context of urban natural
disasters.

Natural disasters are events resulting from natural processes
that cause serious damage and loss to a community, whose
impacts exceed the local capacity to restore normality. Exam-
ples of natural disasters are earthquakes, hurricanes, tsunamis,
floods, droughts, fires, and mass movements. In Brazil, among
these events, floods and landslides are the most recurrent in
urban environments and those that cause the most catastrophic
events to society.

Cyber-physical systems provide an intuitive interface, a
human-to-human, man-to-machine, and machine-to-machine
interaction mechanism, by facilitating continuous network
connectivity and refined application control by users, which
can improve resilience to natural disasters and also facilitate
prediction and mitigation of these events [1].

This paper aims to present the contextualization of the chal-
lenges for real-time monitoring and prediction of landslide and

flood events in Brazil, providing support to decision makers.
It also presents phenomenology key points of these types of
disasters and discusses the application of machine learning and
Big Data computational techniques in this context.

II. PHENOMENOLOGY AND URBAN ENVIRONMENTAL
MONITORING

Monitoring is one of the most popular topics today due to
the studies and development of high performance computa-
tional applications. This work explores the urban phenomeno-
logical study, regarding to landslides and floods caused by
human and nature action. Space-time issues are prerequisites
in any of the environmental assessments presented.

A. Landslides

The generic term mass movements includes a variety of
movements of instability of soil masses, rocks or debris, gener-
ated by the action of gravity on sloping terrains, having water
infiltration as the main triggering factor, mainly from rains.
There are several national and international classifications
related to mass movements (creep, slides, falls, flows). This
work adopts the classification proposed by Augusto Filho [2]
and focus on landslide processes.

Landslides are important processes in the slope evolution,
characterized by rapid movements (m/h to m/s), with well-
defined lateral limits and depth (surface of rupture). Stabilized
volumes can be easily identified or at least inferred. They may
involve soil, saprolite, rock, and deposits. They are subdivided
according to the rupture mechanism, geometry, and mobilized
material.

There are several types of landslides, e.g. translational, ro-
tational, and wedge. The geometry of these movements varies
according to the existence, or not, of structures or weaknesses
in the moved materials that condition the formation of the
surface ruptures.

Effective agents are elements directly responsible for trig-
gering landslides, which are differentiated in preparatory
(rainfall, erosion by water and wind, freezing and melting,



Fig. 1. Planar landslides in the mountainous region of the State of Rio de
Janeiro. Source: Sirden-CTGeo-IPT.

variation in temperature and humidity, chemical dissolution,
action of sources and springs, fluctuation in the level of lakes,
tides, and groundwater, animal and human action, including
deforestation) and immediate (intense rain, vibrations, ice
and snow melting, erosion, earthquakes, waves, wind, human
action, etc.).

Other natural conditions of great importance are the intrinsic
characteristics of the natural massif (rocky and earth), the
vegetation cover, and the action of rainwater (saturation and/or
elevation of the water table, generation of neutral pressures and
percolation forces, distribution of rain over time), in addition
to the processes of rock alteration and erosion of the altered
material.

Landslide outbreaks can also be induced by anthropic
action, e.g. the execution of inadequate cuts and landfills, the
concentration of rainwater and wastewater, and the removal
of vegetation. Often, induced landslides mobilize materials
produced by the occupation itself, involving soil masses of
varying dimensions, garbage, and debris.

1) Computational challenges and opportunities on land-
slides: The immediate detection of landslide activity provided

by real-time systems can be crucial to save human lives and
protect property. Traditional field observations, even when
carried out regularly, are not able to detect changes at the
moment when slides occur. Moreover, active landslides can be
dangerous for field work and often occur during rain, when
visibility can be poor.

The continuous provision of data by remote real-time moni-
toring leads to a better understanding of the dynamic behavior
of landslides, which allows professionals to create more ef-
fective models to prevent or stop this kind of event. Landslide
monitoring is often expensive and most surveillance systems
require installation by specialists. The advantage is that the
systems that detect these movements can be coordinated with
warning systems [3].

Nowadays, for urban environments, monitoring for land-
slides focuses on rain data. In Brazil, the National Center
for Monitoring and Alerting of Natural Disasters (or Centro
Nacional de Monitoramento e Alerta de Desastres Naturais
– CEMADEN) develops a pilot project in nine risk areas,
located in the municipalities of Nova Friburgo-RJ, Teresópolis-
RJ, Petrópolis-RJ, Angra dos Reis-RJ, Mauá-SP, Santos-SP,
Blumenau-SC, Recife-PE, and Salvador-BA, with the instal-
lation of humidity, pluviometry, and displacement sensors
through Robotic Total Station (RTSs).

Traditional monitoring systems are very expensive, which
in Brazil represents an impediment to massive installation in
risk areas, since most municipalities cannot afford to maintain
these systems. In addition to the financial issue, it is usual
for equipment installed in risky areas, especially those in
precarious settlements, to suffer from depredation. Thus, the
challenge is related to the selection of low-cost sensors,
installation, transmission, and data analysis in order to monitor
the slopes in real time with the same quality as complex
systems.

B. Floods

Flooding processes represent one of the main types of
natural disasters, with floods in Brazil representing approx-
imately 60% of all disaster records, of which 40% are only
in the Southeast region [4]. The absence or inefficiency of
drainage systems tends to increase the occurrence frequency,
the magnitude, and the range of the floods.

The natural climatic and geomorphological conditions of a
given location (e.g. pluviometry, relief, size and shape of the
basin, and hydraulic gradient of the river) are determinants
in the frequency of occurrence, typology, and dynamics of
surface runoff, and the term flooding covers several types
of hydrometeorological processes that are part of the natural
dynamics.

Floods can be triggered by fast and heavy rains, intense
long-term rains, melting in the mountains, and other climatic
events such as hurricanes and tornadoes, being intensified by
environmental changes and/or anthropic interventions, such as
soil waterproofing, river engineering, and the reduction in the
flow of channels due to constructions or siltation.



Fig. 2. Schematic profile of the flood and based flooding elevation.
Source: [6].

The waterproofing of large areas generates, as consequence,
reduction in the absorption of rainwater by the soil, thus
altering the availability of water resources and increasing
the surface runoff that interferes with the city’s supply and
contributes to the elevation of the water level in the urban
drainages. Furthermore, the urban occupation occurs after the
removal of the vegetation cover, which potentializes the effect
of soil loss and ends up causing the silting up of the water
courses, which may cause a reduction of up to 80% of the
original flow capacity of the urban drainages [5].

Rainwater, when reaching a watercourse, causes the increase
of the flow for a certain period. Sometimes, during the flood
period, the flow rates reach such magnitude that they can
overcome the discharge capacity of the drainage channel and
overflow into marginal areas not normally occupied by the
waters. This overflow characterizes a flood and the marginal
area, which periodically receives these excess water, is called
the river’s floodplain. Figure 2 presents a schematic sketch of
the flood dynamics in a watercourse.

Another factor that induces the process is the undersizing
of the drainage crossing structures (galleries, bridges, pipes,
etc.) combined with the drainage silting up. These structures
generally impede the flow, delaying the flow of water. When
associated with solid waste discharged into drains, the process
tends to be more intense, with floods frequently occurring due
to urban growth. In this context, flooding also occur, which
are “momentary accumulations of water in a given area due to
deficiency in the micro-drainage system, which may or may
not be related to processes of a fluvial nature” [6].

1) Challenges and computational opportunities on floods:
Investing in solutions for monitoring watercourses and rainfall
often involves substantial financial investments, precluding
municipalities from implementing these technological solu-
tions. For appropriate monitoring, it is necessary to measure
rainfall, water flow and, mainly, water level of rivers and urban
streams. The greater the number of installed sensors, the better
the analysis and, thereby, the quality of the alert system for
the population.

In Brazil, some cities, Civil Defense agencies, the National
Water Agency, and CEMADEN have been using platforms to

collect the level and flow of rivers, rain gauges, meteorological
radars, and mathematical models. The city of São Carlos-SP
has a system of submerged sensors installed in the main water
courses that are connected to each other by wireless network.
However, most level and flow measurement systems rely on
manual data collection.

Thus, there are challenges associated with the implemen-
tation of these systems, since depending on the size of the
hydrographic basin, the portions of the headwaters may face
communication problems. Other difficulties are the power
supply in these systems, the validation of data from low-cost
sensors, as well as the prediction of events in real time for
issuing alerts.

C. Phenomenology and challenges

Based on the presented phenomena and the computational
challenges that need to be faced to carry out the digital
transformation in urban events monitoring, Table I summarizes
the main triggering and predisposing agents, while Table II
presents the main parameters to be monitored in each type of
phenomenon.

III. CYBER-PHYSICAL APPROACH AND COMPUTATIONAL
TECHNOLOGIES APPLIED TO NATURAL DISASTERS

Cyber-Physical Systems – CPSs, integrate computing, com-
munication and storage resources with monitoring and control
of entities in the physical world that need to be executed safely,
efficiently and in real time. CPSs consist of interconnected
objects, incorporated with sensors, which collect information
from the physical world, and actuators, which act on the
environment. These objects are integrated into an intelligent
decision system, which represents the cyber world [7].

Due to their characteristics and properties, CPSs are used
in a wide range of fields, such as smart factories, emergency
response, environmental monitoring, building automation, crit-
ical infrastructure, healthcare and medicine, intelligent trans-
port, and service robots.

A cyber-physical system can simplify modeling and mitigate
natural disasters because its architecture has networks of
sensors and actuators that allow to reduce and/or remedy the
impacts caused by these events. In this context, the physical
world comprises the environmental events to be supervised
or controlled. CPSs work with distributed information and
communicate with the target environment through sensors and
actuators that interact with each other and convert other forms
of energy into electrical signals and vice versa [1].

The approach of using the cyber-physical concept for envi-
ronmental monitoring goes through several phases, incorporat-
ing in each phase the use of IoT devices and their connectivity,
as well as more appropriate computational technologies for
complex data analysis, such as machine learning and Big
Data. The next sections explore each of these technologies,
associating them with studies and research on the problem of
landslides and floods.



TABLE I
MAIN TRIGGERING AND PREDISPOSING AGENTS OF THE PHENOMENA

Triggering or predisposing agent

Anthropic intervention Rain Hydrographic basin Geological and geotechnical conditionings

Phenomenon Landslides X X X
Floods X X X

TABLE II
MAIN PARAMETERS FOR MONITORING

Parameters

Movement Pluviometry River flow and level Soil moisture Temperature,
Air humidity, Atm. pressure

Phenomenon Landslides X X X
Floods X X X

A. Internet of Things – IoT

The Internet of Things is a network of objects that commu-
nicate and interact autonomously over the Internet, allowing
the monitoring and management of these devices via software
to increase the efficiency of systems and processes, enable new
services and improve people’s quality of life. In the context of
this paper, IoT devices are those that can be used to monitor
parameters relevant to the phenomenology of natural disasters,
both for landslides and floods.

1) IoT on landslides: Brazil has a national network for
monitoring natural disasters, the National Center for Moni-
toring and Alerting of Natural Disasters (Centro Nacional de
Monitoramento e Alerta de Desastres Naturais - CEMADEN),
whose mission is to carry out the monitoring of natural threats
in areas at risk in Brazilian municipalities susceptible to the
occurrence of natural disasters. CEMADEN uses a network
of calibrated sensors, with well structured maintenance and
operation. However, the center still faces challenges such as
increasing monitored areas, increasing monitoring resolution,
and reducing process costs through the use of low-cost sensors.

Mendrot and Stringhini [8] made a systematic review that
maps the main types of sensors used in the monitoring of
landslides (Figure 3), as well as the types of connectivity,
energy sources, and hardware used in the same application
domain.

2) IoT on floods: The study presented in [9] provides
an application of wireless sensor networks and geospatial
services to monitor the level of the rivers that run through
the city of São Carlos-SP and to use the data provided by the
sensors to detect floods. This type of approach has become
important due to the constant occurrence of floods in Brazil,
as well as technological advances in the detection of floods in
urban rivers, helping to save lives and avoid material losses.
The proposed model uses modules Xbee that communicate
in the IEEE 802.15.4 ZigBee standard, providing less energy
consumption, smaller physical size and greater communication
range in each node.

B. Connectivity

There is a lot of interest in developing effective natural
disaster management systems and for that, the information
must come from heterogeneous and interconnected sources. In
this context, IoT technologies using wireless communication
have been widely used to monitor natural disasters in remote
and inaccessible areas. In this sense, we can categorize com-
munication according to the way information flows from the
sensor node to the integration with the edge and the digital
infrastructure.

Two categories of communication are more frequent: coop-
erative and non-cooperative. In the cooperative communication
model (device to device – D2D), a sensor node communicates
with other nodes to obtain the information of interest, in
a multi-hop retransmission scheme. In the non-cooperative
model, the data flows without the need to use other nodes.
The two models are illustrated in Figure 4.

D2D communication has also been used in natural disaster
scenarios to manage the radio spectrum and energy consump-
tion, providing high quality of experience (QoE), and better
quality of service (QoS). In disasters, the effective use of
radio resources is extremely important, since it aims to serve a
large number of affected people, collecting information from
different nodes in the areas of the disaster. In this context, D2D
communication is an effective solution, allowing an efficient
allocation of the spectrum without adding any further delay in
the upload of information for the users’ devices [10].

Non-cooperative communication is the most frequent model
for implementations, since its devices are more easily offered
by the market and also because it benefits from existing in-
frastructure in an urban environment. In this scenario, cellular
and LPWAN technologies stand out.

1) Cellular communication: In an urban environment, cel-
lular communication is present almost throughout the Brazilian
territory, allowing the transfer of data in cellular technologies,
such as 2G (GSM, DAMPS, PDC), 2.5G (GPRS), 2.75G
(EDGE), 3G (UMTS)/WCDMA, HSPA, HSUPA, EvDO), 4G
(LTE, LTEA), and 5G. M2M (Machine-to-Machine) connec-
tivity is referenced in the cellular context or MTC (Machine-



Fig. 3. Types of IoT sensors used to monitor landslides in the projects analysed by Mendrot and Stringhini [8].

Fig. 4. IoT device connectivity models.

type Communication) within 3GPP (3rd Generation Partner-
ship Project) [11].

It is worth highlighting the perspectives of 5G sys-
tems that will bring crucial resources such as flexibility,
(re)configuration and network resilience and, therefore, will
play a fundamental role in improving communication in dis-
aster situations. Furthermore, in 5G, the network will support
the IEEE 802.21 standard (Media Independent Handover –
MIH), allowing seamless transfer between multiple available
networks without interruption. 5G networks are expected to
not only achieve much faster transmission throughput, but
also to support emerging use cases related to IoT, M2M
communication, transmission services, and rescue communi-
cation during natural disasters. 5G will meet these demands by
adopting new technologies, such as proximity services, where
devices communicate directly with each other, instead of
relying on carrier base stations that may have been destroyed
or damaged [10].

2) Low Power Wide Area Network – LPWAN: In the case
of natural disaster scenarios, usually remote and inaccessible,
there are IoT applications that require a wide coverage area,
long battery life, low bandwidth and low cost devices. To these

contexts, it can be well applied the technologies known as
Low Power Wide Area Network – LPWAN, which include
the Narrow-Band IoT – NB-IoT [12], the Low Power Wide
Area Network – LoRa WAN [13], Sigfox, the Random Phase
Multiple Access – RPMA, and Wi-Fi HaLow [14].

C. Machine Learning

The machine learning field studies the construction of
computer programs that learn (i.e., automatically improve their
performance) from data analysis. Machine learning techniques
have shown good results in recognizing patterns in the most
varied application domains, including those related to natural
disasters [15].

1) Machine learning applied to landslides: In order to
conduct a survey of applications of machine learning tech-
niques in the analysis of landslides and floods, searches for
scientific publications were carried out on the indexed bases
Web of ScienceTM Core Collection, from Clarivate Analytics,
and Scopus R©, by Elsevier. These searches were limited to
articles in English published between 2015 and 2020. For
each the phenomenon, a specific search string was used in
order to obtain the most relevant publications in each area. For



Fig. 5. Main machine learning techniques applied to landslides prediction.

landslides, the following search terms were used: landslide,
machine learning, prediction.

It was observed that, in the analyzed publications, machine
learning was used to identify landslide susceptibility maps,
as well as to make predictions. The algorithms used for
these purposes and their respective relative frequencies in the
selected publications were: Support Vector Machines (24%),
Random Forests (16%) [16], Neural Networks (16%), Logistic
Regression (12%) and Decision Trees (8%) [17], Bagging
(5%), Rotation Forests (4%), and others (AdaBoost, Naı̈ve
Bayes, MultiBoost, Radial Base Functions, Deep Learning,
Linear Regression – making 15%). Figure 5 shows the absolute
frequency of the algorithms in the analyzed works. Hybrid
learning models were also used, as in the work of [18] to
predict landslides time intervals.

For the application of machine learning techniques, both
in susceptibility mapping and prediction, environmental con-
ditions data from the regions of interest are necessary. In
the review carried out, there were identified 62 articles that
mention these data, being the most used: slope, lithology,
elevation, plan curvature, land use and occupation, distance to
roads, distance to rivers, profile curvature, topographic wetness
index, distance to faults and rainfall.

In Brazil, few studies have been found; the work of Bra-
gagnolo et al. [19], on the use of neural networks for mapping
the susceptibility of landslides, stands out. China is the main
reference about the subject, with 53 publications, followed by
Vietnam (25) and India (14).

2) Machine learning applied to floods: Mosavi, Ozturk and
Chau [20] carried out a systematic literature review to map the
state of the art of using machine learning to predict floods. The
review initially considered more than 6000 articles and then
selected among them the works in which the accuracy and
performance of at least two learning models were compared.
The selection resulted in 180 articles. The algorithms most
used in the selected works were Artificial Neural Networks
(ANNs), Multilayer Perceptron Networks, Adaptive Neuro-
Fuzzy Inference System (ANFIS), Wavelet Neural Network,
Support Vector Machines, Decision Trees, and Ensemble Pre-
diction Systems. Among these, the most used between 2008
and 2017, the period covered by the review, were the ANNs.

Only one of the publications selected in the review ( [21])
comes from Brazil. The work used ANNs, weather radars
and telemetric data to simulate and predict flash floods in

the hydrographic basin of the Tamanduateı́ River, a densely
urbanized area in the metropolitan region of the state of São
Paulo.

In the studies analyzed in the review, there are forecasting
models for flooding for different periods, from short to long
term. Short-term forecasts, generally used in warning systems,
are made in real time or hourly, daily or weekly. Long-term
forecasts, on the other hand, are used more in public policy
management and have monthly, seasonal or annual intervals.
In the studies analysed, real-time forecasts are between 1h
and a few minutes in advance, while hourly forecasts precede
floods by 1h to 3h and, in some cases, by 18h to 24h. Daily
forecasts occur 1 to 6 days before the event. Monthly forecasts
can precede events by up to three months, for example.

The review carried by Mosavi, Ozturk and Chau (2018)
also identified four trends in the area’s literature that have
significantly contributed to improve the quality of flood pre-
dictions: (1) hybridization through the integration of different
learning algorithms and/or soft computing techniques, statisti-
cal methods and physical models (in contrast to pure learning
approaches); (2) the use of data decomposition techniques
to improve the quality of datasets and, consequently, the
accuracy of forecasts; (3) the use of sets of methods (ensemble
systems), to improve the generalizability of models and reduce
uncertainty in forecasts; (4) the use of optimization algorithms
to better adjust the parameters of the learning algorithms.

D. Big Data

Big Data technologies have become a key component in
research and development in the area of natural disaster
management and have been changing the way this type of
disaster is studied and treated. Big Data in this context mainly
refers to large volumes of data from different sources and
types, stored and processed efficiently to support the different
phases of disaster management (i.e., monitoring, detection,
post-disaster assessment, operational assistance in rescuing,
recovery and reconstruction of the affected areas) [22].

Among the types of data commonly used are: sensor data,
satellite images, unmanned aerial vehicle images, space-time
data collected in real time (such as GPS and telephone
call detail records), crowdsourcing, and government databases
(such as census and maps). Modern systems support reactive or
preventive decision-making to disasters through the integration
and multimodal analysis of data from heterogeneous sources.
To provide fast and accurate responses, based on updated data,
they rely on tools for processing data both in batches (such
as Hadoop and Spark, both from Apache) and in real time
(such as Apache Storm), generally executed on distributed
and scalable platforms, such as computational clouds [23].
Real-time processing is necessary, for example, in detecting
changes in the situation of the monitored locations, while
batch processing is useful, for example, in the extraction of
predictive models from historical and statistical data series.

Many recent studies also show that Volunteered Geographic
Information (VGI) contributes to improving disaster and risk
management, as it increases the density and coverage of data



collection. VGI are spatio-temporal data produced by ordinary
citizens, on social media platforms (such as Facebook and
Twitter), collaborative mapping (such as OpenStreet Map) and
crowdsourcing, or collective collaboration (such as Ushahidi)
[24]. From VGI, it is possible to extract information, for
example, on the location, severity, and extent of the events
that occurred and also to identify the resulting population
agglomerations and displacements. The systematic review by
Albuquerque et al. [25] maps works that employ VGI in
disaster management. An application example in Brazil was
presented by Horita et al. [24], who proposed a method
to combine data from precipitation radars and VGI in the
identification of flood areas in the city of São Paulo-SP.

As occurs with other types of systems that use Big Data, a
cyber-physical system for natural disaster management needs
to deal with data collection, transmission, storage, integration,
analysis, and visualization. The integration of data from dif-
ferent sources improve the quality and completeness of the
data, but before it can be made, the collected data needs to
be filtered (to remove anomalies) and standardized. Machine
learning techniques can be applied to automate error detection
and data integration [22].

To detect changes in the situation of the monitored locations
and enable the appropriate response actions, the cyber-physical
system needs to process the data in (almost) real time. Remote
sensing devices can collect data at high rates, but have
low energy autonomy, and storage and processing capacity
very limited in general. For this reason, the processing and
persistence of the large volume of generated data needs to be
done on a more robust and scalable computing platform, such
as the clouds, but with the non-negligible cost of transferring
the data to the platform. In this scenario, making efficient use
of the platform in order to guarantee low latency in detecting
events in real time is not a trivial problem.

Recent research [26], [27] indicates that using fog comput-
ing – that is, bringing data processing (or part of it) to devices
at the edge of the network – can be more advantageous than
focusing it all on devices in the cloud. The nodes in the fog
can, for example, handle data processing in real time and send
pre-processed data to nodes in the cloud [28]. The nodes in the
cloud, in turn, can take care of persistent storage of data and
processing (in batches) of historical data. With this approach,
data can be processed closer to where it is collected whenever
possible, thereby reducing network traffic and latency, among
other benefits.

IV. CONCLUSION

Cyber-physical systems can assist in predicting and mit-
igating landslide and flood events. The implementation of
a network of low-cost sensors connected in real time with
the intelligent prediction system, applying the appropriate
technique associated with the knowledge of the phenomena,
will allow the population to have information in advance,
safeguarding lives. As discussed in this paper, the development
of such systems involves several computational challenges
entangled with complexities of natural disasters. We can list

some lessons learned from the study of projects developed
in Brazil and related works, that must be adapted to local
conditions.

The low-cost sensors increases the possibilities of dis-
tributed monitoring. However, sensor networks usually need to
be installed in risk areas, with precarious settlement locations,
where they can be exposed to vandalism, also representing
a challenge for the energy supply and connectivity for these
sensors. Thus, their implantation can have high operational
costs and demands intensive planning. Moreover, community
engagement may be required to ensure their long-term main-
tenance. The machine learning techniques used today assist
in the identification and understanding of events, as well as
in their prediction. However, data with a high spatial and
temporal resolution of natural disasters are scarce, mainly from
low-cost sensors deployed in a distributed manner. Generating
data in these scenarios requires considerable effort, and learn-
ing models can lengthen the process with an intense step of
training the algorithms with simulations of the phenomena.

The cyber-physical system integrate the sensors in physical
environment into cybernetic environment, while IoT com-
ponents show data about the phenomena. Volunteered Ge-
ographic Information tools can be used to complement the
data under different perspectives and engage community to
collaborate, for providing efficient and rapid response during
and after the disasters. On the one hand, combining data from
different sources (e.g. sensors, social media, and government)
in a Big Data approach can improve the response of the cyber-
physical system. On the other hand, handling the large volume
and the heterogeneity of data in a timely manner is not trivial.

In a Nutshell, there are several challenges in the imple-
mentation of the cyber-physical system, from the selection of
sensors to the alert. To deal with these challenges, it is nec-
essary a multidisciplinary effort including professionals from
areas such as Geology, Hydrology, Engineering, Computing,
among others.
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Proc. of the 2019 Conferencia Ibero Americana Computação Aplicada
(IADIS), 12 2019, pp. 309–313.

[9] L. Degrossi et al., “Using wireless sensor networks in the sensor web
for flood monitoring in Brazil: Lessons learned,” in Proc. of the 10th
International Conference on Information Systems for Crisis Response
and Management (ISCRAM), 2013, pp. 1–5.

[10] A. Adeel, M. Gogate, S. Farooq, C. Ieracitano, K. Dashtipour, H. Lari-
jani, and A. Hussain, “A survey on the role of wireless sensor networks
and IoT in disaster management,” in Geological Disaster Monitoring
Based on Sensor Networks. Springer, 2019, pp. 57–66.
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