
Hey, Lumi! Using Natural Language for Intent-Based Network Management

Arthur S. Jacobs

UFRGS

Ricardo J. Pfitscher

UFRGS

Rafael H. Ribeiro

UFRGS

Ronaldo A. Ferreira

UFMS

Lisandro Z. Granville

UFRGS

Walter Willinger

NIKSUN, Inc.

Sanjay G. Rao

Purdue University

Abstract

In this work, we ask: what would it take for, say, a campus net-

work operator to tell the network, using natural language, to

“Inspect traffic for the dorm”? How could the network instantly

and correctly translate the request into low-level configura-

tion commands and deploy them in the network to accomplish

the job it was “asked” to do? We answer these questions by

presenting the design and implementation of LUMI, a new

system that (i) allows operators to express intents in natural

language, (ii) uses machine learning and operator feedback to

ensure that the translated intents conform with the operator’s

goals, and (iii) compiles and deploys them correctly in the

network. As part of LUMI, we rely on an abstraction layer

between natural language intents and network configuration

commands referred to as Nile (Network Intent LanguagE).

We evaluate LUMI using synthetic and real campus network

policies and show that LUMI extracts entities with high pre-

cision and compiles intents in a few milliseconds. We also

report on a user study where 88.5% of participants state they

would rather use LUMI exclusively or in conjunction with

configuration commands.

1 Introduction

Deploying policies in modern enterprise networks poses sig-

nificant challenges for today’s network operators. Since poli-

cies typically describe high-level goals or business intents, the

operators must perform the complex and error-prone job of

breaking each policy down into low-level tasks and deploying

them in the physical or virtual devices of interest across the

entire network. Recently, intent-based networking (IBN) has

been proposed to solve this problem by allowing operators

to specify high-level policies that express how the network

should behave (e.g., defining goals for quality of service, se-

curity, and performance) without having to worry about how

the network is programmed to achieve the desired goals [17].

Ideally, IBN should enable an operator to simply tell the net-

work to, for example, “Inspect traffic for the dorm”, with the

network instantly and correctly breaking down such an intent

into configurations and deploying them in the network.

In its current form, IBN has not yet delivered on its promise

of fast, automated, and reliable policy deployment. One of

the main reasons for this shortcoming is that, while network

policies are generally documented in natural language, we can-

not currently use them as input to intent-based management

systems. Despite growing interest from some of the largest

tech companies [7, 47, 62] and service providers [32, 38, 52],

only a few research efforts [4, 13] have exploited the use of

natural language to interact with the network, but they lack

support for IBN or other crucial features (e.g., operator con-

firmation and feedback). However, expressing intents directly

in natural language has numerous benefits when it comes

to network policy deployment. For one, it avoids the many

pitfalls of traditional policy deployment approaches, such as

being forced to learn new network programming languages

and vendor-specific Command-Line Interfaces (CLI), or intro-

ducing human errors while manually breaking down policies

into configuration commands. At the same time, its appeal

also derives from the fact that it allows operators to express

the same intent using different phrasings. However, the flexi-

bility makes it challenging to generate configurations, which

must capture operator intent in an unambiguous and accurate

manner.

In this paper, we contribute to the ongoing IBN efforts by

describing the design and implementation of LUMI, a new

system that enables an operator “to talk to the network", fo-

cusing on campus networks as a use case. That is, LUMI takes

as input an operator’s intent expressed in natural language,

correctly translates these natural language utterances into con-

figuration commands, and deploys the latter in the network to

carry out the operator’s intent. We designed LUMI in a modu-

lar fashion, with the different modules performing, in order:

information extraction, intent assembly, intent confirmation,

and intent compilation and deployment. Our modular design

allows for easy plug-and-play, where existing modules can

be replaced with alternative solutions, or new modules can be

included. As a result, LUMI’s architecture is extensible and

evolvable and can easily accommodate further improvements

or enhancements.

In addressing the various challenges above, we make the

following contributions:

Information extraction and confirmation. We build on

existing machine learning algorithms for Named Entity Recog-

nition (NER) [30] to extract and label entities from the opera-

tor’s natural language utterances. In particular, we implement

NER using a chatbot-like interface with multi-platform sup-

port (§3) and augment the existing algorithm so that LUMI

can learn from operator-provided feedback (§5).

Intent assembly and compilation. We introduce the Net-

work Intent Language (Nile), use it as an abstraction layer

between natural language intents and network configuration

commands for LUMI, and illustrate its ability to account for

features critical to network management such as rate-limiting

or usage quotas (§4). We also show how LUMI enables com-

pilations of Nile intents to existing network programming

languages (§6), such as Merlin [57] .

Evaluation. We evaluate (§8) LUMI’s accuracy in infor-

mation extraction, investigate LUMI’s ability to learn from

operator-provided feedback and measure both the compilation

and deployment times in a standard campus topology [5]. Us-

ing our own datasets consisting of synthesized intents as well

as real-world intents derived from network policies published

by 50 different campus networks in the US, we show that

LUMI can extract entities with high precision, learn from the

feedback provided by the operator, and compile and deploy

intents in less than a second.

User study. In addition to an in-depth evaluation of LUMI,

we also report our main findings of a small-scale user study,

with 26 subjects (§9). The study was performed to get feed-

back from subjects on the perceived value of using natural

language for network management with LUMI and soliciting

user feedback during the intent confirmation stage.

Prototype. We implemented our prototype of LUMI us-

ing a combination of tools and libraries (e.g., Google Di-

alogflow [28], Scikit-learn library [49]). The full implementa-

tion as well as all datasets used in our evaluation are available

on the project’s website [39].

Together, the results of our evaluation and user study show

that LUMI is a promising step towards realizing the vision

of IBN of achieving fast, automated, and reliable policy de-

ployment. By allowing operators to express intents in natural

language, LUMI makes it possible for operators to simply talk

to their network and tell it what to do, thus simplifying the

jobs of network operators (i.e., deploying policies) and also

saving them time. While promising, developing LUMI into a

full-fledged production-ready system poses new and interest-

ing challenges on the interface of networking and NLP, which

we detail in §10.

2 Lumi in a Nutshell

Figure 1 illustrates the high-level goal of LUMI with the intent

example “Hey, Lumi! Inspect traffic for the dorm" and shows

the breakdown of the workflow by which LUMI accomplishes

Client

[x :
 (ipDst =10.1.2.0/24)
-> .* dpi .*
]

Merlin program:

define intent id:

add middlebox(’dpi’)
for endpoint(’dorm’)

“Is this right?”

define intent id:

add middlebox(’dpi’)
for endpoint(’dorm’)

Nile intent:
{

}

middlebox: [’dpi’],
target: [’dorm’]

Tagged Entities:

Information
Extraction
(Section 3)

Intent
Assembly
(Section 4)

Intent
Deployment
(Section 6)

Intent
Confirmation
(Section 5)

“Hey, Lumi! Inspect
traffic for the dorm.”

Internet

GatewayDPI

(10.1.2.0/24)

Dorm
Config

Servers

Figure 1: The four modules of LUMI.

the stated objective. Below, we provide a brief overview of

the four key components that define this workflow (i.e., the

LUMI pipeline) and refer to the subsequent sections for a

more in-depth description and design choices of each of these

modules.

First, for the Information Extraction module (described in

Section 3), we rely on machine learning to extract and label en-

tities from the operator utterances and implement them using

a chatbot-like conversational interface. The extracted entities

form the input of the Intent Assembly module (described in

Section 4), where they are used to compose a Nile network

intent. Nile closely resembles natural language, acts as an ab-

straction layer, and reduces the need for operators to learn new

policy languages for different types of networks. Then, as part

of the Intent Confirmation module (described in Section 5),

the output of the Intent Assembly module (i.e., a syntactically-

correct Nile intent) is presented to the network operator, and

their feedback is solicited. If the feedback is negative, the

system and the operator iterate until confirmation, with the

system continuously learning from the operator’s feedback

to improve the accuracy of information labeling over time.

Finally, once the system receives confirmation from the op-

erator, the confirmed Nile intent is forwarded to the Intent

Deployment module. Described in Section 6, this module’s

main task is to compile Nile intents into network configura-

tion commands expressed in Merlin and deploy them in the

network. In Section 6, we also explain why we picked Merlin

as a target language over other alternatives.

3 Information Extraction

The main building blocks for LUMI’s Information Extraction

module are a chatbot interface as the entry point into our sys-

tem and the use of Named Entity Recognition (NER) [30] to

extract and label entities from the operators’ natural language

intents. Given the popularity of personal assistants, such as

Google Assistant, Amazon’s Alexa or Apple’s Siri, our goal

in providing a natural language interface for LUMI goes be-

yond facilitating the lives of traditional network operators and

seeks to also empower users with little-to-no knowledge of

how to control their networks (e.g., home users).

Even in the case of the traditional user base of network

operators, providing a natural language interface to interact

with the system benefits teams composed of operators with

different levels of expertise or experience. This type of inter-

face is particularly relevant in campus or enterprise networks

with small groups and in developing countries where network

teams are often understaffed and lack technical expertise. In

short, while deploying a policy as simple as redirecting spe-

cific traffic for inspection can be a daunting task for an inex-

perienced operator, nothing is intimidating about expressing

that same policy in natural language and letting the system

worry about its deployment, possibly across multiple devices

in the network.

Solving the NER problem typically involves applying ma-

chine learning (for extracting named entities in unstructured

text) in conjunction with using a probabilistic graphical model

(for labeling the identified entities with their types). Even

though, in theory, NER is largely believed to be a solved prob-

lem [43], in practice, to ensure that NER achieves its purpose

with acceptable accuracy, some challenges remain, including

careful “entity engineering” (i.e., selecting entities appropri-

ate for the problem at hand) and a general lack of tagged or

labeled training data.

Below, we first discuss the entity engineering problem and

propose a practical solution in the form of a hierarchically-

structured set of entities. Next, we describe in more detail

the different steps that the NER process performs to extract

named entities from a natural language intent such as “Inspect

traffic for the dorm" and label them with their types. Finally,

to deal with the problem caused by a lack of labeled training

data, we describe our approach that improves upon commonly-

used NER implementations by incorporating user feedback

to enable LUMI to learn over time.

Table 1: Hierarchical set of entities defined in Lumi.

Type Entity Class

Common

@middlebox, @location, @group, @traffic,

@protocol, @service, @qos_constraint,

@qos_metric, @qos_unit, @qos_value,

@date, @datetime, @hour

Composite
@origin, @destination, @target

@start, @end

Immutable @operation, @entity

3.1 Entity Selection

To ensure that NER performs well in practice, a critical aspect

of specifying the underlying model is entity engineering; that

is, defining which and how many entities to label in domain

application-specific but otherwise unstructured text. On the

one hand, since our goal with LUMI is to allow operators to

change network configurations and manipulate the network’s

traffic, the set of selected entities will affect which operations

are supported by LUMI. As discussed in more detail in Sec-

tion 4, LUMI-supported actions are dictated almost entirely

by what intent constructions Nile supports. At the same time,

we would like to consider a generic enough set of entities to

enable users to express their intents freely, independent of

Nile. Moreover, the selected set of entities should also allow

for easy expansion (e.g., through user feedback; see Section

3.4 below) while ensuring that newly added entities neither

introduce ambiguities nor result in unforeseen entries that

might break the training model.

On the other hand, the selected set of entities directly influ-

ences the trained model’s accuracy, especially if the entities

have been chosen poorly. Therefore, it is crucial to pick a

set of entities that is at the same time rich enough to solve

the task at hand and concise enough to avoid ambiguities that

might hamper the learning process. For instance, one common

source of uncertainty in network intents is highlighted with

the two examples “Block traffic from YouTube” and “Block

traffic from the dorms”. Here, the word ‘from’ appears in both

intents but is used for two different purposes. While in the

first example, it specifies a service, in the second example,

it defines a location. If we choose to tag both entities (i.e.,

“YouTube" and “dorms") with the same entity type (e.g., “lo-

cation") to avoid ambiguities, we lose information on what

is being tagged (i.e., service vs. location). However, if we

simply use different entities for both cases (e.g., “service"

and “location"), we generate an ambiguity (e.g., very similar

phrasings produce entirely different results) that causes the

accuracy of the NER model to decrease as similar example

intents are encountered (e.g., “Block traffic from Twitter").

With these design requirements in mind, we defined the set

of LUMI entities hierarchically and organized them into three

different categories: common, composite, and immutable en-

tities (see Table 1). Here, common entities form the bottom

of the hierarchy, comprise raw textual values, and largely de-

termine what LUMI can understand. For instance, the textual

values in the common entity class @middlebox are network

functions such as firewalls, packet inspection, and traffic shap-

ing. The hierarchy’s intermediate level consists of compos-

ite entities. The entities in this class do not have any inher-

ent nouns, verbs, or even synonyms associated with them;

they only establish a relationship between common entities

through the aggregation of prepositions. For instance, the

composite entity class @origin consists of composite values

such as “from @location” and “from @service”. Composite

entities help avoid the ambiguity problem mentioned earlier.

Finally, immutable entities make up the top of the hierarchy

and form the core of LUMI. In particular, while the entity

class @operation expresses the operations that Nile supports,

the entity class @entity consists of a list of LUMI-supported

common entities.

3.2 Entity Encoding: Bi-LSTMs

Figure 2 shows the overall NER architecture that we use in

LUMI and illustrates the critical intuition behind NER; that

is, finding named entities in unstructured text (e.g., “Inspect

traffic for the dorm" in Step 1 in Figure 2) and labeling them

Inspect fortraffic

word2vec

LSTML

LSTMR

word2vec

LSTML

LSTMR

word2vec

LSTML

LSTMR

word2vec

LSTML

LSTMR

the

B-MB O O B-TGT

Concatenation

Right-to-left LSTM

Left-to-right LSTM

Word Embedding

CRF Layer

Intent text

word2vec

LSTML

LSTMR

dorm

I-TGT

Build Dictionary { middlebox: [’dpi’], target: [’dorm’] }

Figure 2: The NER architecture with Bi-LSTM (see Sec-

tion 3.2) and CRF (see Section 3.3). The entity tags are ab-

breviated as MB for middlebox and TGT for target.

with their types (e.g., Step 6 in Figure 2). With respect to

the machine learning part of the NER problem, standard ap-

proaches leverage Recurrent Neural Networks (RNN) [34];

i.e., a family of neural networks that processes arrays of data

sequentially, where the output of one element is carried over

as input to the next element in the sequence. However, RNNs

typically require numerical inputs and not words. Therefore,

when applied in the context of our text processing problem,

each word of an intent that the operator expresses in natu-

ral language has to be first encoded into a numerical vector

before an RNN can process it. Rather than using one-hot en-

coding [30], a simple encoding scheme that represents each

encoded word as a vector of 0’s and 1’s, we rely in Step 2

(see Figure 2) on a more powerful approach that uses one-hot

encoded vectors of words as input to a word embedding al-

gorithm known as word2vec [44]. The word2vec algorithm

uses a pre-trained mini-neural network that learns the vocab-

ulary of a given language (English, in our case) and outputs

a vector of decimal numbers for each word. As a neural net-

work, word2vec can provide similar vector representations for

synonyms, so that words with similar meanings (e.g., ‘dormi-

tories’ and ‘housing’) have similar embedded vectors, which

in turn allows an RNN to process them similarly.

Before processing the output of word2vec, we need to

specify the type of RNN model in our architecture. The

Long Short-Term Memory (LSTM) model has been a popular

choice for text processing [25] as it can capture and carry over

dependencies between words in a phrase or intent (e.g., to

identify multi-word expressions). It also creates a context-full

representation of each processed word as an encoded array of

numerical values. However, to further enhance each word’s

context, in our LUMI design of the information extraction

stage, we rely in Step 3 on an enhanced version of LSTM, the

so-called Bi-LSTM model [16, 36]. The Bi-LSTM approach

yields the best results for the English language in a majority

of evaluated cases [63]. In a Bi-LSTM, a phrase is evaluated

by two LSTMs simultaneously, from left-to-right and from

right-to-left, and the outputs of the two LSTMs are then con-

catenated to produce a single output layer at a given position,

as shown in Step 4.

3.3 Entity Labeling: CRFs

The labeling part of the NER problem consists of using the

context-full encoded vectors of words to represent the “ob-

served” variables for a type of probabilistic graphical models

known as Conditional Random Fields (CRFs) [33], as shown

in Step 5. CRFs are a widely-used technique for labeling data,

especially sequential data arising in natural language process-

ing. Their aim is to determine the conditional distribution

P(Y |X), where X = {x1,x2, ...,xn} represents a sequence of

observations (i.e., encoded vectors of words in a sentence)

and Y = {y1,y2, ...,ym} represents the “hidden” or unknown

variable (i.e., NER tags or labels) that needs to be inferred

given the observations. CRFs admit efficient algorithms for

learning the conditional distributions from some corpus of

training data (i.e., model training), computing the probability

of a given label sequence Y given observations X (i.e., decod-

ing), and determining the most likely label sequence Y given

X (i.e., inference).

The technical aspects of the specific CRF model we use

in this work are described in detail in LUMI’s website [39]

and show the flexibility afforded by CRF models to account

for domain-specific aspects of labeling sequential data (e.g.,

accounting for the likelihood of one entity label being suc-

ceeded by another). However, irrespective of the specific CRF

model used, the method outputs as the most likely tag for a

given word the one with the highest probability among all

tags. Specifically, at the end of Step 5, the result of the NER

algorithm is provided in the form of named entities with IOB

tagging [30]. In IOB tagging, each named entity tag is marked

with an indicator that specifies if the word is the beginning

(B) of an entity type or inside (I) of an entity type. If a word

does not match any entity, then the algorithm outputs an (O)

indicator (for “outside”). Note that by using IOB tagging, it

is possible to distinguish if two side-by-side words represent

a single entity or two completely different entities. For in-

stance, without IOB-tagging, it would be impossible to tag

an operation like “rate limiting" as one single named entity.

Finally, we parse the IOB-tagged words resulting from the

NER model, build a dictionary with the identified entities, and

output it in Step 6 as the final result of LUMI’s Information

Extraction module.

3.4 NER and Learning

The described NER process is an instance of a supervised

learning algorithm. It uses a corpus of training data in the

form of input-output examples where input is an intent (i.e.,

phrase with named entities defined in LUMI and other words

or non-entities), and an output is the list of named entities with

IOB tagging (i.e., correct entity tags or labels). The primary

training step consists of both adapting the weights of the Bi-

LSTM model to extract the desired X vector and re-calculating

the conditional distribution P(X |Y) to infer the correct NER

tags Y and may have to be repeated until convergence (i.e.,

Steps 3-5).

Note that retraining can be done each time the existing

corpus of training data is augmented with new key-value pairs

or with existing entities used in a novel context (i.e., requiring

a new tag). A basic mechanism for obtaining such new key-

value pairs or for benefiting from the use of existing entities

in a novel context is to engage users of LUMI and entice their

feedback in real-time, especially if this feedback is negative

and points to missing or incorrect pieces of information in

the existing training data. By enticing and incorporating such

user-provided feedback as part of the Intent Confirmation

stage (see Section 5 for more details), LUMI’s design lever-

ages readily available user expertise as a critical resource for

constantly augmenting and updating its existing training data

set with new and correctly-labeled training examples that are

otherwise difficult to generate or obtain. After each new set

of key-value pairs is obtained through user feedback, LUMI

immediately augments the training corpus and retrains the

NER model from scratch.

In light of the hierarchical structure of our LUMI-specific

entities set, with user-provided feedback, we aim to discover

and learn any newly-encountered common entities. Moreover,

as the data set of common entities is augmented with new

training instances, the accuracy of identifying composite en-

tities also improves. With respect to the immutable entities,

since the entity class @operation dictates what operations

LUMI supports and understands, these operations cannot be

learned from user-provided feedback. However, given the

limited set of LUMI-supported operations, a relatively small

training dataset should suffice to cover most natural language

utterances that express these operations. As for the entity

class @entity, being composed of a list of LUMI-supported

common entities, it ensures that user-provided feedback can

be correctly labeled.

4 Intent Assembly

Using a chatbot interface with NER capabilities as the front

end of LUMI solves only part of the network intent refinement

and deployment problem. For example, if a network operator

asks a chatbot “Please add a firewall for the backend.”, the

extraction result could be the following entities: {middleboxes:

‘firewall’}, {target: ‘backend’}. Clearly, these two key-value

pairs do not translate immediately to network configuration

commands. Assembling the extracted entities into a structured

and well-defined intent that can be interpreted and checked

for correctness by the operator before being deployed in the

network calls for introducing an abstraction layer between

natural language intents and network configuration demands.

To achieve its intended purpose as part of LUMI, this ab-

straction layer has to satisfy three key requirements. First,

the operations supported by the abstraction layer’s grammar

have to specify what entities to extract from natural language

intents. Instead of trying to parse and piece together every pos-

sible network configuration from user utterances, we require

that a predefined set of operations supported by the abstrac-

tion layer’s grammar guide the information extraction process.

As a result, when processing the input text corresponding to a

network intent expressed by the operator in natural language,

we only have to look for entities that have a matching opera-

tion in the abstraction layer’s grammar, as those are the only

ones that the system can translate into network configurations

and subsequently act upon.

A second requirement for this abstraction layer is to allow

for easy confirmation of the extracted intents by the operators

by having a high level of legibility. We note that requiring con-

firmation does not burden the operators in the same manner

that requiring them to express their network intents directly

in the abstraction layer’s language would. For instance, it is

well-known that a person who can understand a written sen-

tence cannot necessarily create it from scratch (i.e., lacking

knowledge of the necessary grammar).

Finally, the abstraction layer is also required to allow dif-

ferent network back-ends as targets given that a wide range

of candidate network programming languages [6, 11, 21, 31,

46, 54, 57] exist, and none of them seem to have been favored

more by operators or industry yet. Using an abstraction layer

on top of any existing languages allows us to decouple LUMI

from the underlying technology, so we can easily change it if

a better option arises in the future.

4.1 Nile: Network Intent Language

To satisfy the above requirements, in our design of the In-

tent Assembly module (i.e., stage two of the LUMI pipeline),

we rely on the Network Intent Language (Nile) to serve as

our abstraction layer language. In a previous work [29], we

proposed an initial version of Nile that provided minimal op-

eration support for intent definition and focused primarily on

service-chaining capabilities. Here, we extend this original

version to cover crucial features for network management in

real-world environments (e.g., usage quotas and rate-limiting).

Closely resembling natural language, the extended version

of Nile has a high level of legibility, reduces the need for

operators to learn new policy languages for different types

of networks, and supports different configuration commands

in heterogeneous network environments. Operationally, we

designed this module to ingest as input the output of the in-

formation extraction module (i.e., entities extracted from the

operator’s utterances), assemble this unstructured extracted

information into syntactically-correct Nile intents, and then

output them.

Table 2: Overview of Nile-supported operations.

Operation Function Required Policy Type

from/to endpoint Yes All

for group/endpoint/service/traffic Yes All

allow/block traffic/service/protocol No ACL

set/unset quota/bandwidth No QoS

add/remove middlebox No Service Chaining

start/end hour/date/datetime No Temporal

Table 2 shows the main operations supported by our ex-

tended version of Nile, and the full grammar of Nile is made

available in LUMI’s website [39]. Some of the operations have

opposites (e.g., allow/block) to undo previously deployed in-

tents and enable capturing incremental behaviors stated by

the operators. Some operations in a Nile intent are mandatory,

such as from/to or for. More specifically, an operator cannot

write an intent in Nile without stating a clear target (using

for) or an origin and a destination (using from/to) when the

direction of the specified traffic flow matters.

To enforce the correct syntax of the assembled intent, we

leverage the Nile grammar to guarantee that the intent con-

tains the required information for correct deployment. If the

grammar enforcement fails due to the lack of information,

the system prompts the operator via the chatbot interface to

provide the missing information. Assume, for example, that

the operator’s original intent stated “Please add a firewall.“,

without providing the target of the intent. Since specifying a

target is required according to the Nile grammar, the module

will not attempt to construct a Nile program but will instead

interact with the operator to obtain the missing information.

4.2 Nile Intents: An Example

With Nile, we can express complex intents intuitively. For

example, an input like “Add firewall and intrusion detection

from the gateway to the backend for client B with at least

100mbps of bandwidth, and allow HTTPS only” is translated

to the Nile intent shown in Listing 1. The group function

is used as a high-level abstraction for clients, groups of IP

addresses, VLANs, or any other aggregating capacity in low-

level network configurations. Note that the IDs provided by

the operator must be resolved during the compilation process,

as they represent information specific to each network. This

feature of the language enhances its flexibility for designing

intents and serving as an abstraction layer. The example illus-

trates how Nile provides a high-level abstraction for structured

intents and suggests that the grammar for Nile is expressive

enough to represent many real-world network intents.

d e f i n e i n t e n t q o s I n t e n t :

from e n d p o i n t (’ ga teway ’)

t o e n d p o i n t (’ d a t a b a s e ’)

f o r group (’B ’)

add middlebox (’ f i r e w a l l ’) , middlebox (’ i d s ’)

s e t bandwid th (’ min ’ , ’ 100 ’ , ’ mbps ’)

a l l o w t r a f f i c (’ h t t p s ’)

Listing 1: Nile intent example.

5 Intent Confirmation (Feedback)

The major challenge with using natural language to operate

networks (e.g., as part of IBN) is that the method is inher-

ently ambiguous. There are many different forms in which

an operator can express the same intent in different network

environments in natural language. Despite recent advances,

natural language processing is prone to producing false posi-

tives or false negatives, resulting in incorrect entity tagging,

leading to deploying incorrect network configuration com-

mands. However, to be of practical use, network configura-

tions are required to be unquestionably unambiguous and

correct-by-construction.

One approach to address this challenge is to create an ex-

tensive dataset with training phrases and entities. However,

it is unrealistic to expect that such a dataset will cover ev-

ery possible English language (or any other language for that

matter) example of phrase construction with domain-specific

entities. Operators are free to use terms or expressions that the

system has never encountered in the past. However, without

proper safeguards, any such new phrase will likely result in

misconfigurations of the network. An alternative approach to

implementing a reliable intent deployment process is through

“learning from the operator.” Here, the basic idea is to lever-

age the operators’ existing knowledge by requesting their

feedback on the information extracted from natural language

intents. Then, in the case of negative feedback, it is critical

to engage with the operators to identify missing or incorrect

pieces, include this such acquired new knowledge as addi-

tional phrases or entities in the original training dataset, and

retrain the original learning model.

Our solution to deal with the ambiguity inherent in using

natural language to express network intents follows the learn-

ing approach and leverages the chatbot interface implemented

as part of our first module. In particular, in designing the

intent confirmation module for realizing stage three of the

four-stage LUMI pipeline, we require the output of the intent

assembly module (i.e., syntactically-correct Nile intents) to be

confirmed by the operator. When presented with assembled

intents that result in false positives or negatives, the opera-

tor is asked to provide feedback that we subsequently use to

augment the original training dataset with new labeled data;

that is, LUMI is capable of learning new constructs over time,

gradually reducing the chances of making mistakes. While

this interaction may slow down initial intent deployments un-

til LUMI adapts to the operator’s usage domain, it is essential

to guarantee reliable intent refinement and deployment.

Extracting pertinent information from user feedback also

requires identifying specific entities in the user text, similarly

to extracting entities from an input network intent. To this

end, LUMI uses the same NER model for both tasks, relying

primarily on the immutable @entity for extracting which en-

tity class is being augmented and what value is being added.

Relying on the same NER model also requires us to train the

model to identify and extract entities in the received user feed-

back. However, since we limit LUMI’s interactions with the

user to answering simple questions, processing user feedback

does not require a large set of training samples.

To reduce an operator’s need for technical knowledge dur-

ing this intent confirmation stage, we opted for supporting

feedback interactions that induce the operator to provide the

information that LUMI needs (i.e., offering suggestions and

asking complementary questions). Also, to provide operators

with more flexibility and not insist that they have to use spe-

cific keywords, this module compares the entities and values

provided by the operators with synonyms already in the train-

ing dataset. Figure 3 illustrates a case where, due to a lack

of training, LUMI misses an entity in the input text, and the

confirmation mechanism lets operators easily catch this mis-

take and provide the necessary feedback for LUMI to learn.

Also, note that our design of this module is conservative in the

sense that operator feedback is requested for each assembled

intent, irrespective of the level of confidence that LUMI has

concerning its accuracy.

"Hmm, not really, no."

"Is this what you want?"

add middlebox('dpi')

for group('students')

"Sorry. What words did I miss?"

"Well, you missed ‘dorms’."

"Okay. What type of entity is ‘dorms’.

 Is it a location or a service?"

"It`s definetely a location."

"Okay. Is there anything else?"

"No."

Thank you!

"Hey, Lumi!
 Inspect traffic for students in the dorms."

Figure 3: LUMI’s feedback mechanism in action.

6 Intent Deployment

The fourth and last stage of LUMI compiles the operator-

confirmed Nile intents into code that can be deployed on the

appropriate network devices and executes the original net-

work intent expressed by the operator in natural language.

Fortunately, the abstraction layer provided by Nile enables

compilations to a number of different existing network config-

urations, including other policy abstractions languages such

as Merlin [57], OpenConfig [48], Janus [2], PGA [51], and

Kinetic [31].

For our design of LUMI’s Intent Deployment module, we

chose to compile structured Nile intents into Merlin programs.

We picked Merlin over other alternative frameworks because

of its good fit with Nile, the network features it supports, its

performance, and the availability of source code. Also, given

that none of the existing network programming languages na-

tively supports all features proposed in Nile, we opted for the

one that had the largest intersection of supported operations.

In the process, we mapped each Nile feature to a correspond-

ing Merlin feature.

Resolving logical handles. Logical handles in Nile in-

tents are decoupled from low-level IP addresses, VLAN

IDs and IP prefixes, which LUMI now resolves (e.g., dorm

→10.1.2.0/24) using information provided during the boot-

strap process. ACLs rules are resolved similarly. Once LUMI

produces Merlin programs with resolved identifiers (i.e.,

VLAN IDs, IPs and prefixes), compilation to corresponding

OpenFlow rules is handled by Merlin.

Temporal constraints and QoS. As Merlin does not sup-

port temporal policies, LUMI stores every confirmed Nile

intent so that it can install or remove device configurations

according to times and dates defined by the operator. We

achieve quota restrictions (not natively supported by Mer-

lin) by relaying all traffic marked with a quota requirement

to a traffic-shaping middlebox, taking advantage of Merlin’s

support for middlebox chaining. Other QoS policies, such as

rate-limiting, are already supported in Merlin

Middlebox chaining. LUMI focuses on middlebox chain-

ing, i.e., correctly relaying traffic specified in the intents

through a specified middlebox. Since the actual configuration

of each middlebox is currently done outside of LUMI, LUMI

can handle chaining policies associated with any middlebox

type, virtual or physical, compilation for which is straightfor-

ward since Merlin natively supports middlebox chaining.

7 Implementation

We implemented LUMI’s prototype using different tools and li-

braries for each module of the LUMI-pipeline. For the chatbot

interface and NER, we used Google Dialogflow [28] because

of its conversational interface and multi-platform integration.

However, these stages can be easily implemented with other

open-source NLP frameworks (e.g., SpaCy [26] and Stan-

ford CoreNLP [41]) or machine learning toolkits such as

Scikit-learn [49] and Keras [18]. We exported the Dialogflow

implementation of LUMI as JSON files and uploaded them to

GitHub [39], so other researchers can build on our work and

reproduce our results.

We implemented the WebHook service that Dialogflow

calls with the extracted entities in Python. This service builds

the Nile intents and interacts with the chatbot interface if nec-

essary. We implemented the compilation of Nile programs

into Merlin programs and the deployment of the resulting

Merlin program as a separate Python RestAPI service that the

previous WebHook service calls after the operator confirms

that the intent is correct. We developed this module as a sepa-

rate service so that it can be deployed on a local server with

access to the network controller. All the other modules can be

deployed on a cloud server. The full implementation of LUMI,

comprising over 5,451 lines of Python code and 1,079 lines

of JavaScript and HTML, a working demo, and all datasets

used in the course of this work are publicly available [39].

8 Evaluation

In this section, we first evaluate the accuracy of our Informa-

tion Extraction module to show that LUMI extracts entities

with high precision and learns from operator-provided feed-

back. We then show that LUMI can quickly compile Nile

intents into Merlin programs and deploy them. To assess

the accuracy of the Information Extraction module, we use

the standard metrics Precision, Recall, and F1-score. For the

evaluation of the Intent Deployment stage, we measure the

compilation time for translating Nile intents into Merlin state-

ments and their deployment time.

8.1 Information Extraction

Evaluating systems like LUMI is challenging because of (i)

a general lack of publicly available datasets that are suitable

for this problem space (several operators we contacted in in-

dustry and academia gave proprietary reasons for not sharing

such data), and (ii) difficulties in generating synthetic datasets

that reflect the inherent ambiguities of real-world Natural

Language Intents (NLIs).

To deal with this problem, we created two hand-annotated

datasets for information extraction. The dataset alpha is

“semi-realistic” in the sense that it is hand-crafted, consist-

ing of 150 examples of network intents that we generated

by emulating an actual operator giving commands to LUMI.

In contrast, the campi dataset consists of real-world intents

we obtained by crawling the websites of 50 US universi-

ties, manually parsing the publicly available documents that

contained policies for operating their campus networks, and

finally extracting one-phrase intents from the encountered

public policies. From those 50 universities, we were able to

extract a total of 50 different network intents. While some uni-

versities did not yield any intents, most universities published

network policies related to usage quotas, rate-limiting, and

ACL, and we were able to express all of them as Nile intents.

We manually tagged the entities in each of these 200 intents

to train and validate our information extraction model.

We used both datasets, separately and combined, to evalu-

ate our NER model, with a 75%-25% training-testing random

split. The small size of each dataset precludes us from per-

forming conventional cross-validation. Table 3 shows the

results for the alpha dataset, for the campi dataset, and for a

combination of the two and illustrates the high accuracy of

LUMI’s information extraction module. Given the way we cre-

ated the training examples for the alpha dataset, the excellent

performance in terms of Precision, Recall, and F1-score is

reassuring but not surprising. In creating the intent examples,

we paid special attention to extracting all the entities defined

in LUMI (see Section 3.1) and also creating multiple intents

for each entity class.

Table 3: Information extraction evaluation using the alpha

and campi dataset.

Dataset # of Entries Precision Recall F1

alpha 150 0.996 0.987 0.991

campi 50 1 0.979 0.989

alpha + campi 200 0.992 0.969 0.980

At the same time, despite the largely unstructured nature

and smaller number of intent examples in the campi dataset,

the results for that dataset confirm the above observation.

Even though the example intents in this case were not de-

signed with the NER model in mind, LUMI’s performance

remains excellent and is essentially insensitive to the differ-

ences in how the intent examples were generated. We attribute

this success of LUMI at the information extraction stage to

both continued advances in using machine learning for natu-

ral language processing and the fact that the complete set of

LUMI-defined entities is relatively small and at the same time

sufficiently expressive.

8.2 Intent Confirmation and Feedback

To evaluate the impact of operator-provided feedback on

LUMI’s ability to learn, we first trained our NER model using

75% of the combined alpha and campi datasets (i.e., a total of

150 training examples) and then used the remaining 25% of

examples (i.e., a total of 50 test entries) as new intents that we

presented LUMI in random order. We fed each of the 50 test

intents into the NER model for information extraction and

evaluated the Precision and Recall on a case-by-case basis.

If a new intent generated False Positives or False Negatives,

we inserted the intent into NER’s existing training dataset,

alongside the pre-tagged entities, mimicking the operator’s

feedback given during the Intent Confirmation stage.

The results for this experiment (Precision, Recall and F1-

score) are shown in Figures 4a and 4b. Since each point in

the plots represents the Precision/Recall for one specific test

sample rather than for the global model, the depicted values

fluctuate as test samples are checked one after another. As

can be seen, while Precision quickly reaches and then stays at

1.0, the Recall metric dips each time the model encounters an

entity or construct it has not yet seen (i.e., resulting in a False

Negative). However, as more of these examples become part

of NER’s training data through the feedback mechanism (and

because of re-training of the model after each new example

is added), these dips become less frequent. Out of the 50 test

intents, only eight resulted in a dip in Recall; that is, were

used as feedback. Note, however, that the cases where the

model does not identify an entity are precisely the situations

where feedback is most informative and enables the model to

learn for the benefit of the users.

To assess how often a user has to rely on the feedback

mechanism, we repeated our experiment 30 times, each time

with a different 75-25 traininig-testing split. The resulting

mean values for Precision and Recall are shown in Figures 4c

and 4d, with corresponding 95% confidence intervals. As

expected, over the 30 repetitions, both Precision and Recall

remain close to 0.99, with very small fluctuations. And just

as in the previous experiment, whenever there is a significant

variation in Precision or Recall (i.e., large confidence inter-

vals), we added that particular intent example to NER’s latest

training dataset and retrained the model. We attribute the fact

that about 20% of the test examples were used as feedback

to the small size of our training dataset, but argue that having

only this many feedbacks is a positive outcome.

0.0
0.2
0.4
0.6
0.8
1.0

0 10 20 30 40 50

of the Test Sample

M
e

tr
ic

Precision Recall

(a) Precision and Recall.

0.0
0.2
0.4
0.6
0.8
1.0

0 10 20 30 40 50

of the Test Sample

M
e

tr
ic

F1 Score

(b) F1 Score.

0.0
0.2
0.4
0.6
0.8
1.0

0 10 20 30 40 50

of the Test Sample

M
e

tr
ic

Precision

(c) Precision.

0.0
0.2
0.4
0.6
0.8
1.0

0 10 20 30 40 50

of the Test Sample

M
e

tr
ic

Recall

(d) Recall.

Figure 4: Feedback impact on information extraction.

8.3 Intent Deployment

To evaluate the deployment capabilities of LUMI, we compile

and deploy five categories of Nile intents, with an increasing

level of complexity: middlebox chaining, ACL, QoS, tem-

poral, and intents with mixed operations. The last category

of intents mixes Nile operations with distinct goals, which

we use to evaluate the deployment of more complex intents.

We generated a dataset with 30 intents per category, totaling

150 different intents, and measured the mean compilation

and deployment time of each category. We ran this experi-

ment on a generic campus network, with approximately 180

network elements. We relied on the Mininet [35] emulator

to perform the experiments. The results are given in Table

4. While deployment time necessarily depends on the net-

work environment, in our setting, we consistently measured

sub-second combined compilation and deployment times.

Table 4: Compilation and deployment time for five categories

of Nile intents.

Intent Type Compilation Time (ms) Deployment Time (ms)

Middlebox chaining 4.402 110

ACL 3.115 112

QoS 3.113 136

Temporal 4.504 111

Mixed 4.621 1030

9 User Study

To evaluate LUMI’s ability to work in a real-world environ-

ment rather than with curated datasets of intents, we designed

and carried out a small-scale user study. Specifically, we

wanted to assess three critical aspects of our system: (i) How

well does the information extraction process work with actual

humans describing their intents in different forms and phras-

ings? (ii) How often is it necessary for operators to provide

feedback for LUMI while using the system? and (iii) Com-

pared to existing alternative methods, what is the perceived

value of a system like LUMI that leverages natural language

for real-time network management?

In this section, we describe the experiments we conducted,

the participants’ profiles, and the obtained results. We set

up the user study as an online experiment that users could

access and participate in anonymously. To select participants

for the user study from different technical backgrounds and

still keep their anonymity, we distributed a link to the online

user study in mailing lists of both networking research groups

and campus network operators. According to the guidelines

of our affiliated institution, due to the fully anonymous nature

of the experiment, no IRB approval was required to conduct

this study, so this work does not raise any ethical issues.

9.1 Methodology

Participating users were asked to fill out a pre-questionnaire

(e.g., level of expertise, degree of familiarity with policy de-

ployment, and use of chatbot-like interfaces) and then take

on the role of a campus network operator by performing five

specific network management tasks using LUMI. Based on the

information these users provided in their pre-questionnaire,

we had participants from three different continents: the Amer-

icas (88.5%), Europe (7.7%), and Asia (3.8%).

Each of the tasks required the user to enforce a specific

type of network policy: (i) reroute traffic from the internet

to an inspection middlebox; (ii) limit the bandwidth of guest

users using torrent applications; (iii) establish a data usage

quota for students in the university dorms; (iv) block a specific

website for students in the labs, and (v) add a daily temporal

bandwidth throttle to the server racks from 4pm to 7pm. Every

interaction users had with LUMI was logged to a database for

post-analysis.

After finishing the tasks, users were asked to complete a

post-questionnaire (e.g., number of completed tasks, the per-

ceived value of LUMI, and comments on its usability). The

complete set of management tasks presented to the users and

all the results are available on the LUMI’s website. Out of

the 30 participants, four did not complete the online question-

naires and were excluded from the study, leaving a total of

26 subjects. Figure 5 shows a breakdown of the user profiles

by type of job, level of experience with network management,

and familiarity with chatbot-like interfaces.

Graduate
Student

R&D Project
Manager

Campus
Network
Operator

University
Faculty

53.8%

3.8%
15.4%

26.9%

(a) Job.

Beginner

19.2%

Novice

3.8% Expert

19.2%

15.4% Proficient

Competent
42.3%

(b) Expertise.

Moderately
Familiar

30.8%

Slightly
Familiar

19.2%

Unfamiliar

19.2%
7.7%

Extremely
Familiar

Very
Familiar23.1%

(c) Familiarity.

Figure 5: Subjects profiles.

9.2 Information Extraction and Feedback

To assess the accuracy of our Information Extraction module,

we use the number of tasks each participant concluded. For

completing any given task, a specific set of labeled entities

was required to build the correct Nile intent. Hence, each

user’s number of completed tasks reflects how accurately

LUMI identified the entities in the input texts. The results in

the left part of Figure 6 show that most users completed either

5/5 or 4/5 tasks. Some examples of successful intents for each

task can be found on LUMI’s website [39]. An analysis of the

users’ interactions with the system revealed that LUMI had

trouble understanding temporal behavior (e.g., “from 4pm to

7pm”), likely due to a lack of such training examples. This

issue prevented some users from completing all five tasks.

One user could not complete any task, reportedly because of

an outage in the cloud provider infrastructure used to host

LUMI.

4
Tasks

5
Tasks

3
Tasks

0
Tasks

53.8%

34.6%

3.8%
7.7%

(a) Tasks completed by users.

Confirmed
89.5%

Feedback
Rejected

4.8%
Feedback
Accepted

5.7%

(b) User Intents by status.

Figure 6: LUMI information extraction and feedback.

To evaluate the value of LUMI’s feedback mechanism as

part of the Intent Confirmation module, we considered all

intents that the 26 users generated and checked how many

were confirmed and how many were rejected. If an intent was

rejected, the user could provide feedback to correct it, thus

improving LUMI. Such a corrected intent could then once

again be accepted or rejected by the user. The right-hand side

of Figure 6 gives the breakdown of the intents and shows

that, most of the time, LUMI correctly interpreted the users’

intents; in the few times feedback was needed, LUMI was

able to correct and learn more often than not. This result is

encouraging given the somewhat limited amount of data with

which LUMI was trained.

On further analysis of the interactions that users had with

LUMI, we observed that the feedback mechanism worked

as expected in cases where the participants used a different

or unusual phrasing of their intents. For instance, one user

expressed the intent for task 3 in an unstructured manner, as

“student quota dorms 10GB week”, in which LUMI was not

able to recognize the word “dorms” as a @location entity.

However, the user then provided feedback that was successful

in correcting the original Nile intent.

One concrete example where the feedback was unsuc-

cessful happened in task 3, with a user that typed the intent

“Lumi, limit students to 10GB maximum download per week

in dorms”. Lumi was only trained to recognize phrases of the

form “10GB per week”, and the additional text in between

resulted in Lumi being unable to recognize the user’s phrase.

When asked what information LUMI had missed, the user

provided feedback indicating that “10gb/wk” was an entity

class and “Gb per week” was the value, instead of labeling

“Gb per week” as a @qos_unit entity. We note that Lumi is an

initial prototype, and such cases can be avoided in the future

by improving the clarity of suggestions LUMI makes to the

user, and by including sanity checks on user inputs.

9.3 Users Reactions and Usability

In the post-questionnaire, we asked the users to comment

on LUMI’s usability and overall merit by answering three

questions: (i) How easy was it to use LUMI to configure the

network? (ii) Compared to traditional policy configuration,

how much better or worse was using LUMI instead? and (iii)

Would they rather use LUMI to enforce policies or conven-

tional network configuration commands. Figures 7, 8 and 9

summarize the users’ responses, broken down by expertise

in network management. The results show that the partici-

pants’ overall reaction to LUMI was very positive, with most

of them stating that they would either use LUMI exclusively

or, depending on the tasks, in conjunction with configura-

tion commands. Note that the expert users who identified

themselves as campus network operators all had a positive

reaction to LUMI. Overall, among all different levels of exper-

tise, 88.5% of participants stated they would rather use LUMI

exclusively or in conjunction with configuration commands.

We also asked participants to provide insights they had

that could help us improve the implementation and design

of LUMI. One important feedback we received was the lack

of support for querying the network state. For example, one

participant stated:

“Many network management tasks are about monitoring

something or figuring out what’s happening, not just

installing a new policy...”

While LUMI was not designed with this goal in mind, we

do not foresee any major NLP challenge to incorporate such

features into it, as the entity set could be extended to cover this

use case. Acquiring the state information from the network re-

quires further investigation, but Lumi’s modular design makes

it simpler to plug in a new module or an existing one [13]

to query the network devices. This would enable LUMI to

“understand” changes made through other tools, as LUMI will

likely co-exist with different management applications in real

deployments. Overall, the feedback received from participants

was positive and highlighted the promise and value of LUMI.

EasyVery Easy Neutral

(a) Novice or Beginner (c) Proficient and Expert(b) Competent

55.6%
22.2%

22.2%

50% 50%

50%

33.3%
16.7%

Figure 7: User reaction to LUMI’s usability, by expertise on

network management.

(a) Novice or Beginner (c) Proficient and Expert(b) Competent

44.4%

22.2%

11.1%

22.2%

66.7%

16.7%

16.7%

16.7%

83.3%

BetterMuch Better Neutral Worse

Figure 8: User reaction to LUMI’s when compared to tradi-

tional network configuration, by expertise on network man-

agement.

Both are useful Prefer Lumi Prefer network commads

33.3%

66.7%

(a) Novice or Beginner (c) Proficient and Expert

77.8%

11.1%

11.1%

(b) Competent

66.7%

16.7%

16.7%

Figure 9: User reaction to LUMI’s when compared to tra-

ditional network configuration, by expertise on networking.

10 Ongoing Work and Open Problems

While we consider LUMI to be a promising and necessary

step towards fully realizing IBN, several challenges remain

and are part of our ongoing work.

10.1 Ambiguities in natural language policies

NLP policies have the potential for ambiguities. In explor-

ing this issue further, we extracted pairs of intents from our

campi dataset and generated 213 pairs in all. Furthermore,

we adapted existing NLP efforts on contradiction detection

in general text [24, 37, 40, 42, 53, 55, 60] by developing a

Random Forest Classifier trained to classify pairs of network

intents based on contradiction indicators (features) found be-

tween the two input intents. The classifier flagged 9 cases

with potential contradictions.

Manual inspection of all 213 intent pairs indicated that most

of these cases were benign. They typically corresponded to

cases where universities expressed policies that depended on

a user’s total traffic usage over different time periods (e.g., a

10 GB weekly limit vs a 5 GB daily limit). In these cases, the

two policies could be applied in any order with no negative

consequences. One interesting case, however, was a campus

that expressed two different policies at different locations on

their website. The first policy indicated H323 video conferenc-

ing was allowed by the University firewall, while the second

indicated MSN audio and video communications were not

allowed. This is a case where the relative precedence between

the two policies impacts their joint effect.

Part of our ongoing work is to combine LUMI with formal

methods to help detect ambiguities that are potentially of

concern. Specifically, translating NLP policies into LUMI

intents enables the use of automated methods that can check

whether the impact of applying two policies is sensitive to

their relative ordering, but also provides opportunities to use

methods for detecting policy conflicts [2, 51].

10.2 Deploying Lumi in a production network

The initial design of LUMI was aimed at solving management

problems that arise in a Campus network environment. We

have been engaged in discussions with operators of our cam-

pus network regarding validating LUMI in production. Below,

we discuss some of the issues raised by the operators and

outline challenges and potential solutions.

Co-existing with current technologies. Most campus net-

works consist of legacy network equipment from multiple

vendors with vendor-specific configuration interfaces. Get-

ting LUMI “production-ready" requires developing a Nile

compiler that can accommodate this diversity in legacy de-

vices. Since the Nile abstraction offers isolation from the

system’s interface and minimizes the need for changes in the

early stages of the LUMI pipeline, it is well-suited for Open-

Config [48], a vendor-neutral model for network management

that is supported by an increasing number of devices.

Extending LUMI for other use-cases. While we have fo-

cused on Campus networks, deploying LUMI in other envi-

ronments may require extending its feature set. For example,

unlike the Campus networks we have access to, multi-tenant

data-center networks may use VXLANs or NVGRE as solu-

tions to scalably share network infrastructure between tenants.

However, LUMI is easily extended to support such features,

and we illustrate the four generic steps required for such exten-

sion with the VXLAN example. In a first step, one must decide

the abstraction level in which LUMI should handle natural

language text. Consistent with LUMI’s design philosophy, for

VXLAN support, a high-level intent could be “Block incom-

ing traffic for tenant A”, where “tenant A” refers to a specific

VXLAN Network Identifier (VNI). Next, LUMI’s training

dataset has to be augmented appropriately, the Nile language

must be extended with new keywords (e.g., a tenant(’A’)

operator for the VXLAN example), and the Nile compiler has

to be instrumented to handle the new set of configurations.

In the case of VXLAN, similarly to VLANs, tenants names

must be mapped to VNIs. Lastly, since OpenFlow switches

support VXLANs, all that is needed is to extend Merlin to

allow matching traffic based on VNI for each tenant.

Creating sandbox environments. Migrating LUMI to pro-

duction requires that operators have trust in LUMI. Based on

our discussions with operators, a mirrored sandbox environ-

ment [3] could be a good starting point.

10.3 How to verify if Lumi is correct?

We discuss potential sources of errors in each stage of the

LUMI pipeline and possible solution approaches.

Translating human language to Nile intents. Informa-

tion extraction from natural language is inherently prone to

errors. LUMI alleviates this problem by asking operators for

feedback and using their responses to check if the extracted

information was correct. Over the longer term, we plan to

leverage ongoing ML research efforts that focus on making

ML models more robust and secure so they can be deployed

in security- and safety-critical settings such as production

network environments [9, 27].

Compiling Nile intents. Recent works on formal network

verification [1, 10, 50] provide sub-second verification of

waypointing, reachability, and isolation properties and are

well suited for verifying configurations generated by LUMI-

compiled intents. LUMI supports time-constrained intent de-

ployment as well as QoS features. Despite recent work on

verifying such properties (e.g., [31, 58]), more advances may

be needed in the area, including the possible adaption of ex-

isting verification techniques to a LUMI-specific setting.

Post-deployment behavior monitoring. Ultimately, we

envision the LUMI pipeline shown in Figure 1 to include a

monitoring module for verifying that the deployed configura-

tions respect the intents produced by the refinement process

and achieve the objective(s) that the operator expressed (in

natural language) in the first place. By monitoring both the

traffic and configurations of specific devices affected by a de-

ployed intent, such a module would allow operators to query

at any time if the deployed intent produced the desired net-

work behavior [22], thereby improving the operators’ trust in

relying on LUMI. However, deciding which traffic, devices,

and properties to monitor will require instrumenting networks

with an unprecedented level of control that is currently only

possible by leveraging the latest programmable data plane

technologies [8, 23]. At the same time, the development of

such a module can be viewed as a first step towards realizing

the vision of self-driving networks [12, 19, 45].

11 Related Work

Natural language in networking. Very few prior works use

natural language to interact with the network. In [13], the au-

thors present Net2Text, a system that allows network operators

to query network-wide forwarding behaviors using natural

language, but it does not allow operators to configure the net-

work. Alsudais et al. [4] proposes using natural language to

deploy network intents. It uses the Stanford CoreNLP Parts-

of-Speech (POS) Tagger [61] to parse and structure the input

text but does not cover NLP aspects relevant to LUMI such as

intent confirmation for user feedback and learning over time.

Network programming languages. Recent works on IBN

feature several intent languages, frameworks, and compilers

to efficiently deploy intents in network devices and middle-

boxes [2, 6, 21, 31, 51, 54, 57, 59]. At the same time, Co-

coon [54] introduces a framework to guarantee the correctness

of SDN programs that resembles our approach, but it uses

first-order logic. With LUMI, we examine the use of machine

learning to convert natural language intents into lower-level

configurations without the need for using a specific program-

ming language.

Natural language processing. Information extraction has

been addressed with different methods and techniques, in-

cluding (i) only CRF models [20]; (ii) character-level em-

beddings instead of whole words [34], and (iii) rule-based

approaches [15]. Yet, recent studies [63] show the benefits of

the approach considered as part of LUMI. To our knowledge,

the problem of using natural language for management tasks

has not received much attention in the networking domain.

IBN. INSpIRE [56] focuses on intents related to secu-

rity middleboxes and uses a refinement process to determine

which middleboxes should compose a service chain to fulfill

an intent. Cheminod et al. [14] propose an automatic pro-

cess for refining, deploying, and enforcing ACL policies that

use set notation for policy specification. PGA [51] applies a

graph-based abstraction to compose high-level policies and

deploy them in SDN networks. Janus [2] extends PGA to sup-

port policies with QoS requirements, mobility, and temporal

dynamics. However, these proposals differ from LUMI as they

are not concerned with using natural language or obtaining

feedback from the network operator.

12 Conclusions

In this paper, we propose LUMI, a novel end-to-end intent

refinement and deployment system that allows operators to

express their intents in natural language and then check and

confirm the intents before deploying them in the network. By

demonstrating that LUMI can successfully deal with a wide

range of network policies, this paper represents a promising

step towards realizing the vision of intent-based networking

with natural language. Still, much work remains. For exam-

ple, while our design choices for LUMI’s different modules

resulted in a working prototype, other features might be nec-

essary for a production-ready version of the system. However,

LUMI’s modular design can readily accommodate such im-

provements. Also, since LUMI in its current form is mainly

intended for use in campus networks, supporting other envi-

ronments (e.g., home or enterprise networks) will most likely

require that the set of Nile operations and functions (and in

turn the set of LUMI entities) be judiciously extended.

Acknowledgments

We thank our shepherd Costin Raiciu and the anonymous

reviewers for their valuable feedback. We thank Jennifer Rex-

ford, Hyojoon Kim, Shir Landau-Feibish, and Ross Teixeira

for their feedback on earlier drafts of this paper. We also thank

the anonymous participants of our user study for their contri-

butions and insights. This work was supported in part by the

Brazilian National Research and Educational Network (RNP),

the Brazilian Federal Agency for Support and Evaluation of

Graduate Education (CAPES), the Brazilian National Council

for Scientific and Technological Development (CNPq) procs.

423275/2016-0, 312392/2017-6, 142089/2018-4, INCT In-

terSCity, and FAPESP procs. 2018/23085-5, 2020/05183-0,

and 2015/24494-8, and the US National Science Foundation

Grant FMitF 1837023.

References

[1] A. Abhashkumar, A. Gember-Jacobson, and A. Akella.

Tiramisu: Fast and General Network Verification. In

17th USENIX Symposium on Networked Systems De-

sign and Implementation, NSDI ’20, Santa Clara, CA,

February 2020. USENIX Association.

[2] A. Abhashkumar, J. Kang, S. Banerjee, A. Akella,

Y. Zhang, and W. Wu. Supporting Diverse Dynamic

Intent-based Policies Using Janus. In Proceedings of

the 13th International Conference on Emerging Net-

working EXperiments and Technologies, CoNEXT ’17,

pages 296–309, New York, NY, USA, 2017. ACM.

[3] R. Alimi, Y. Wang, and Y. R. Yang. Shadow Configura-

tion as a Network Management Primitive. In Proceed-

ings of the Annual Conference of the ACM SIGCOMM,

SIGCOMM ’08, page 111–122, New York, NY, USA,

2008. ACM.

[4] A. Alsudais and E. Keller. Hey network, can you under-

stand me? In 2017 IEEE Conference on Computer Com-

munications Workshops (INFOCOM WKSHPS), pages

193–198, May 2017.

[5] A. Amokrane, R. Langar, R. Boutaba, and G. Pujolle.

Flow-Based Management For Energy Efficient Campus

Networks. IEEE Transactions on Network and Service

Management, 12(4):565–579, December 2015.

[6] C. J. Anderson, N. Foster, A. Guha, J. Jeannin, D. Kozen,

C. Schlesinger, and D. Walker. NetKAT: Semantic Foun-

dations for Networks. SIGPLAN Not., 49(1):113–126,

January 2014.

[7] J. Apostolopoulos. Improving Networks with Artificial

Intelligence, Oct 2020. https://blogs.cisco.com/

networking/improving-networks-with-ai.

[8] R. B. Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu,

and M. Mitzenmacher. PINT: Probabilistic In-Band

Network Telemetry. In Proceedings of the Annual Con-

ference of the ACM SIGCOMM, SIGCOMM ’20, page

662–680, New York, NY, USA, 2020. ACM.

[9] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytinio-

tis, A. Nori, and A. Criminisi. Measuring Neural Net

Robustness with Constraints. In Advances in Neural

Information Processing Systems, volume 29. Curran As-

sociates, Inc., 2016.

[10] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A

General Approach to Network Configuration Verifica-

tion. In Proceedings of the Annual Conference of the

ACM SIGCOMM, SIGCOMM ’17, pages 155–168, New

York, NY, USA, 2017. ACM.

[11] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and

D. Walker. Don’t Mind the Gap: Bridging Network-

wide Objectives and Device-level Configurations. In

Proceedings of the Annual Conference of the ACM SIG-

COMM, SIGCOMM ’16, pages 328–341, New York,

NY, USA, 2016. ACM.

[12] M. Behringer, M. Pritikin, S. Bjarnason, A. Clemm,

B. Carpenter, S. Jiang, and L. Ciavaglia. Autonomic

Networking: Definitions and Design Goals. Rfc 7575,

RFC Editor, June 2015.

[13] R. Birkner, D. Drachsler-Cohen, L. Vanbever, and

M. Vechev. Net2Text: Query-Guided Summarization of

Network Forwarding Behaviors. In 15th USENIX Sym-

posium on Networked Systems Design and Implemen-

tation, NSDI ’18, pages 609–623, Renton, WA, 2018.

USENIX Association.

[14] M. Cheminod, L. Durante, L. Seno, F. Valenza, and

A. Valenzano. A comprehensive approach to the au-

tomatic refinement and verification of access control

policies. Computers & Security, 80:186–199, 2019.

[15] L. Chiticariu, M. Danilevsky, Y. Li, F. Reiss, and H. Zhu.

SystemT: Declarative Text Understanding for Enterprise.

In Proceedings of the 2018 Conference of the North

American Chapter of the ACL: Human Language Tech-

nologies, Volume 3, pages 76–83. ACL, 2018.

[16] J. Chiu and E. Nichols. Named Entity Recognition with

Bidirectional LSTM-CNNs. Transactions of the ACL,

4:357–370, 2016.

[17] A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura.

Intent-Based Networking - Concepts and Definitions.

Internet-Draft draft-irtf-nmrg-ibn-concepts-definitions-

00, Internet Engineering Task Force, December 2019.

Work in Progress.

[18] F. Chollet et. al. Keras, 2015. https://github.com/

fchollet/keras.

[19] N. Feamster and J. Rexford. Why (and How) Networks

Should Run Themselves. In Proceedings of the Applied

Networking Research Workshop, ANRW ’18, page 20,

New York, NY, USA, 2018. ACM.

[20] J. R. Finkel, T. Grenager, and C. Manning. Incorporat-

ing Non-local Information into Information Extraction

Systems by Gibbs Sampling. In Proceedings of the

43rd Annual Meeting on ACL, Acl ’05, pages 363–370,

Stroudsburg, PA, USA, 2005. ACL.

[21] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,

J. Rexford, A. Story, and D. Walker. Frenetic: A

Network Programming Language. SIGPLAN Not.,

46(9):279–291, September 2011.

https://blogs.cisco.com/networking/improving-networks-with-ai
https://blogs.cisco.com/networking/improving-networks-with-ai
https://github.com/fchollet/keras
https://github.com/fchollet/keras

[22] N. Foster, N. McKeown, J. Rexford, G. Parulkar, L. Pe-

terson, and O. Sunay. Using Deep Programmability

to Put Network Owners in Control. SIGCOMM CCR,

50(4):82–88, October 2020.

[23] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rex-

ford, and W. Willinger. Sonata: Query-Driven Streaming

Network Telemetry. In Proceedings of the Annual Con-

ference of the ACM SIGCOMM, SIGCOMM ’18, page

357–371, New York, NY, USA, 2018. ACM.

[24] S. M. Harabagiu, A. Hickl, and V. F. Lacatusu. Negation,

Contrast and Contradiction in Text Processing. In AAAI,

2006.

[25] S. Hochreiter and J. Schmidhuber. Long Short-Term

Memory. Neural Comput., 9(8):1735–1780, November

1997.

[26] M. Honnibal and I. Montani. spaCy 2: Natural language

understanding with Bloom embeddings, convolutional

neural networks and incremental parsing. To appear,

2017.

[27] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu.

Safety Verification of Deep Neural Networks. In Ru-

pak Majumdar and Viktor Kunčak, editors, Computer

Aided Verification, pages 3–29, Cham, 2017. Springer

International Publishing.

[28] Google Inc. Dialogflow, March 2018. https://

dialogflow.com/.

[29] A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z.

Granville. Refining Network Intents for Self-Driving

Networks. In Proceedings of the Annual Conference

of the ACM SIGCOMM Afternoon Workshop on Self-

Driving Networks, SelfDN 2018, pages 15–21, New

York, NY, USA, 2018. ACM.

[30] D. Jurafsky and J. H. Martin. Speech and Language

Processing. Prentice Hall PTR, Upper Saddle River, NJ,

USA, 3rd edition, 2019.

[31] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster,

and R. Clark. Kinetic: Verifiable Dynamic Network Con-

trol. In 12th USENIX Symposium on Networked Systems

Design and Implementation, pages 59–72, Berkeley, CA,

USA, 2015. USENIX Association.

[32] B. Koley. The Zero Touch Network, 2016. Keynote

Speech at the 12th International Conference on

Network and Service Management. https://static.

googleusercontent.com/media/research.

google.com/en//pubs/archive/45687.pdf.

[33] J. D. Lafferty., A. McCallum, and F. C. N. Pereira. Con-

ditional Random Fields: Probabilistic Models for Seg-

menting and Labeling Sequence Data. In Proceedings of

the 18th International Conference on Machine Learning,

ICML ’01, pages 282–289, San Francisco, CA, USA,

2001. Morgan Kaufmann Publishers Inc.

[34] G. Lample, M. Ballesteros, S. Subramanian,

K. Kawakami, and C. Dyer. Neural Architec-

tures for Named Entity Recognition. In Proceedings of

the 2016 Conference of the North American Chapter

of the ACL: Human Language Technologies, pages

260–270, San Diego, California, June 2016. ACL.

[35] B. Lantz, B. Heller, and N. McKeown. A Network

in a Laptop: Rapid Prototyping for Software-defined

Networks. In Proceedings of the 9th ACM SIGCOMM

Workshop on Hot Topics in Networks, Hotnets-IX, pages

19:1–19:6, New York, NY, USA, 2010. ACM.

[36] N. Limsopatham and N. Collier. Bidirectional LSTM for

Named Entity Recognition in Twitter Messages. In Pro-

ceedings of the 2nd Workshop on Noisy User-generated

Text, NUTCOLING 2016, Osaka, Japan, December 11,

2016, pages 145–152, 2016.

[37] V. Lingam, S. Bhuria, M. Nair, D. Gurpreetsingh,

A. Goyal, and A. Sureka. Deep learning for con-

flicting statements detection in text. PeerJ Preprints,

6:e26589v1, March 2018.

[38] H. H. Liu. The Practice of Network Verification in Al-

ibaba’s Global WAN, May 2021. https://netverify.

fun/the-practice-of-network-verification\

-in-alibaba-global-wan/.

[39] Lumi. Lumi supplemental material, January 2020.

https://lumichatbot.github.io/.

[40] B. MacCartney, T. Grenager, M. C. de Marneffe, D. Cer,

and C. D. Manning. Learning to Recognize Features of

Valid Textual Entailments. In Proceedings of the Main

Conference of the North American Chapter of the ACL,

NAACL ’06, pages 41–48, Stroudsburg, PA, USA, 2006.

ACL.

[41] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J.

Bethard, and D. McClosky. The Stanford CoreNLP

Natural Language Processing Toolkit. In ACL System

Demonstrations, pages 55–60, 2014.

[42] M. C. De Marneffe, A. N. Rafferty, and C. D. Manning.

Finding contradictions in text. In Proceedings of the

Conference of the ACL, ACL ’08, pages 1039–1047,

2008. cited By 108.

[43] M. Marrero, J. Urbano, S. Sánchez-Cuadrado, J. Morato,

and J. M. Gómez-Berbís. Named Entity Recognition:

Fallacies, Challenges and Opportunities. Computer Stan-

dards & Interfaces, 35(5):482–489, 2013.

https://dialogflow.com/
https://dialogflow.com/
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45687.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45687.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45687.pdf
https://netverify.fun/the-practice-of-network-verification\-in-alibaba-global-wan/
https://netverify.fun/the-practice-of-network-verification\-in-alibaba-global-wan/
https://netverify.fun/the-practice-of-network-verification\-in-alibaba-global-wan/
https://lumichatbot.github.io/

[44] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient

Estimation of Word Representations in Vector Space.

CoRR, abs/1301.3781, 2013.

[45] J. Mogul. Unsafe at Any Speed? Self-Driving Networks

without Self-Crashing Networks. In Keynote Speech

at the ACM SIGCOMM Afternoon Workshop on Self-

Driving Networks, SelfDN 2018, New York, NY, USA,

2018. ACM.

[46] C. Monsanto, J. Reich, N. Foster, J. Rexford, and

D. Walker. Composing Software Defined Networks. In

10th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 13), pages 1–13, Lombard,

IL, 2013. USENIX Association.

[47] Juniper Networks. What Is Intent-Based

Networking? https://www.juniper.

net/us/en/products-services/what-is/

intent-based-networking/.

[48] OpenConfig. OpenConfig, January 2016. http://www.

openconfig.net/.

[49] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay.

Scikit-learn: Machine Learning in Python. Journal

of Machine Learning Research, 12:2825–2830, 2011.

http://scikit-learn.org.

[50] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and

M. Caesar. Plankton: Scalable network configuration

verification through model checking. In 17th USENIX

Symposium on Networked Systems Design and Imple-

mentation, NSDI ’20, Santa Clara, CA, February 2020.

USENIX Association.

[51] C. Prakash, J. Lee, Y. Turner, J. Kang, A. Akella,

S. Banerjee, C. Clark, Y. Ma, P. Sharma, and Y. Zhang.

PGA: Using Graphs to Express and Automatically Rec-

oncile Network Policies. In Proceedings of the Annual

Conference of the ACM SIGCOMM, SIGCOMM ’15,

pages 29–42, New York, NY, USA, 2015. ACM.

[52] Microsoft Research. Hyperscale cloud reliability

and the art of organic collaboration, Nov 2018.

https://www.microsoft.com/en-us/research/

blog/hyperscale-cloud-reliability-and-the\

-art-of-organic-collaboration.

[53] A. Ritter, D. Downey, S. Soderland, and O. Etzioni. It’s

a Contradiction–no, It’s Not: A Case Study Using Func-

tional Relations. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing,

Emnlp ’08, pages 11–20, Stroudsburg, PA, USA, 2008.

ACL.

[54] L. Ryzhyk, N. Bjørner, M. Canini, J. Jeannin,

C. Schlesinger, D. B. Terry, and G. Varghese. Correct by

Construction Networks Using Stepwise Refinement. In

14th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 17), pages 683–698, Boston,

MA, 2017. USENIX Association.

[55] F. Sarafraz. Finding conflicting statements in the

biomedical literature. PhD thesis, University of Manch-

ester, UK, 2012.

[56] E. J. Scheid, C. C. Machado, M. F. Franco, R. L. dos

Santos, R. P. Pfitscher, A. E. Schaeffer-Filho, and L. Z.

Granville. INSpIRE: Integrated NFV-based Intent Re-

finement Environment. In 2017 IFIP/IEEE Symposium

on Integrated Network and Service Management (IM),

pages 186–194, May 2017.

[57] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg,

E. G. Sirer, and N. Foster. Merlin: A Language for Man-

aging Network Resources. IEEE/ACM Transactions on

Networking, 26(5):2188–2201, October 2018.

[58] Y. E. Sung, C. Lund, M. Lyn, S. G. Rao, and S. Sen.

Modeling and Understanding End-to-End Class of Ser-

vice Policies in Operational Networks. In Proceedings

of the Annual Conference of the ACM SIGCOMM, SIG-

COMM ’09, page 219–230, New York, NY, USA, 2009.

ACM.

[59] Y. E. Sung, X. Tie, S. H. Y. Wong, and H. Zeng.

Robotron: Top-down Network Management at Facebook

Scale. In Proceedings of the Annual Conference of the

ACM SIGCOMM, SIGCOMM ’16, pages 426–439, New

York, NY, USA, 2016. ACM.

[60] N. S. Tawfik and M. R. Spruit. Automated Contradic-

tion Detection in Biomedical Literature. In Petra Perner,

editor, Machine Learning and Data Mining in Pattern

Recognition, pages 138–148, Cham, 2018. Springer In-

ternational Publishing.

[61] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer.

Feature-Rich Part-of-Speech Tagging with a Cyclic De-

pendency Network. In Proceedings of the 2003 Human

Language Technology Conference of the North Ameri-

can Chapter of the ACL, pages 252–259, 2003.

[62] VMware. Intent-based Networking, May 2021.

https://www.vmware.com/topics/glossary/

content/intent-based-networking.

[63] V. Yadav and S. Bethar. A Survey on Recent Ad-

vances in Named Entity Recognition from Deep Learn-

ing model. In Proceedings of the 27th International

Conference on Computational Linguistic, pages 2145–

215. ACL, 2018.

https://www.juniper.net/us/en/products-services/what-is/intent-based-networking/
https://www.juniper.net/us/en/products-services/what-is/intent-based-networking/
https://www.juniper.net/us/en/products-services/what-is/intent-based-networking/
http://www.openconfig.net/
http://www.openconfig.net/
http://scikit-learn.org
https://www.microsoft.com/en-us/research/blog/hyperscale-cloud-reliability-and-the\-art-of-organic-collaboration
https://www.microsoft.com/en-us/research/blog/hyperscale-cloud-reliability-and-the\-art-of-organic-collaboration
https://www.microsoft.com/en-us/research/blog/hyperscale-cloud-reliability-and-the\-art-of-organic-collaboration
https://www.vmware.com/topics/glossary/content/intent-based-networking
https://www.vmware.com/topics/glossary/content/intent-based-networking

	Introduction
	Lumi in a Nutshell
	Information Extraction
	Entity Selection
	Entity Encoding: Bi-LSTMs
	Entity Labeling: CRFs
	NER and Learning

	Intent Assembly
	Nile: Network Intent Language
	Nile Intents: An Example

	Intent Confirmation (Feedback)
	Intent Deployment
	Implementation
	Evaluation
	Information Extraction
	Intent Confirmation and Feedback
	Intent Deployment

	User Study
	Methodology
	Information Extraction and Feedback
	Users Reactions and Usability

	Ongoing Work and Open Problems
	Ambiguities in natural language policies
	Deploying Lumi in a production network
	How to verify if Lumi is correct?

	Related Work
	Conclusions

