
Performance Evaluation of Self-Sovereign Identity
Use Cases

Alexandre Siqueira
Univ. Federal de São Paulo

Brazil
alexandre.siqueira@unifesp.br

Arlindo F. da Conceição
Univ. Federal de São Paulo

Brazil
arlindo.conceicao@unifesp.br

Vladimir Rocha
Univ. Federal do ABC

Brazil
vladimir.rocha@ufabc.edu.br

Abstract—Self-sovereign identity (SSI) enables the creation of
user-centric applications where the user has complete control
over his data. This research evaluates the performance of SSI-
based applications; to do this, we implemented healthcare use
cases using Hyperledger Indy and Hyperledger Aries frame-
works, deployed it in a cloud environment, and executed their
empirical evaluation. The results indicate that the bottleneck
is the CPU; a simple setup can support up to 80 concurrent
users without relevant errors and 120 simultaneous users before
system degradation. Finally, we discuss the system bottlenecks
and possible optimization techniques.

Index Terms—SSI, performance evaluation, healthcare use
cases, Hyperledger Indy, Hyperledger Aries

I. INTRODUCTION

The development of modern information systems and ap-
plications involves searching for better performance, more
security, and decentralization. It is not easy to conciliate
these factors. One promising approach for addressing these
challenges is the usage of self-sovereign identities (SSIs) [1],
[2]. The SSI enables users to control their identity and data,
sharing specifics about their credentials with whomever they
want while securing their private information in their digital
wallets. SSI-based systems usually have three components:

• Decentralized Identities (DIDs) [3]: DID is a W3C stan-
dard that adopts public key infrastructures and digital
signatures to represent digital identities.

• Verifiable Credentials (VCs) [4]: It is also a W3C spec-
ification that provides tamper-proof evidence of claims
about a subject.

• Blockchain [5]: Using blockchain in SSI solutions is not
mandatory, but it is desirable because it can be used
as a public key infrastructure aggregating trust to the
solution [6]. Blockchain facilitates to verification of the
VCs.

An SSI-based application has, in general, the following
characteristics: i) the DIDs identify users or subjects, ii) VCs
and VCs’ presentations demonstrate data ownership, and iii)
the blockchain keeps the information secure and auditable.

SSI can be applied in several areas [7], but it has particular
potential to contribute to healthcare and e-Health scenarios
where the tension between data sharing and privacy is evident.
For example, developing a privacy-preserving health data
registry presents challenges of secure persistence and access
control management [8]. The SSI technology empowers users

and patients to control their identity, sharing only the specific
information they want while securing their private information
in their digital wallets. For example, suppose that a diagnostic
lab issues blood test results for an individual (a DID) as
a verifiable credential (VC). The credential can comprise
clinical information, such as blood type, glucose level, and
cholesterol levels. The patient can offer a digital presentation
only containing this specific information when asked for blood
type.

SSI technology can even offer information without pro-
viding any data. To illustrate this idea, let us imagine an
application asking a patient if she can donate blood for a
person with blood type A+. A digital presentation can answer
just “yes” or “no” to this question without showing the
patient’s blood type [9].

Thus, SSI technology allows the construction of a new gen-
eration of user-centered, information-centered, and privacy-
oriented applications. The user defines which information is
shared and who can see that information. Notice that the client
side of the system provides this guarantee, not the server
side. In their study, [10] defined several use cases of SSI in
the healthcare context, but it lacked the assurance that those
scenarios could work in the real world. In addition, there
were no standard metrics for planning/measuring SSI systems
and applications deployment. How many blockchain nodes are
necessary? Is the process memory or CPU intensive? How
many simultaneous clients can the servers support? This paper
aims to reduce this lack of knowledge.

The objective was to understand the overall behavior
of SSI applications. This challenge means finding latency
lower bounds (time per API request) and throughput upper
bounds (number of requests). The literature does not provide
this information to the best of our knowledge.

We proposed and deployed a fully decentralized, privacy-
preserving, blockchain-based SSI system to assess the critical
performance factors. Our solution uses open-source frame-
works (Hyperledger Indy / Aries) and runs on a cloud envi-
ronment (Microsoft Azure). [10] implemented and evaluated
several healthcare use cases, but this work focuses on the non-
functional aspects.

The remaining of the article is structured as follows:
Section II presents SSI’s fundamental concepts and overall
architecture. Section III describes the problem statement.
Section IV defines the methodology. Section V describes the

test environment. Section VI exemplifies SSI-based healthcare
use cases. Section VII discuss the obtained results. Finally,
Section VIII presents our final considerations and points out
future works.

II. FUNDAMENTALS OF SELF-SOVEREIGN IDENTITIES

To understand how the SSI works, defining some concepts
and principles is essential.

A. Entities and decentralized identifiers (DIDs)

An entity or subject is either a person or an organization
that performs a role in a situation. In the context of digital
identities, the entities can perform the following roles [4],
depicted in Figure 1:

• Issuer: an entity that asserts claims about a subject,
issuing a VC and transmitting it to a holder.

• Holder: an entity that possesses VCs and uses them to
create a verifiable presentation to prove a claim;

• Verifier: an entity that validates the claims made by a
holder by validating the VCs presented by the holder.

Fig. 1. Entities in a digital identity context, as described by W3C [4]

Entities need identities to represent themselves in a digital
context. A digital identity is a set of attributes that allow
an entity to be uniquely distinguished from others within a
context. Entities may have several digital identities, one for
each context, forming what is described by López [11] as
their digital persona. The W3C created standards [3] to specify
these identities and named them Decentralized Identifiers
(DIDs) [12].

B. Claims, verifiable credentials (VCs), and presentations

The W3C standard [4] defines claims as assertions made by
a subject. A VC may contain several claims. When an entity
issues a credential to someone, it states that the claims in the
credential are valid.

A VC may declare [4], for example, the identity of the
holder (name, ID number), the issuer attributes (city govern-
ment, national agency, university), the type of the credential
(driver license, drug prescription), attributes asserted by the
issuer (date of birth, bachelor’s degree, the patient condition),
constraints (expiration date, terms of use), etc.

VCs use cryptographic functions to provide tamper-proof
evidence of their authorship. For example, a university could
issue a college transcript to a student as a VC containing this
student’s grades and current degree and sign it with the private
key associated with its public DID. This college transcript
would also refer to the student’s public DID, allowing anyone
to verify its authenticity.

C. Architecture of SSI-based systems

There is a range of platforms for developing SSI sys-
tems [13]. This research used Hyperledger SSI open-source
projects because of their maturity and flexibility. Our archi-
tecture comprises several software components distributed in
distinct layers, as depicted in Figure 2. These components are
detailed in the following sections.

Fig. 2. Component diagram - architectural layers and software packages

1) Hyperledger Indy: This is at the system’s core, imple-
menting the fit-for-purpose blockchain network for DID. The
Blockchain Ledgers layer uses Indy Plenum module to store
identities and credentials public information in distributed
ledgers.

Indy Plenum is also responsible for implementing the con-
sensus mechanisms that maintain data synchronized in the
Blockchain Node layer. The nodes in this layer run Indy Node
that handles node communication and read/write transactions

in the ledgers and Indy SDK libraries for digital wallet
management and ledger operation APIs.

Indy Node and Indy SDK modules implement the W3C
DID specifications [3], essential for the decentralized identity
management capabilities they aim to provide.

2) Hyperledger Aries: This project offers credential man-
agement capabilities to the system, implementing W3C VCs
specifications [4] and peer-to-peer communication among
entities through DIDComm protocols. DIDComm [14] is a
standard for secure and private communication between agents
(entities in an SSI context), allowing them to connect, maintain
relationships, issue credentials, provide proof, and others.

An Aries agent is a software component that runs in the
Messaging Agent Layer as integration middleware, providing
user applications with APIs to engage in SSI interactions with
other agents. These APIs are designed to be infrastructure
agnostic, allowing Aries agents to integrate with any VC
provider. For this research, the selected Aries agents embed
Indy SDK libraries to connect to the provided Indy blockchain.

3) Hyperledger Ursa: This project implements functions
for cryptographic primitives in a shared library that is used
across Hyperledger projects, namely Indy and Aries, to avoid
duplicating cryptographic work.

Since many SSI use cases deal with cryptographic key man-
agement, Ursa libraries spread across Blockchain Ledgers,
Blockchain Node, and Messaging Agent architectural layers.

4) General user experience and user journeys: The User
interface layer is an abstraction for the healthcare software
that uses Messaging Agent APIs to provide specific business
journeys for issuers, holders, and verifiers:

• Software applications for issuers must implement creden-
tial issuing features crafted for their specific needs. e.g., a
clinical laboratory must handle medical screenings results
as credentials to be issued to a patient’s digital wallet;

• Digital wallet software for holders must handle cre-
dentials presentation so that patients can present their
medical information as proof for verifiers;

• Software applications for verifiers must provide creden-
tial verification capabilities fit for their purpose; for
instance, airlines should check traveler’s health status
while physicians should look up patient’s EHR.

Aside from specific user journey features, all applications
must implement generic features common for all entities, such
as Relationship, Credentials, and Claims management.

D. Use cases

We have chosen health use cases to validate the user-
centric SSI solution because of the dilemma of privacy vs.
data sharing. Siqueira [10] implemented six representative use
cases of SSI in healthcare: report of allergies, clinical notes,
immunization control, laboratory results, drug prescription,
and medical procedures. We have chosen immunization control
and drug prescriptions from this list of use cases to evaluate
because they include revocation steps; more detail about the
use case is provided in Section VI.

III. PROBLEM STATEMENT

Dealing with health information as a claim of someone’s
digital identity enables us to leverage concepts of SSI to
create decentralized electronic health record systems that give
patients complete control over their health information. How-
ever, the bulky nature of health data could expose bottlenecks
that impact the overall capacity of SSI-based health registry
systems.

This study aims to determine these bottlenecks and pro-
vide an empirical baseline for assessing blockchain-based SSI
applications and accurately sizing their infrastructure compo-
nents for real-world deployments.

IV. METHODOLOGY

The methodology consisted of deploying a basic archi-
tecture and an SSI-based application. The components were
deployed in a cloud environment and gradually stressed until
any sign of degradation appeared. During this process, we used
the tool JMeter [15] to record the execution results, such as
CPU usage, number of API requests, and response time (in
milliseconds).

The application implements two healthcare scenarios com-
prising several interactions among the holder, issuer, and veri-
fier. The test environment is realistic, except all its components
share the same virtual network. The objective of running them
in the same network was to reduce the impact of network
latency in the experiments.

The workload employed multiple threads emulating simul-
taneous users. The number of users (threads) is incremented
for each iteration by 20. Each thread executes one entire appli-
cation cycle per time, where each cycle contains a sequence of
API requests. Between each API request was inserted a delay
of 2 seconds to avoid network flooding.

V. TEST ENVIRONMENT

The test environment was designed as a minimal setup that
could perform as a production environment. It is imperative
to notice that in an actual setup, the user interaction with the
wallets implies additional time between system requests. So,
our setup can offer a lower bound to a maximum number of
concurrent users.

For simplicity, all server components were set up on the
Microsoft Azure [16] cloud environment using virtualization
techniques for machine provisioning. All machines were de-
ployed in Azure’s East US region because this location offered
more features at the lowest cost. This setup is represented in
the deployment diagram, depicted in Figure 3, explained in
the following sections.

A. Network

Hyperledger Indy nodes establish inter-node connections
for blockchain ledger synchronization that require a private
network to secure. We created the indylab-vnet virtual private
network (VPN) for that. It was created to isolate Indy inter-
node communication and establish a governance control for
adding new nodes to the network.

Fig. 3. Deployment diagram - execution environment

This simplified topology, portrayed in Figure 3, overlooks
complexities that must be addressed in real-world implemen-
tations. For example, network nodes located in distant geo-
graphic regions or hosted on different cloud providers would
have to connect to the Indy node private network via site-to-
site VPNs or another type of network gateway mechanism.

B. Blockchain nodes

The Indy Pool comprises four virtual machines that act
as blockchain network nodes. Those nodes run Hyperledger
Indy Node code on a Ubuntu 16.04 Linux server with two
vCPU and 4GB of RAM, connecting via a secure private
network. Additional nodes can be added to the network by
an administrator if needed.

In addition to the VPN, the blockchain nodes also have
public IP addresses that enable Indy client connections. Those

IPs are registered in the genesis file, a configuration artifact
that acts as the network identifier, distributed among network
participants, allowing them to connect to the pool.

C. Messaging agents

There are many data exchange scenarios where this ar-
chitecture can be applied, and for every scenario, issuers,
holders, and verifiers will perform specific business operations.
This situation requires a flexible messaging agent setup, so
distinct user interface components can run decoupled from
their agents. Hyperledger Aries Cloud Agent provides this
flexibility by delivering an integration API layer that user
applications can consume to interact with the blockchain
network and other messaging agents. Aries agents also manage
user wallets, using Indy SDK local wallets or PostgreSQL
databases to store user credentials.

Aries Cloud Agents can be deployed as containers in a
Docker host or Python runners on Ubuntu Linux servers. To
keep the test environment simple and to observe the agent’s
runtime behavior more directly, all Aries Cloud Agents used
in the tests were deployed as Python runners. Aries agents run
on a Ubuntu 18.04 Linux server with two vCPU and 4GB of
RAM.

For testing purposes, the environment comprises four mes-
saging agent servers:

• One issuer server that can run different instances of
Hyperledger Aries Cloud Agent, according to the test that
is currently running.

• One verifier server that can run different instances of
Hyperledger Aries Cloud Agent, according to the test that
is currently running.

• Two holder servers, each runs two instances of Hyper-
ledger Aries Cloud Agent.

It is important to note that each holder server runs two
Aries instances (4 total), while issuer and verifier servers
run one instance each. This contrast was introduced during
the tests to adjust its balance, given the excessive load on
the holder servers due to the concentration of computational
tasks on these machines: e.g., in a typical issuer-holder-
verifier transaction, the holder orchestrates the interaction,
performing twice as many functions as the other entities.
Since real-world scenarios are supposed to have holder entities
spread on patients’ mobile devices, their impact on the overall
performance of the environment would be negligible.

Table I details the specification of Aries agent machines.

D. User interface

Most features of the proposed software are focused on
the patient experience. Therefore, the patient wallet is the
component that deserves the most thought. Fortunately, some
applications provide out-of-the-box SSI digital ledger func-
tionality for testing purposes. During the proof of concept,
this study selected the Trinsic [17] wallet for its simplicity
of user interface and ability to import external genesis files
pointing to custom Hyperledger Indy networks. For the per-
formance/scalability tests, however, the artifacts were replaced
by JMeter test runners that emulate the user behavior by
consistently consuming the agent APIs in the same sequence
as a regular user would do. Details regarding these runners are
described in the next section.

E. Test runners

This research adopted Apache JMeter [15] to automate most
of its tests. JMeter allows the execution of elaborate test plans
as concurrent runners, simulating the typical user load on a
system. Test plans specify the step sequence, the number of
concurrent runner threads, the pause between steps, and the
assertions that must be checked for successful runs.

During the execution of a test plan, JMeter collects runtime
data from the running threads, such as elapsed time, iteration
status, failed steps, throughput, among others.

Separate test plans were devised to simulate distinct health
data exchange scenarios. We evaluated the following aspects:

• average response time
• scalability capabilities
• behavior during stress
• bottleneck entities
• possible impacts in user experience

F. Evaluation criteria

This experimental plan presents evaluation criteria com-
posed of questions whose answers must be registered on a
data collection form for that particular test iteration. Those
criteria are described in Table II.

The test results provide information that supports the as-
sessment, either confirming the architecture’s soundness or
improving the experimental plan for subsequent iterations.

VI. HEALTH CARE USE CASES

The test scripts sought to represent common healthcare
scenarios that SSI technologies could improve. These use case
scenarios share specific capabilities that could be tested to
assess the fitness of the proposed architecture. For example:
if a health use case depends on a particular capability (e.g.,
expired claims) to be considered functional, and the tests for
the named capability fail, then the proposed model does not fit
that use case. The following list presents the healthcare scenar-
ios selected for the tests, briefly describing the improvements
this architecture could contribute.

• Immunization records: Despite previous attempts to
create an international standard for proving immunization
status, there is no easy way to validate its legitimacy when
reported by a person. The success of many efforts to bring
society back to normal after the COVID-19 pandemic
depends on reliable proof of vaccination, the so-called
COVID passports. International Air Travel Association,
for example, is adopting SSI technologies to provide
a travel pass app [18] that allows travelers to present
verifiable proof of negative test results and vaccine shots
taken without disclosing personal information. Figure 4
illustrates the model.

• Control methods for prescription drugs: prescription
drug regulation can benefit from the SSI approach by
leveraging Blockchain features such as immutability and
decentralized trust to combat counterfeit and identity
fraud. In addition, selective disclosure allows patients to
prove they are entitled to purchase prescription medicine
without exposing their personal data. Figure 5 shows the
model.

Figure 6 shows an example of the usual use case sequence
of actions among Holder, Issuer, and Verifier, with the numbers
associated with the actions/interactions mentioned in Table III.

VII. RESULTS AND DISCUSSION

The following sections present and discuss the test results
focusing on the overall performance, scalability capabilities,
and revocation behavior.

TABLE I
CLOUD AGENT MACHINE SPECIFICATIONS

Features Issuer setup Verifier setup Holders setup

Host name indylab-ariesagent-issuer indylab-ariesagent-verifier
indylab-ariesagent-holder

indylab-ariesagent-holder2
OS Ubuntu Server 18.04 Ubuntu Server 18.04 Ubuntu Server 18.04
Aries instances Single instance Single instance Two instances each
Size Standard B2s Standard B2s Standard B2s
vCPU 2 2 2
RAM 4GB 4GB 4GB

TABLE II
EVALUATION CRITERIA - DIMENSIONS

Dimension Questions Test plan
Scalability Does the proposed architecture scale?

Is it affected by latency?
How does it affect storage?

Test iterations with incremental load allow measuring the system’s working behavior
and extrapolating its supported capacity. The ability to scale horizontally and
vertically is verifiable by adding more resources to the test environment and testing
its effectiveness with further test runs and increased load. Overall latency impact is
measured by comparing the average response time while increasing the test load.
The same goes for storage impact, measured by checking the size of the blockchain
ledger and the entities’ local Indy wallets.

Performance How many API requests/second can it handle?
How many simultaneous users can it support?

The number of requests per second and simultaneous users are variables set at the
beginning of test runs that influence the overall system performance. The overall
system performance is measured by incrementing the number of simultaneous
users for every test iteration and monitoring its conditions. Any indications of
performance degradation, such as request errors, increased response time, or
inconsistent working behavior, are signals of a stressed environment and capacity
limit.

Extensibility Does the system provide Application Programming
Interfaces (APIs) for integration with external sys-
tems? Does the system support customization mech-
anisms such as plugins or add-ons that enable func-
tionality modification or improvement?

JMeter test scripts leverage Aries integration APIs to simulate client software
interactions with the system, supporting issuer, holder, and verifier client features.
Desired features that are not supported out of the box could be achieved by
extending Aries’s default functionalities. This capability should be observed during
test iterations.

Fig. 4. Immunization records Fig. 5. Prescription drugs

Fig. 6. Usual sequence of actions among Holder, Issuer, and Verifier.

A. Overall behavior

The first set of tests was focused on testing the system’s
overall function. This approach established a baseline by
selecting the most comprehensive health record scenario and
covering it end-to-end, beginning with a small load of simul-
taneous users and incrementing the load every round. The
immunization records scenario was chosen for this first set
of tests and configured as a sequence of API calls and result
validations in a JMeter script.

Along with the number of simultaneous users, other param-
eters were specified as part of this baseline: the time interval
between API calls was set to 2 seconds with a deviation of
500ms, assuming this average delay acceptable in a real-world
interaction. Also, for this baseline, all agents used Indy SDK
wallets that are, by default, stored in the local file system.

The following metrics were observed to examine the system
condition:

• number of running API requests/second
• average response time
• number of errors during steps
• CPU usage
• memory usage

Fig. 7. Immunization scenario with single Indy SDK local wallet

Results of this first round of tests, illustrated in Figure 7,
corroborate that the system average response time degrades
linearly as the user load increases, along with the Aries agent’s
CPU usage. They also indicate that user load has a negligible
impact on Indy blockchain’s computing resources, as shown
in Table III, suggesting that Aries agents rely primarily on the
information they exchange with peer agents via DIDComm.
Indy’s public ledger seems to be used by agents only to fetch
new schemas and public DIDs for unknown agents in their
first interaction.

The test assertions added to the JMeter confirmed the
expected results of the functional immunization records
tests, demonstrating the system’s fitness to the claim
proof/disclosure and record expiration functional capabilities.

The system architecture remained consistently stable as the
user load increased, reaching up to 80 simultaneous user
threads - supporting 14.5 TPS of throughput - running the
immunization records test script with no errors. However, with
100 simultaneous user threads, the system started degrading
and responding to Aries agent’s API requests with errors.

Even though the average response time remained below
2 seconds during the stressful condition, the failed requests
were the ones where elapsed time took longer than 2 seconds,
implying that the time interval between API requests, as
configured in the JMeter script, was not enough to wait for the
previous message to complete before triggering the subsequent
one. As a result, most failed requests responded with errors
similar to the following:
POST /issue-credential-2.0/send
HTTP/1.1 403 Forbidden
Connection XYZ not ready

The analysis of the server under high load conditions
showed that, while Aries’ server CPU usage was below 50%,
the Python process that ran the Aries agent took 100% of
its core CPU (Figure 8), indicating that Aries single-threaded
architecture had reached its processing limit.

Table III shows the result details for the first round of tests.
Memory consumption metrics were omitted since user load did
not affect Indy or Aries servers in this regard. The numbers
between parentheses are the maximum and minimum response
time in milliseconds.

B. Scalability behavior

The second set of tests focused on optimizing the test en-
vironment and assessing the architecture’s scalability capa-
bilities. From the settings adopted for the first round, some
adjustments were made:

Fig. 8. Aries agent CPU usage under stress

TABLE III
NUMBER OF THREADS versus RESPONSE TIME: AVERAGE (MIN–MAX) MS - RAW DATA AND SCRIPTS AVAILABLE [19]

Number of simultaneous threads
API Request

20 threads 40 threads 60 threads 80 threads 100 threads 120 threads
of scenario executions 200 684 752 1040 1113 992

Step - Connection issuer/holder 139 ms 173 202 292 498 662
01 - Issuer invitation 52 (37-222) 65 (34-457) 86 (35-546) 137 (35-867) 329 (19-1333) 528 (39-1674)
02 - Holder receives invitation 29 (21-133) 37 (20-427) 39 (39-446) 51 (20-746) 56 (19-747) 43 (19-444)
03 - Holder acceptance 58 (38-170) 71 (40-631) 76 (38-715) 104 (41-810) 113 (40-1097) 90 (40-588)

Step - Credential issuance 215 267 307 433 707 748
04 - Issuer issues credential 52 (32-243) 65 (33-561) 88 (35-590) 152 (39-893) 407 (44-1949) 520 (32-2331)
05 - Holder queries credential 26 (18-176) 31 (17-547) 39 (17-744) 53 (17-658) 56 (4-850) 30 (3-751)
06 - Holder stores credential 137 (102-474) 171 (102-830) 179 (101-893) 228 (100-1347) 243 (103-1379) 197 (102-1103)

Step - Connection verifier/holder 187 190 231 340 519 786
07 - Verifier invitation 105 (38-940) 84 (36-656) 113 (35-938) 181 (36-1234) 346 (35-3239) 652 (38-2504)
08 - Holder receives invitation 29 (20-127) 35 (19-362) 43 (19-409) 52 (19-509) 54 (20-896) 43 (19-408)
09 - Holder acceptance 53 (41-137) 71 (39-664) 75 (40-497) 106 (38-1138) 118 (41-1304) 91 (39-1564)

Step - Credential verification 417 503 569 770 1.048 1.447
10 - Verifier requests proof 42 (19-425) 52 (18-502) 72 (19-692) 107 (20-1015) 207 (19-2446) 296 (19-2375)
11 - Holder queries requests 19 (8-111) 43 (9-446) 49 (9-401) 75 (9-640) 79 (9-835) 42 (9-510)
12 - Holder queries eligible credentials 20 (11-101) 43 (13-762) 51 (13-534) 78 (12-749) 86 (13-961) 43 (12-718)
13 - Holder sends proof 163 (128-309) 171 (126-714) 174 (129-690) 209 (130-892) 224 (128-1302) 200 (130-939)
14 - Verifier validates proof 174 (141-334) 196 (139-731) 222 (138-879) 301 (145-1389) 452 (145-3146) 866 (142-2367)

Throughput (average number of completed requests/second)
Value 3.8 7.5 11.1 14.5 17.6 20.3

CPU Usage (average %)
Indy servers 11.9% 12.7% 12.5% 12.7% 12.7% 12.6%
Aries server - issuer 9.1% 13.9% 18.2% 28.5% 36.5% 35.3%
Aries server - verifier 6.6% 11.9% 17.1% 25.7% 35.4% 35.6%

Errors (average %)
Failed requests 0% 0% 0% 0% 4.1% 21.6%

• The JMeter script running configuration was modified
to skip further API requests of a given user thread if
a prior request failed. This setting provided more reliable
results since some error requests could be considered
in the metrics, even knowing that their effect would
be inevitably flawed given the errors in the previously
required API requests of the chain;

• To counteract the Aries single-threaded architecture lim-
itation, the issuer and verifier servers were adjusted to
run two Aries agent instances sharing the same wallet.
An NGINX [20] reverse proxy was added to the server
to balance the API requests between Aries local instances;

• Aries agent’s digital wallet mechanism was switched
from the default Indy SDK local storage to a local Post-
greSQL database instance. This change was necessary
to support concurrent access to a single digital wallet,
a feature currently not supported by the Indy SQLite
database implementation [21];

The test results showed that working with concurrent Aries
agents locally on issuer and verifier servers allowed them
to handle CPU usage more efficiently in the two vCPU
configurations and, consequently, support more simultaneous

users with the same hardware. With this configuration, the
environment could sustain 120 simultaneous user threads (23.3
requests/second of throughput) without errors, peaking at 73%
of CPU usage.

An unexpected event occurred during this test round, caus-
ing verifier agents to crash after some testing time. The causes
for the Aries agent to halt could not be determined, but the
agent logs showed similarities with a known issue identified
by the Lissi Identity team [22].

C. Revocation behavior

The third set of tests was meant to validate the revocation
capabilities of Indy and Aries components. The environment
followed the same configurations used in the last iteration,
apart from the following changes:

• A different health scenario was selected to evaluate
distinct functional capabilities. The prescription drugs
scenario was represented in a different JMeter test script.

• A new server component had to be added to the envi-
ronment: a Tails [23] revocation server, used by Aries
agents to check for revoked credentials. This component
was installed in the Indy bastion server.

Fig. 9. Performance impact in credential revocation scenario with 60
simultaneous users

The test results shown in Figure 9 confirmed that handling
revocation records raise the complexity of credential issuance
and validation processes. This behavior could be observed in
the overall response time of the Aries API requests for this
scenario compared with the results of previous scenarios.

The prescription drugs scenario presented some implemen-
tation challenges that out-of-the-box SSI interaction could not
solve. For example, Indy credentials do not support single-
use capabilities, which could be used to implement a medical
prescription that would be consumed upon presentation at a
drugstore. Also, standard DID methods do not allow Indy
credentials to be revoked by entities other than those that
issued them. This prevents the alternative where the drugstore
could revoke the drug prescription after verifying it.

The last test consisted of shutting down the Indy nodes,
one by one, and verifying the behavior. As expected, Indy
nodes could not ensure consensus if one of the four nodes
was missing. The error message observed in the Aries error
logs was:

POST /present-proof-2.0/records/../send-presentation
HTTP/1.1 400 Bad Request
Exception raised by ledger transaction:
Error: Pool timeout.
Caused by: Consensus is impossible.

After shutting down the other Indy nodes, Aries agents
could not operate and logged the following error message:
Shutdown in progress.

VIII. CONCLUSIONS

Self-sovereign identities technology allows the creation of
decentralized applications where the data owner controls his
data (credentials). During the COVID-19 pandemic, we saw
the world’s first relevant example of this application. And we
believe that more use cases will emerge in the following years.

This work innovates by evaluating personal health features
as credentials, and mapping intricate healthcare entity relations
in simple issuer-holder-verifier interactions. We also identified
practical limitations of the SSI model. The developers can use
these results to project future systems and applications.

Our experiments offer a baseline for achievable perfor-
mance. It says that up to 80 concurrent users can be supported

even in a simple setup. After 80 simultaneous users, some
level of performance degradation is expected. Our results have
methodological limitations; the most critical limitation is that
there are additional latencies between system components in
actual setups due to human interaction and network latency.
We expected that user interaction time would increase the
number of concurrent users. On the other hand, network
latency can create new problems, such as timeouts and con-
nection loss. It is worth mentioning that the performance data
depends on the setup, but our results can be an orientation.

In future work, we will improve the evaluation method
by inserting adaptive backoff time intervals between API
requests to get a more precise result in the maximum number
of concurrent users. Another alternative is to implement a
pool of requests, making it easier to control the number of
requests. Another open question that needs to be investigated
is precisely why the process is CPU bound in the Aries agent;
in the future, we want to refine this finding.

Stressed conditions tend to impact Aries agents much more
than Indy blockchain nodes. The metrics that should be
monitored to detect system degradation are: increased average
API response time, CPU usage, and failed API requests.

Since Aries agents’ processes are CPU-bound, adding more
agents to an Aries cluster (combining several instances and
load balancer) efficiently scales the environment horizontally.
Adding more CPU resources to Aries agents is also possible
but conceivably limited due to I/O and memory bottlenecks
that could happen despite appearing negligible in our tests.
Another possible extension of this work is to improve the
scalability. One possibility is using several instances of Aries’
agents and a load balancer before the agents.

ACKNOWLEDGMENT

The work was partially supported by SmartMed Project,
Research Council of Norway, project number: 288106.

This research is part of the INCT of the Future Inter-
net for Smart Cities funded by CNPq proc. 465446/2014-
0, Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior – Brasil (CAPES) – Finance Code 001, FAPESP
proc. 14/50937-1, and FAPESP proc. 15/24485-9.

REFERENCES

[1] A. Preukschat and D. Reed, Self-Sovereign Identity. Manning Publica-
tions, 2021, kindle edition.

[2] R. Soltani, U. T. Nguyen, and A. An, “A survey of self-sovereign identity
ecosystem,” Security and Communication Networks, vol. 2021, 2021.

[3] W3C, “Decentralized Identifiers (DIDs) v1.0 - Core architecture,
data model, and representations,” 2021. [Online]. Available: https:
//www.w3.org/TR/did-core/

[4] ——, “Verifiable Credentials Data Model 1.0 - Expressing verifiable
information on the Web,” 2019. [Online]. Available: https://www.w3.
org/TR/vc-data-model

[5] ComputerWorld, “How blockchain makes self-sovereign identities possi-
ble,” 2018. [Online]. Available: https://www.computerworld.com/article/
3244128/how-blockchain-makes-self-sovereign-identities-possible.html

[6] K. Werbach, The blockchain and the new architecture of trust. Mit
Press, 2018.

[7] M. S. Ferdous, F. Chowdhury, and M. O. Alassafi, “In search of
self-sovereign identity leveraging blockchain technology,” IEEE Access,
vol. 7, pp. 103 059–103 079, 2019.

[8] E. J. De Aguiar, B. S. Faiçal, B. Krishnamachari, and J. Ueyama, “A
survey of blockchain-based strategies for healthcare,” ACM Computing
Surveys (CSUR), vol. 53, no. 2, pp. 1–27, 2020.

[9] B. A. Alzahrani, “Self-protected content for information-centric net-
working architectures using verifiable credentials,” Telecommunication
Systems, pp. 1–10, 2022.

[10] A. Siqueira, A. F. da Conceição, and V. Rocha, “User-centric health data
using self-sovereign identities,” IV Workshop em Blockchain: Teoria,
Tecnologias e Aplicações (WBlockchain), 2021. [Online]. Available:
https://doi.org/10.5753/wblockchain.2021.17135

[11] M. López, “Self-sovereign identity: The future of identity: Self-
sovereignity, digital wallets, and blockchain,” LACChain, 2020.

[12] P. Windley, “Blog: Decentralized identifiers,” 2019. [Online].
Available: https://www.windley.com/archives/2019/02/decentralized\
identifiers.shtml

[13] A. Satybaldy, M. Nowostawski, and J. Ellingsen, “Self-sovereign identity
systems: Evaluation framework,” in IFIP International Summer School
on Privacy and Identity Management. Springer, 2019, pp. 447–461.

[14] Hyperledger, “Aries RFC 0005: DID Communication,” 2019. [On-
line]. Available: https://github.com/hyperledger/aries-rfcs/tree/master/
concepts/0005-didcomm

[15] A. S. Foundation, “Apache JMeter Website,” 2022. [Online]. Available:
https://jmeter.apache.org

[16] Microsoft, “Microsoft Azure Website,” 2022. [Online]. Available:
https://portal.azure.com

[17] Trinsic, “Identity wallets,” 2021. [Online]. Available: https://trinsic.id/
identity-wallets/

[18] IATA, “IATA - travel pass initiative,” 2021. [Online]. Available:
https://www.iata.org/en/programs/passenger/travel-pass/

[19] Github, “Aries Performance Test - Raw data and test
scripts,” 2022. [Online]. Available: https://github.com/alex-siqueira/
aries-performance-test/tree/main/test-scripts

[20] NGINX, “Nginx website,” 2022. [Online]. Available: https://nginx.org
[21] Hyperledger, “Credential definition not in wallet - issue #1480 - github

repository,” 2021. [Online]. Available: https://github.com/hyperledger/
aries-cloudagent-python/issues/1480

[22] L. Identity, “System crashes after ”record not found” exception -
acapy load test results - github repository,” 2022. [Online]. Available:
https://github.com/lissi-id/acapy-load-test-results

[23] P. of British Columbia, “Indy Tails Server - Github Repository,” 2022.
[Online]. Available: https://github.com/bcgov/indy-tails-server

