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Abstract. Instruments for monitoring severe meteorological phenomena (such
as lightning, flooding and landslides) can be used to assist in decision-making
by state agencies, in an attempt to mitigate their possible harmful effects. These
phenomena usually occur suddenly on a short-term duration, under a limited
region, imposing difficulties in being predicted by regular weather forecast mo-
dels, requiring specific prediction systems. Very short-term weather forecasting
systems, on order of a few hours, known as nowcasting, can include numerical
models of physical phenomena and machine learning algorithms. This work
presents a system for forecasting the incidence of lightning, a common pheno-
menon in electrically active storms, through the application and evaluation of
two machine learning models, an Artificial Neural Network and a Random Fo-
rest model, which were able to detect the occurrence of atmospheric electrical
discharges from the automatic recognition of patterns obtained from the data ge-
nerated by the numerical weather forecasts. The Random Forest model presen-
ted the best results when trained with the set that includes the ten best correlated
variables, reaching 99.77% of accuracy for the case study performed.

1. Introduction
To carry out a short-term weather forecast (known as nowcasting), the operational we-
ather and climate forecasting centers use past and real-time information about the preci-
pitation intensity, electrical discharges, and cloudiness occurring in the monitored locati-
ons [Sakuragi 2017]. This meteorological data can be obtained through radars, satellites,
automatic weather stations, or even through data produced through a - Numerical We-
ather Prediction (NWP) model. The alerts’ reliability from the operational monitoring
centers depends on the spatial resolution and updating frequency from the meteorological
observations available in an integrated display system, which can be easily operated by
the forecaster, in addition to the forecaster’s knowledge and experience [WMO 2017].

This work aims to assist the forecaster in monitoring and predicting severe we-
ather events, automatically identifying regions associated with the development of storms
that produce electrical discharges (lightning), through a Machine Learning algorithms
(ML) [Faceli et al. 2011]. Machine learning is an sub-area of Artificial Intelligence (AI)
related to the development of software that explore techniques capable of finding their
own solution, learning through examples, that is, simulating characteristics present in hu-
man rational behavior, relying on the advantages of time, robustness and reliability that a
computational system can offer, and using inductive reasoning to conclude a result after



considering a sufficient number of particular cases. In the last decade Nowcasting has
increasingly benefited from rapid advances in ML models [Leinonen et al. 2022].

Two methods were chosen to recognize patterns that characterize atmospheric
conditions: Artificial Neural Network (ANN) with the the well-known Multi-Layer Per-
ceptron (MLP) [Haykin 2001] and Random Forest (RF) [Ho 1995]. The training phase
for both used estimated electrical discharge data combined with forecast data from an
NWP model, joined with an algorithm to extract the data developed during the research.

2. Materials, Methods and Methodology

As input data for training and testing ML methods to classify and predict the intensity
of electrical activity in the atmosphere, data from the Weather Research and Forecasting
Model (WRF) [NCAR 1990] were used. Also, data from Geostationary Lightning Map-
per (GLM) sensor have been used to define the atmospheric events severity. The GLM
sensors are located on GOES-16 satellite in a geostationary orbit, and represent a single-
channel, near-infrared, optical transient detector. It also detects continuously all forms
of lightning on day and night with 10km for spatial resolution and 5Km for mapping
accuracy, with detection efficiency of 70% or better with a False Alarm Rate (FAR) <
5% [NOAA/NESDIS 2012].

The WRF raw data were provided in NetCDF [Rew and Davis 1990] format, with
approximately 110 GB for each simulation, totaling 4.9 TB of data. For the observed
data, data from the GOES 16 satellite were used, with the GLM sensor, pre-processed by
INPE (National Institute for Space Research in Brazil) for the period between 01/02/2019
at 00:00 UTC and 01/24/2019 at 23:00 UTC, providing a new data grid every 15 minutes
for South America, with a spatial resolution of 8 x 8 km. This data was also provided in
the NetCDF [Rew and Davis 1990] format, with approximately 90 Kb per file, totaling 65
GB.

The Region of Interest (RoI) was defined over South America. Ideally, in now-
casting systems the forecast models are started for every hour, however, the operational
WRF model used was started only on 12-hour intervals, with a 1-hour output frequency.
So for the interval between 0 am and 11 am the output data generated from the 00Z model
start was used. For the remaining interval, from 0 pm to 11 pm, the data generated by
the model started on 12Z have been used. The GLM data was extracted by looking for
samples with positive flash value (the flash information is based on the density of lights
per km²). Therefore, for the same instant, tuples (WRF,GLM) were generated, with and
without lightning. These data for each time step were the basis for the ML’s training
dataset.

Two types of classification were defined for the intensity of lightning:

• Binary Classification - dataset is divided into two groups: inactivity (class 0) and
flash activity (class 1);

• Multi-class - data referring to the class of inactivity in the occurrence of light-
ning (class 0), and data grouped into three groups (clusters), defining diffe-
rent classes of lightning from GLM, representing low (class 1), medium (class
2) and high (class 3) flash activity, with their thresholds defined using the K-
Means [MacQueen 1967] method with three clusters.



To identify which atmospheric output variables from the WRF model shows the
major influence on the occurrence of lightning, a correlation was calculated between all
the WRF output variables and the lightning density/km² from the GLM. From them, four
sets with different numbers of parameters/variables to be used for ML training were defi-
ned:

• Dataset 1 - The first 5 variables with the highest correlation value;
• Dataset 2 - The first 10 variables with the highest correlation value;
• Dataset 3 - The first 15 variables with the highest correlation value;
• Dataset 4 - A set of 12 variables with the highest correlation values chosen from

empirical knowledge of meteorology and computer scientists. The idea is to verify
whether the data chosen based on knowledge about meteorology may suffer from
the choices of non-meteorologists.

In this research, three ML models were used: MLP-type ANN trained for binary
classification, labeled as regions with and without lightning; MLP-type ANN trained to
classify the severity of these phenomena (no flash activity, little activity, medium activity
and high activity); and RF, also trained to classify the severity of the events. The ML
models were implemented using Python’s sckit-learn [Pedregosa et al. 2011] framework.

3. Results

In the data extraction over the RoI for the period, a total of 15,372 flash samples were
detected and selected, joined with the same number of inactivity points in different regions
to keep the data used in the ML methods balanced, totaling 30,743 samples.

Almost all variables representing wind, temperature and humidity at various verti-
cal levels was included in the fifteen best WRF variables correlated to GLM data, showing
a recurring pattern. According to a Systematic Literature Review performed by the
authors in the field of interest, it was noted that the four variables most used to predict
meteorological events in studies with AI are precipitation, wind, temperature, and humi-
dity. Therefore the correlation presented a result including variants of the meteorological
information used in 60% of studies according to the same review.

To analyze the performance the following metrics was used:

1. POD (Probability of Detection):

POD =
TruePositives

(TruePositives+ FalsiesNegatives)
(1)

2. Precision:

precision =
TruePositives

(TruePositives+ FalsiesPositives)
(2)

3. FAR (false-alarm rate):

FAR =
FalsiesPositives

(TruePositives+ FalsiesNegatives)
(3)



4. Bias [Luxburg and Scholkopf 2011]:

BIAS =
(TruePositives+ FalsiesPositives)

(TruePositives+ FalsiesNegatives)
(4)

Based on the Table 1, all models showed satisfactory results, except for Binary
ANN and MC ANN with dataset 4. Also, in Table 1 it is observed that set 2 presented the
best performance among the ML models studied, which contain the ten WRF variables
best correlated with GLM data. For the evaluated period, most of the models trained with
set 2 successfully achieved the lightning activity and inactivity pattern identification, hit-
ting 100% of the cases. It should be noted that the results of the validations are associated
with a sample set of data and not with the total points of the WRF model’s output grid,
which was a limitation of the study strategy.

Tabela 1. ML Models Results for the 4 sets.

ML Model Set FAR Precision POD Bias

Binary ANN 1 0,0000 1,0000 1,0000 1,0000
Binary ANN 2 0,0000 1,0000 1,0000 1,0000
Binary ANN 3 0,0010 0,9990 1,0000 1,0010
Binary ANN 4 0,7827 0,2173 0,6850 0,3153

MC ANN 1 0,0003 0,9997 1,0000 1,0003
MC ANN 2 0,0000 1,0000 1,0000 1,0000
MC ANN 3 0,0003 0,9997 0,9997 1,0000
MC ANN 4 0,0000 1,0000 0,5296 0,5296

RF 1 0,0000 1,0000 1,0000 1,0000
RF 2 0,0000 1,0000 1,0000 1,0000
RF 3 0,0000 1,0000 1,0000 1,0000
RF 4 0,0000 1,0000 1,0000 1,0000

The hypothesis that set 2 is more effective is due to the inclusion of a humidity
profile up to average levels in the atmosphere, which is an essential ingredient for cloud
formation in pre-convective situations [Cotton et al. 2010]. Although set 3 also presented
the same profile, the selection of more variables should be less effective, introducing
more errors in the forecast. Set 1 was limited to regions closer to the surface, which
did not represent the layers where the separation of electrical charges is more evident
[Rakov and Uman 2003]. And last but not least, the empirical variables choice, which
presented the worst result, should be a consequence of good and bad choices, which
shows that even using good variables, the selection of less related variables negatively
impacts the results.

Figure 1 shows the confusion matrix referring to the lightning forecast for the
four defined classes in a specif day (09/01/2019), when high atmospheric electric activity
was noted. In this figure, it is possible to perceive the accuracy of the prediction through
the RF model using set 2, where the diagonal highlighted cells in gray represents the
assertiveness lightning severity class prediction, demonstrating the quantities of predicted



Figura 1. Confusion Matrix for RF model with Set 2 in 09/01/2019.

and observed samples for the classes. Thus, it is possible to notice 3843 samples without
atmospheric electrical activity (class 0), 3416 samples with low activity (class 1), 363
samples with moderate activity (class 2), and 63 samples with high activity (class 3) were
predicted and observed. It is also important to note the erroneous prediction for only a
single sample in the last row of the matrix, where the ML method had predicted high
activity instead of an observed moderate activity.

4. Conclusion

In this study, three AM models have been analyzed: ANN with binary classification, ANN
multi-classes, and Random Forest multi-classes, for four different training dataset. The
four most used variables to predict severe weather events in AI studies, according to a
briefly bibliographic review, are precipitation, wind, temperature, and humidity. From the
methodology developed for data extraction and the calculation of the correlation between
WRF output variables and the GLM data, the best-correlated variables that make up the
sets used in the training of the models are concentrated in wind speed variants, tempera-
ture, and humidity at various vertical levels.

It is important to note that the presented validation results are strongly associated
with a specific period, using a sample set geographically distributed in the RoI, and do
not cover the total grid points in the horizontal grid used in the WRF model. Thus, there
is a chance that the high degree of assertiveness found is related to specific atmospheric
conditions in the period and strongly correlated with the occurrence of electrical activity,
which is a limitation of the method used.

It was also observed that ML models presented satisfactory results for short-term
prediction. Since they are probabilistic models, the physical and dynamic conditions of
the atmosphere over time was not considered. The use of better correlated variables for
the construction of data sets proved to be effective.

The data used in this work represent only one month of information in a specific
year. This fact suggests that the results of the models created can only represent the events
that occurred in this period. In order to generalize the results, it is necessary to train the
algorithms for longer periods taking into account the seasonality of convective events in



different regional regimes. Such a study would demand greater computational resources
and more detailed analyses, which is intended to be carried out in the future.
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