
Dynamic Network Slicing in Fog Computing for
Mobile Users in MobFogSim

Diogo Gonçalves∗, Carlo Puliafito†, Enzo Mingozzi†, Omer Rana‡, Luiz Bittencourt∗, and Edmundo Madeira∗
∗Institute of Computing, University of Campinas, Brazil

†Department of Information Engineering, University of Pisa, Italy
‡School of Computer Science and Informatics, Cardiff University, UK

diogomg@lrc.ic.unicamp.br, carlo.puliafito@ing.unipi.it,
enzo.mingozzi@unipi.it, ranaof@cardiff.ac.uk, {bit, edmundo}@ic.unicamp.br

Abstract—Fog computing provides resources and services in
proximity to users. To achieve latency and throughput require-
ments of mobile users, it may be useful to migrate fog services
in accordance with user movement – a scenario referred to as
follow me cloud. The frequency of migration can be adapted based
on the mobility pattern of a user. In such a scenario, the fog
computing infrastructure should simultaneously accommodate
users with different characteristics, both in terms of mobility
(e.g., route and speed) and Quality of Service requirements
(e.g., latency, throughput, and reliability). Migration performance
may be improved by leveraging “network slicing”, a capability
available in Software Defined Networks with Network Function
Virtualisation. In this work, we describe how we extended our
simulator, called MobFogSim, to support dynamic network slicing
and describe how MobFogSim can be used for capacity planning
and service management for such mobile fog services. Moreover,
we report an experimental evaluation of how dynamic network
slicing impacts on container migration to support mobile users
in a fog environment. Results show that dynamic network slicing
can improve resource utilisation and migration performance in
the fog.

Index Terms—Network Slicing, Fog Computing, Internet of
Things, Mobility, Container Migration, Follow Me Cloud, Sim-
ulator, MobFogSim.

I. INTRODUCTION

The Internet of Things (IoT) is a popular paradigm for
the implementation of electronic services and applications.
However, IoT devices can have computational, storage, and
battery constraints and require a cloud data centre for the exe-
cution of compute-intensive tasks. Cloud servers are generally
concentrated in a few data centres and are typically multiple
hops from IoT devices, making the cloud data centre unable
to meet latency constraints of many emerging applications.

In this context, fog computing provides computing resources
closer to the network edge, often in close proximity to end
users and devices needing them. As fog computing comprises
a number of distributed nodes – rather than a single (often
centralised) data centre, it can offer benefits such as: (i) low
latency; (ii) better privacy and security; (iii) improved context
awareness; and (iv) uninterrupted services in the presence of
intermittent or limited network connectivity to the cloud [1].
However, fog computing does not replace the requirement for
a cloud data centre, but rather complements it, providing a
hierarchical infrastructure between the network edge and a

centralised cloud data centre. Fog computing resources are
synonymously referred to as fog nodes, cloudlets, or Micro
Data Centres (MDCs) and usually run services in the form of
Virtual Machines (VMs) or containers.

The implementation of fog computing presents several
challenges. Device mobility is one of them because, when
a device/user moves, the communication distance to the fog
service may increase, and benefits of using fog nodes may no
longer be possible. A possible approach to solve this issue is to
migrate the user’s VM/container across the fog infrastructure
to keep it always close enough to the mobile user [2].

These service migration and resource management ap-
proaches are made more complex due to significant diversity
and heterogeneity of users and application requirements that
exist in fog environments [3] [4]. Mobile users may move
at different speeds (e.g., on foot or by car) and according
to different mobility patterns. In addition, some applications
may present strict requirements in terms of latency; others
may prioritise throughput, while others may have specific
hardware needs. In such a scenario, some users may require a
higher priority for managing their service migration, manage
their migration speed, or require specific destination node(s).
Traditional network infrastructures are not able to guarantee all
of these, sometimes parallel, levels of security, performance,
reliability, privacy, and/or other particular requirements for
each user group.

Software Defined Networking (SDN), Network Functions
Virtualisation (NFV), and dynamic network slicing offer
mechanisms to support some of these requirements. Specif-
ically, SDN and NFV [5] decouple network functions (e.g.,
firewalls, routing) from the underlying network hardware,
implementing them as Virtual Functions. This leads to great
flexibility, as it enables the creation, deletion, and migration
of network functions from one hardware device to another on-
demand and in a timely way. Network slicing [6] leverages
SDN and NFV to create different logical/virtual networks on
top of the same physical network. Each logical network (i.e.,
a network slice) is tailored to fulfill the requirements of a
particular group of users and/or applications. Furthermore, net-
work slices can be dynamically reconfigured and reallocated to
address the changing needs of users and avoid underutilisation
of network resources (i.e. via dynamic network slicing).



In [7] we introduced MobFogSim – a simulator for
VM/container migration in fog environments serving mobile
users. In this work, we extend MobFogSim to support dynamic
network slicing and analyse the impact of dynamic network
slicing on migration performance in the fog. Specifically, the
contributions of this paper are twofold:

• it discusses our design and implementation of dynamic
network slicing in MobFogSim. Dynamic network slicing
represents an important extension to this simulator, which
currently is the only fog computing simulator that imple-
ments VM/container migration to support mobile users;

• it evaluates the impact of dynamic network slicing on
container migration in the fog to support mobile users.
We present our experimental contributions in two parts.
The first analyses static allocation of network slices, and
the second considers dynamic slices. Simulations were
carried out in MobFogSim.

The rest of the paper is organised as follows. Section
II introduces key concepts and context for this work. Sec-
tion III introduces the most salient aspects of MobFogSim and
describes experiments that motivated this work. Section IV
presents the main modifications that we made in MobFogSim
to add dynamic network slicing support. Sections V and VI
describe the experiment setup and provides an analysis of
results – for both static and dynamic network slicing. Section
VII outlines open challenges that need consideration, and
related work is presented in Section VIII. Finally, Section IX
concludes this paper and presents future works.

II. BACKGROUND

This section provides an overview of the core concepts in
this work: container migration (see Section II-A) and network
slicing (see Section II-B).

A. Container migration

Fog computing applications are typically encapsulated
within virtual environments, such as VMs or containers, which
allow multi-tenancy and high flexibility. MobFogSim models
both VMs and containers (see Section III-A). However, we
highlight that even though the choice between VMs and
containers depends on actual user needs and application re-
quirements, the latter are more lightweight than the former in
terms of memory consumption and therefore in terms of data
to transmit during migration. Hence, containers are typically
preferred in fog computing environments [8], where resources
are more limited than in cloud data centres. Based on this,
we mainly consider containers in our work. However, the key
ideas outlined in this work are also applicable to VMs.

Different techniques exist to migrate containers. The four
most popular approaches are: cold, post-copy, pre-copy and
hybrid. Currently, MobFogSim models the first two of these
approaches. For this reason, we now provide a brief description
of these two only. However, the work in [9] provides a
thorough discussion and quantitative comparisons for these
four techniques.

Cold migration stops the container before saving and trans-
mitting its state; it then resumes the container at the destination
only when all the state has been transferred. Therefore, the
time interval during which the container is unavailable to its
users (i.e., downtime) coincides with the total migration time,
which is the overall time required to complete the migration.

Post-copy migration involves stopping the container only
for saving and transferring a small portion of the overall state.
This leads to a more limited downtime. The container then
resumes at destination, and, while it is running, the rest of its
state gets migrated. Post-copy is a “live” migration technique,
because the container remains active most of the time during
the migration process.

B. Network slicing

In traditional networks, network functions are embedded
in the hardware. Under such conditions, changes in demand
results in physical changes to the network infrastructure. There
are situations in which application requirements cannot be
always fulfilled by this kind of infrastructure. One example
is that of mobile users who present different characteristics of
mobility (e.g. speed of movement) and have different Quality
of Service (QoS) requirements (e.g., latency, throughput). NFV
decouples network functions from the underlying hardware
and presents them as virtual functions. SDN, instead, intro-
duces the concept of programmable networks in which it
is possible to control network resources through Application
Programming Interfaces (APIs). The combination of NFV and
SDN enables the concept of network slicing.

Network slicing creates different logical networks over the
same physical network. Each logical network (i.e., a network
slice) is created to serve a group of users with specific
needs. Network slices can cover all the network domains
(i.e., end-to-end slice) or only some of them. Furthermore,
slices can present different levels of isolation: some of the
logical resources or network functions of a slice can be shared
with other slices or actors outside the domain. Network slices
enable better control of network resources and provide users
with a virtual network that is tailored to their requirements
and characteristics.

Fig. 1 illustrates the concept of network slicing. As shown,
there is a physical network infrastructure on top of which
there are three logical networks. Each of them addresses the
requirements of a specific category of applications. Hence,
the first logical network is dedicated to enhanced Mobile
BroadBand (eMBB) applications, which require high through-
put. The second slice supports Machine-type Communications
(mMTCs), which requires efficient connections in terms of
energy consumption in an environment with high connection
density. The third and last logical network is meant to serve
Ultra-Reliable Low-Latency Communications (URLLCs) ap-
plications, which require high reliability and availability with
ultra-low latencies.

Network resources can be assigned to each slice either stat-
ically or dynamically. A static network slice receives a fixed
portion of network resources according to its demand. This



Core network

Transport 
network

Access network

IoT layer

WLAN
access

5G/LTE
access

Access
node

Transport
node

Core
node

Fog
node

Cloud
node

Physical 
Infrastructure eMBB Slice mMTC Slice uRLLC Slice

Fig. 1: Types of Network Slicing

number of resources remains allocated to that slice until the
slice is active. Further resources cannot be assigned to a static
slice at runtime. On the contrary, dynamic network slicing
allows a slice to acquire and release resources according to
dynamic demand, thus enabling scaling up and scaling down.

III. MOBFOGSIM

Section III-A presents MobFogSim and provides an
overview of its mobility and migration modelling. In Section
III-B we discuss some preliminary simulations in MobFogSim
that motivate this work.

A. Overview of MobFogSim

MobFogSim [7], derived from MyiFogSim [10], is an open-
source fog computing simulator1 developed as an extension
of iFogSim [11]. The latter is written in Java and is widely
used for modelling and simulating fog computing networks.
Applications in iFogSim are modelled as Directed Acyclic
Graphs (DAGs) where vertices represent application modules,
while edges represent interactions expressed as offloading of
tasks (called “tuples” in iFogSim) between modules. In terms
of physical infrastructure, iFogSim models fixed IoT devices,
fog nodes and cloud data centres.

MobFogSim enhances iFogSim with the modelling of user
mobility and VM/container migration among fog nodes. This
makes MobFogSim a comprehensive tool for the evaluation
of fog computing networks where end user devices are both
fixed and mobile. More specifically, MobFogSim implements
a Migration Policy that decides when to migrate a user’s
VM/container. This decision is based on parameters such as:
(i) user’s position, direction, and speed; and (ii) occurrence of
a wireless handoff (i.e., change of access point performed by
the mobile device). The Migration Strategy, instead, decides
where to migrate the service, i.e. it chooses the next fog node
to run the service. This selection may be based on geographical

1See https://github.com/diogomg/MobFogSim. Last accessed: August 24th,
2020.

or topological proximity of the new fog node to the mobile
device, but other criteria can be also implemented.

As discussed in Section II-A, MobFogSim currently sup-
ports cold migration and (live) post-copy migration. How-
ever, the simulator can also be extended to support other
migration techniques, e.g., pre-copy and hybrid. MobFogSim
also introduces new Java classes to represent specific roles
in a fog environment with mobile users. The ApDevice class
extends the FogDevice class from iFogSim to implement the
behaviour of access points, which manages wireless handoffs.
The MobileDevice class also extends FogDevice to represent
mobile devices. In iFogSim, both access points and mobile
devices are implemented as instances of FogDevice. Moreover,
MobFogSim introduces the Coordinate class for specifying the
location of entities during simulation.

MobFogSim is also integrated with Simulation of Urban
MObility (SUMO) [12]. This enables simulation to be carried
out using data from realistic mobility databases. An example is
the Luxembourg SUMO Traffic (LuST) database [13], which
contains data from vehicle mobility in Luxembourg. The
workflow is as follows. The LuST database is provided as
XML input to SUMO. The latter interprets mobility data and
produces a csv file for each simulated vehicle. The information
reported in each csv file is: (i) position x and y on the map;
(ii) speed in metres per second; (iii) direction in radiants;
and (iv) simulation time. This new database is hence used by
MobFogSim as a basis to define users’ mobility. However, to
adapt this database to its mobility model, our simulator makes
some modifications, such as conversion of speed to kilometres
per hour and conversion of direction to the eight main cardinal
points.

B. Preliminary simulations

In this section, we highlight some of MobFogSim capabil-
ities by evaluating the impact of user mobility and speed on
service migration in fog computing. This extends previously
reported results from [7]. This scenario motivates our proposal
to introduce network slicing as a possible way to improve
performance of service migration for mobile users in a fog
environment.

1) Simulation setup: The simulation settings in this section
are based on values extracted from a physical testbed that was
used in [7] to validate our simulator. User mobility patterns
are instead taken from LuST. In the testbed configuration, the
user’s device was an ASUS Zenbook UX331UN notebook,
and the fog nodes were represented by two Raspberry Pi
3 Model B devices. Two network conditions were emulated
in the testbed: (i) a slower network presenting, on average,
a latency of 122.95ms and a throughput of 11.34Mbps;
(ii) a faster network, presenting a latency of 6.94ms and a
throughput of 72.41Mbps. To obtain values for the slower
network, we considered a fixed device connected through
Ethernet and a smartphone connected to the Internet through
4G/LTE. For the faster network, instead, we employed two
fixed computers belonging to a bridged LAN and located 1 km
far apart. Further details related to the testbed can be found in



TABLE I: Simulation parameters and their values based on
physical testbed.

Parameter Value
Client execution speed (mips) 2901 MIPS
Client disk usage (size) 4 MB
Server disk usage (size) 412 MB
Max. user device capacity 46534 MIPS
Max. fog node capacity (mips) 3234 MIPS
Number of instructions executed by client (tupleCpuLength) 966 million
Number of instructions executed by server (tupleCpuLength) 2439 million
One-way latency between fog node and user device (UplinkLatency) 4.78 ms
One-way latency between fog nodes in the slower network (lat) 61.48 ms
One-way latency between fog nodes in the faster network (lat) 3.47 ms
RAM requirement of client (ram) 49 MB
RAM requirement of server (ram) 128 MB
Server execution speed (mips) 281 MIPS
Throughput from user’s device to fog node (upBw) 13640 kbps
Throughput from fog node to user’s device (downBw) 13363 kbps
Throughput between fog nodes in the slower network (bw) 11612 kbps
Throughput between fog nodes in the faster network (bw) 74148 kbps

[9] and [7]. Table I summarises the settings of the simulated
environment, which are based on the testbed, as well as the
names of the MobFogSim variables in brackets. Computing
resources are described in terms of MIPS (Million Instructions
Per Second) – this metric is used to maintain compatibility
with iFogSim.

Additional parameters used in the simulation include: 144
uniformly distributed fog nodes placed on a map of 10x10 km.
Each fog node is connected to one access point that has a
signal coverage of 500m. In our simulations we considered
containers as virtual environment to encapsulate fog services,
and we employed (live) post-copy technique to migrate such
containers. The chosen migration strategy selects the fog node
that presents the lowest latency to the user. User mobility
patterns in the simulations were selected from realistic traces
of urban buses in Luxembourg [13]. Each bus has a different
route and speed, but buses move on average at a speed
of 22.3 kmph and finish their routes in 26.44min. Aiming
to improve mobility scenarios in terms of different speed
values considered, we built two additional datasets. Both these
datasets have the same routes as the original, except the speeds
of buses, which were changed to two and three times the
original speed. These three datasets allow us to perform a
comparison within the same realistic routes but using different
user speeds. The simulation scenarios described above allow
the evaluation of the impact of different conditions, such as
changes in user speeds and network resources, on the service
migration process. Table II summarises the values used in the
simulations.

2) Results: The impact of user mobility on resource man-
agement in fog computing can be measured through different
metrics. In this work, we consider the number of migrations,
the average migration time and the average delay to the
container. The number of container migrations along a users’
routes is significantly affected by the users’ speed. As pre-
sented in Fig. 2, faster users tend to commit fewer migrations
under both network conditions because such users reach their

Fig. 2: Average number of migrations and migration time,
based on [7].

destinations sooner.
Even though user speed decreases the number of migrations,

it does not impact on migration time. Fig. 2 presents the results
for this metric, with a confidence interval of 95%. However,
the specific network condition has a considerable influence
on migration time. As expected, the average migration time
supported by the faster network is lower than that in the slower
network. These results are, on average, 85% lower.

Another relevant metric in the context of fog computing
is latency to the fog service. Fig. 3 shows the results for
this metric. Simulations indicate that users that are two and
three times faster than the original speed present a latency
that is almost 30% higher if considering the slower network.
Furthermore, the slower network provides, for any user speed,
a latency that is more than 10 times higher than that under the
faster network.

These results present the impact of user speed on container
migration in fog computing, especially in terms of latency
and number of migrations. In this context, faster users require
special attention, especially if using network links with fewer
resources. On one hand, migration times are not significantly
affected by a users’ speed, however the number of migrations
decrease for faster users because there is not enough time to
commit more container state during user movement.

Improving container migration for faster users may provide
them with a better quality of experience while using the fog

TABLE II: Additional parameters and their values for simula-
tion in MobFogSim.

Parameter Value
Size of container execution state during live migration 12.8 MB
Access point coverage (radius) 500 meters
Number of fog nodes 144
Density of fog nodes per access points 1:1
Migration strategy Lowest latency
Migration point policy Static (40 meters)
Average user speeds 22.3, 44.6, and 66.9 Km/h
Number of users per simulation 1
Number of different user mobility patterns 100



infrastructure. Increasing the link bandwidth among fog nodes
may not be a cheap solution. Providing these users with some
priority in the use of the network may mitigate the problem.
By introducing network slicing in this context, fog systems
can allocate dedicated resources for these users on demand.

IV. NETWORK SLICING IN MOBFOGSIM

In this section, we describe how we extended MobFogSim
to model network slicing. Infrastructure resources in Mob-
FogSim can be categorised in network and cloud/fog re-
sources. The latter, which refer to storage and computing
resources from cloud servers and fog nodes, are provided as
VMs or containers. Network resources in MobFogSim are
currently expressed in terms of the bandwidth available in
the links. These links are from access and transport networks.
The transport network consists of the interconnections among
fog nodes, while the access network is related to the wireless
interfaces that connect users to the fixed infrastructure.

We implemented network slicing in MobFogSim by or-
chestrating the distribution of resources among slices. All
the slices thus share the same physical infrastructure in the
simulator; however, each slice reserves a pool of resources.
Resources reserved by a slice are dedicated to users within
that slice. We achieved slicing support in MobFogSim by
further extending our simulator with two elements. The first
element is a new Java class called Slice, which is located in
the org.fog.placement package. This class defines the portion
of network bandwidth that is granted to a slice. Values are
currently expressed as a percentage of the overall bandwidth.
However, modifications can be made in the simulator to use
absolute values. Moreover, Slice specifies the groups of users
that have access to its slice resources. Multiple groups can
be indeed assigned to the same slice. The second element
introduced in MobFogSim is a new attribute, called groupid,
associated with the MobileDevice class. This attribute is used
as a tag to identify the group of users to which that specific
mobile device belongs. These groups are just symbolical and
represent the different users’ characteristics and requirements
defined in the simulation setup. Allocation of VMs/containers
in this extended version of MobFogSim follows the same rules

Fig. 3: Average delays, based on [7].

as in the previous release [7]. Each user is provided with a
VM/container described in terms of processing and storage
attributes. It is possible to grant different cloud/fog resources
based on groupids. Thus, the Slice class in MobFogSim
describes the list of fog nodes and their respective resources
that one slice may access. However, an analysis of the impact
of different amounts of cloud/fog resources for each slice is
out of the scope of this work.

In MobFogSim, the overall network bandwidth is split
among slices in terms of packets. Namely, based on the portion
of bandwidth assigned to a slice (as specified by the Slice
class), the simulator selects that percentage of traffic for that
slice. For instance, if a slice instance claims 30% of the whole
bandwidth, 30% of all packets transmitted on transport and
access links are reserved to users of that slice.

Our extension of MobFogSim also supports dynamic net-
work slicing. We highlight however that only bandwidth
resources can be dynamically reallocated among slices in
the current release of our simulator. Hence, idle bandwidth
resources may be reassigned at runtime to other slices that
need more bandwidth to attend their users’ requirements. It
is worth noting that resource reallocation is not immediate,
as it always incurs a reallocation time due to computing
overhead. We modelled this time as a parameter rather than
a constant in our simulator, since each simulation setup may
experience a different reallocation time. Specifically, the value
of this parameter can be either inserted by MobFogSim users
or calculated by a function in the simulator. As a result,
static network slicing does not allow reallocation of resources;
however, such resources are immediately available to slices
once they request them. On the other hand, dynamic network
slicing enables the reallocation of resources at runtime, but
this reallocation experiences a delay.

V. STATIC NETWORK SLICING FOR MOBILE USERS

In this section, we evaluate the impact of static network
slicing on service migration to support mobile users within
a fog computing environment. Despite the slicing support
in MobFogSim covers network, storage, and computing re-
sources, in this paper, we focus on the first aspect and
leave the other two for future work. As a result, all mobile
users received the same amount of computing and storage
resources in the form of containers. We however considered
different distributions of users and network resources (i.e.,
bandwidth) in our simulations. We highlight that, while this
section focuses on static network slicing, Section VI instead
considers the case of dynamic network slicing.

A. Simulation setup

Fig. 4 presents both the physical and logical architectures
used in our experiments. The physical architecture of our fog
computing environment is composed of two fog nodes con-
nected by routers in the access and transport networks. Users
are connected to the fog computing infrastructure through
wireless access. Two network slices, namely Slice 1 and Slice
2, are created on top of the shared physical infrastructure.



Transport 
network

Access network

IoT layer

WLAN
access

Access
node

Transport
node

Fog
node

Slice 1 Slice 2Physical 
Infrastructure

Slice 1 Slice 2VM migration

Fig. 4: Physical infrastructure and network slices used in our
scenarios.

All the considered scenarios consisted of 20 users whose
mobility caused one migration of container each from one fog
node to the other. All 20 users started from the same point in
the map and moved with the same direction and speed. As a
result, all migrations started simultaneously. Each simulation
finished when container migrations ended for all the users. The
input values used in our simulations were the same considered
in the preliminary experiments and are summarised in Table I
and Table II. Despite these points: the simulation scenario is
only evaluated on the faster network; the number of fog nodes
is restricted to 2; the number of users is increased to 20; and all
users present the same constant direction and speed mobility
pattern.

In our experiments, we distributed the 20 users in three
different ways between the two network slices. Specifically,
in Slice 1, we deployed the first three powers of two (starting
from two), thus producing the following three distributions
of users between Slice 1 and Slice 2, respectively: (i) 2
against 18; (ii) 4 against 16; and (iii) 8 against 12. We also
considered three different distributions of network resources
between slices, by first assigning 50% of the resources to
each slice and then adding/removing 20% of the resources
twice. Therefore, we built the following three distributions of
network resources between Slice 1 and Slice 2, respectively:
(i) 10% against 90%; (ii) 30% against 70%; and (iii) 50%
each. By combining the distributions of users and resources,
we thus considered nine different scenarios in our simulations.
We also highlight that the transmission of container’s data was
performed using packets up to 1MB.

For each scenario, we considered the following three met-
rics: (1) total migration time; (2) percentage of link utilisation
throughout the simulation; and (3) the amount of data that
could be transmitted while the link is idle. Link utilisation
(2) is calculated based on the average amount of data sent
through that link and is expressed in terms of percentage

of the link capacity. The link used in this measure is the
one that connects the two fog nodes and is used to transmit
the containers’ data during migration. Finally, the potential
amount of data not transmitted (3) is calculated based on
the time that bandwidth resources are allocated but not used.
We performed container migrations according to the post-copy
technique and run 25 simulations for each scenario. Results
are shown with a confidence interval of 95%.

B. Results

Considering that each container in our simulations has a data
size of 128MB, 20 users simultaneously requesting migrations
lead to 2.56GB of data transmitted in parallel. Using post-
copy migration in a traditional network, container migration
would take 369 s on average. Through network slicing, it
is possible to discriminate the traffic for different users and
introduce some priority for them. Based on our simulation
scenarios, we analyse the impact of the balance between users’
requirements and resource allocation on the migration process.

Fig. 5a presents the average total migration time. The blue
lines represent the performance of Slice 1, while the red lines
are related to Slice 2. It is possible to notice how crucial is
the portion of bandwidth dedicated to each slice. In the first
scenario where only 10% of the bandwidth was allocated to
Slice 1, the average migration time for 4 users in Slice 1
(739 s) is almost twice that of 16 users in Slice 2 (328 s). The
performance of Slice 1 with 8 users is even worse: the average
migration time in that slice (1479 s) is almost six times that of
the remaining 12 users in Slice 2 (246 s). It is clear that this
10%/90% scenario presents an unfair distribution of network
resources. However, average migration time tends to be more
propitious to Slice 1 as the bandwidth is more equally shared.
In the 30%/70% scenario, migration times for Slice 1 and Slice
2 are more similar. In the last scenario (50%/50%), migration
times for Slice 2 are between 130% and 900% longer than
those for Slice 1 because fewer users belong to the latter slice.

Fig. 5b presents the results of link utilisation. Firstly, it
is possible to note how links that show worse migration
times in each scenario (see Fig. 5a) are used all the time
throughout the simulations. Those are indeed the links where
the last container terminates its migration, which triggers the
end of the simulation. Allocation of network resources is
efficient when there is a high link utilisation (i.e., no wastage
of resources) and migration times meet users’ requirements.
However, the allocation may be inefficient in two other cases.
The first case is one in which links are at their limit of
utilisation, but migration times are far above the required ones.
An example of this case is that of 8 users assigned to Slice
1 with 10% of bandwidth allocated. The second inefficient
case is that in which network resources are idle (i.e., not
utilised after all migrations for that slice terminated) for a long
period. Those resources, which could be leveraged to boost
migrations for other slices, are indeed wasted. For instance,
when 12 users are assigned to Slice 2 with 90% of network
bandwidth, only 20% of those resources are actually used.
Fig. 5c can help to better understand this concept. It presents



(a) Average migration time. (b) Percentage of link usage. (c) Amount of data not transmitted while the
link was idle.

Fig. 5: Performance of static allocation of network slices for mobile users.

the amount of data that could be potentially transmitted while
network links are idle. As already discussed, the scenarios
where resources are not fairly balanced present the higher
index of wasted bandwidth. This unfair balance is justified
by the objective to decrease the migration times for high-
priority users. However, static slicing is not able to reallocate
idle resources to other slices that need them. For instance,
the scenario in which 12 users are assigned to Slice 2 with
90% of bandwidth achieves average migration times of 246 s.
However, once migrations for Slice 2 are finished, its network
resources are not reassigned to Slice 1. This leads to average
migration times for Slice 1 to be 1479 s, while about 80Gb
of data could have been potentially transmitted for that slice.

The results in this section provide two insights. Firstly,
network slicing can help to prioritise users and reduce times
to migrate their containers, thus allowing them to perform
more migrations and keep their services closer to them.
Secondly, static network slicing causes an inefficient allocation
of resources, which cannot be reassigned to other slices to
boost their migrations. In the next section, we evaluate how
dynamic network slicing solves this problem.

VI. DYNAMIC NETWORK SLICING FOR MOBILE USERS

This section analyses the impact of dynamic network slicing
on container migration for mobile users in the fog. With dy-
namic network slicing, resources can be reassigned at runtime
to other slices that demand them.

A. Simulation setup

The simulation setup defined for this set of experiments is
the same as that reported in Section V. The only difference is
related to how idle resources are dealt with. In the previous
section, the portion of bandwidth that is allocated to a slice
is guaranteed to that slice for the entire simulation. In this

section, instead, it is possible to reallocate resources on
demand, following the concept of dynamic network slicing. In
this work, we only reallocate idle resources. Therefore, once
all the migrations for a slice finish and the link becomes idle,
that part of the bandwidth is completely reallocated to the
other slice.

As described in Section IV, the process to reallocate re-
sources among slices has a computational cost that results
in time overhead. That cost, which is set as a parameter in
MobFogSim, depends on the characteristics of the physical
and logical networks. For these experiments, we defined this
cost as 1 s. However, different values may impact overall
performance.

The experiments in this section are organised in two parts.
In the first one, we defined users in Slice 1 as higher-priority
users. Based on that, once bandwidth becomes available in
Slice 2, it is reallocated to Slice 1. The opposite does not occur.
In the second part of the experiments, Slice 1 has no more
higher priority. Then, both slices can benefit from reallocation
of resources, once these become idle. Results are relative to
25 runs per scenario and shown with a confidence interval of
95%. We used post-copy technique to migrate containers.

B. Results

Fig. 6a presents average migration times in slicing scenarios
with unidirectional reallocations. In these experiments, Slice
1 receives the available bandwidth from Slice 2 once this
resource becomes idle. This procedure helps Slice 1 in those
scenarios in which, with static slicing, it presented worse
performance than Slice 2 (see Fig. 5a). Scenarios where Slice
1 receives 10% of the resources and serves 4 and 8 users, and
the scenario in which it receives 30% of the bandwidth and
serves 8 users present average migration times that are around
50%, 25%, and 75% of those obtained with static allocation,



respectively. Using dynamic slicing, the worse result for Slice
1 is limited to 369 s compared to 1479 s with static slicing.
Withdrawing idle resources from Slice 2 results neither in an
improvement nor in a worsening for that slice. Considering all
scenarios, dynamic slicing leads to an average migration time
of 406 s, which is almost 15% less than the 469 s of static
slicing.

There are also some scenarios in which Slice 1 presents
idle resources. Those resources could be used to improve
performance for users in Slice 2. In this second group of
experiments, also Slice 1 thus shares its idle resources with
Slice 2. Fig. 6b shows average migration times in slicing
scenarios with bidirectional reallocations. Under these con-
ditions, Slice 1 presents the same performance as that in Fig.
6a. However, also Slice 2 now receives a boost in its worst
cases. Both Slices are now limited to 370 s in their worst
cases. The average migration time for Slice 2 presents an
improvement, being almost 15% less than that with the static
allocation of resources. With bidirectional reallocation, link
utilisation reaches nearly 100% for both slices. Therefore,
the dynamic network slicing achieves an efficient resource
allocation, as it avoids underutilisation of network links while
reducing migration times for mobile users.

VII. OPEN CHALLENGES

This work described our extension of network slicing sup-
port in MobFogSim. Besides, it reported an experimental
evaluation of static and dynamic network slicing as ways to
improve container migration performance for mobile users in
fog computing environments. Still, some open issues need
further investigation, such as:

• Slicing reallocation overhead - once a slice is created,
and an amount of resources is allocated to it, there is
a computational cost to resize it. This cost depends on
the physical and logical network characteristics. Network
appliance from different brands and different software to
manage it present different efficiency rates to reallocate
network slices. The cost of this reallocation process may
impact on the reallocation performance. Once a slice asks
for more resources, such resources should be reassigned
as soon as possible. If that is a slow process, predictive
demand can be studied.

• Slicing reallocation frequency - the frequency at which
reallocation should occur is another open challenge. This
frequency is strictly related to the reallocation cost: the
lower the cost is, the higher the reallocation frequency can
be. Moreover, frequency could be adapted to the priority
of slices. For instance, high-priority slices could lend
their resources with a reallocation frequency that is lower
than that of low-priority ones. In this way, high-priority
slices would incur a lower reallocation cost when they
receive their resources back. Further analysis of slicing
reallocation frequency is needed.

• Impact of dynamic slicing over time - this work presented
an experimental analysis of dynamic slicing in a small-
scale context with two fog nodes. In a more complex and

realistic scenario, users with different mobility patterns in
a wider fog infrastructure may create dynamic demand
over different areas and periods of time. Under such
conditions, slices may need to deal with different require-
ments over time, and the impact of resource sharing and
slice resizing needs to be further studied.

• Dynamic slicing on not-only idle resources - reallocation
of only idle resources may not satisfy the demands of
some slices. In a more comprehensive scenario, busy
resources should be reallocated as it happens for idle
ones. To this purpose, the architecture should rank slices,
take resources that are currently in use by lower-priority
slices, and give such resources to higher-priority ones
that need them. However, this procedure is not trivial and
should be further analysed.

• Evaluation of end-to-end slices - this work evaluated net-
work slicing in terms of bandwidth resources to enhance
container migration performance. However, MobFogSim
also models slicing of computing and storage resources.
In such a dynamic scenario present by mobile users, an
evaluation of end-to-end dynamic slices, which includes
resources and services from access, transport, and core
network, are needed.

VIII. RELATED WORK

This section overviews the related work in a twofold way.
It first presents the available simulators for fog computing and
discusses the novelties of MobFogSim, among which stands
the implementation of dynamic network slicing. Then, Section
VIII-B reports the works that propose network-slicing-based
approaches to improve the use of fog computing resources for
supporting mobile users.

A. Fog computing simulators

A number of simulators is available for fog computing.
Table III summarises the main contents of this section.

Yet Another Fog Simulator (YAFS) [14] is a Python tool that
is particularly tailored to model network failures and hence
allows to design robust networks or evaluate service placement
strategies in case of failures. YAFS models network failures
in two possible ways: (i) by dynamically creating/deleting fog
nodes and network links; (ii) through custom processes, i.e.,
functions that are invoked at runtime for the implementation of
real events. YAFS models device mobility but does not model
VM/container migration or dynamic network slicing.

VirtFogSim [15] does not model VM/container migration nor
dynamic network slicing. However, it dynamically tracks the
application energy-delay performance against abrupt changes
due to failures or device mobility, e.g., mobility-induced
changes to the available uplink/downlink bandwidth. The most
interesting feature of VirtFogSim is the modelling of cellular
network access, which is useful when simulating 4G/5G
scenarios. At the moment of writing, VirtFogSim is the only
fog computing simulator that does this.

FogNetSim++ [16] focuses on network modelling. The
other simulators do not (or only partially) take into con-



(a) Average migration times using dynamic
slicing to prioritise one slice.

(b) Average migration times using dynamic
slicing to reallocate resources for both slices.

Fig. 6: Performance of Dynamic Network Slicing

TABLE III: Comparison among the fog computing simulators.

Simulator Mobility/Handoff VM/container Migration Dynamic Network Slicing Programming Language
YAFS • - - Python
VirtFogSim • - - MATLAB
FogNetSim++ • - - C++
EdgeCloudSim • - - Java
MobFogSim • • • Java

sideration real-network properties. They simulate an ideal
network with no packet loss, congestion or channel collision.
Instead, FogNetSim++ extends OMNeT++2 to model these
aspects. Moreover, it includes popular communication proto-
cols for simulation, such as TCP, UDP, MQTT, and CoAP.
FogNetSim++ models mobility; however, it does not model
VM/container migration and dynamic network slicing.

EdgeCloudSim [17] is a simulator for fog computing en-
vironments that, like iFogSim, extends CloudSim. Network
delays are modelled in EdgeCloudSim more realistically than
in iFogSim, where delays are always fixed. EdgeCloudSim,
instead, updates network delays based on the current network
load. However, EdgeCloudSim implements less functionalities
than iFogSim. For example, energy consumption, operational
costs, and pricing are all missing. Device mobility is modelled;
however, VM/container migration and dynamic network slic-
ing are not.

None of the discussed simulators model VM/container mi-
gration, which however is important for supporting device
mobility but also for other reasons such as load balancing.
We implemented MobFogSim [7] to fill this gap in litera-
ture. MobFogSim is currently the only simulator that models
VM/container migration in fog computing networks. Further-
more, this work extends MobFogSim with the implementation
of dynamic network slicing, which is not provided by any
other fog computing simulator. MobFogSim thus inherits all
the functionalities from iFogSim, extending this simulator with
mobility modelling, VM/container migration, and dynamic
network slicing.

2See https://omnetpp.org/. Last accessed: August 26th, 2020.

B. Network slicing in the fog to support mobile users

Some literature focuses on the use of network slicing to
support mobile users in fog computing contexts. Presenting
a better resource allocation scheme for mobile users, the
work in [18] proposes a logical architecture for network-
slicing-based 5G systems. Considering mobile scenarios with
different network requirements, the authors focus on the radio
allocation to improve handover mechanisms. Even though
wireless handover contributes to service continuity, network
slicing can potentially also improve a user’s data migration
between fog nodes, which is not discussed in [18].

Authors in [19] present a comparison between static and
dynamic slice allocation, proposing two solutions for resource
allocation, based on integer linear programming and heuristic
approaches, aiming to maximise the number of attended re-
quests. The slice requirements take into consideration network
and computational resources, but only link capacity require-
ments change over time. That variability of user requirements
makes the experiment closer to real cases. However, in [19]
user requests are randomly generated, which may not represent
real mobility scenarios.

The work in [20] proposes a network slice scheduling
scheme for vehicular fog networks. The proposed scheme
aims at handling the unpredictability of network traffic and
fog nodes availability, which is caused by the high mobility
of vehicles. It is worth mentioning that the fog environment
considered consists of fog nodes that can be devices located
at the network edge (e.g., cellular base stations) as well as end
user vehicles, in accordance with the Vehicular Fog Computing
(VFC) paradigm [21].



Authors in [22] focus on the containerised services that
are assigned to a group of users and run in the fog within a
network slice. Such services, which represent the computation
component of a network slice, need to be migrated across
the fog infrastructure to follow their users. The migration of
services belonging to a network slice is defined by authors as
slice mobility. A testbed consisting of two fog nodes is set up
to perform a preliminary performance evaluation of container
migration. We highlight that network slicing and container
migration are both considered. However, network slices are
not examined as a way to improve container migration perfor-
mance, but they are instead the object of migration.

IX. CONCLUSIONS

Fog computing systems need to accommodate users with
very different mobility patterns and application requirements.
Network slicing could play an important role in dealing
with such a diverse and heterogeneous environment. Network
slicing creates several logical networks on top of the physical
one, where each logical network is tailored to address the
requirements of a specific group of users and applications. This
paper presents the role of static and dynamic network slicing
to deal with different mobile user priorities in fog computing
environments. Furthermore, it describes the extensions made
in MobFogSim to support such a scenario. Results show that
both static and dynamic slicing can introduce traffic priority
to deal with different service migration requirements. Network
resources may present underutilisation in static slicing in some
periods. On the other hand, the capacity of dynamic slicing to
scale up or scale down provides a better utilisation of network
resources. However, dynamic resource reallocation is sensitive
to a computing overhead, and resource requests may need
to wait for reassignments to occur. Furthermore, MobFogSim
is presented as a potential tool to simulate scenarios using
network slicing for fog computing environments. As future
works, we plan to address the open challenges listed in Section
VII, such as the problem of slicing reallocation frequency and
that of dynamic slicing on not-only idle resources. Besides,
we will introduce dynamic reallocation of cloud resources in
MobFogSim.

ACKNOWLEDGMENTS

This work is part of the INCT of the Future Internet for
Smart Cities (CNPq 465446/2014-0, CAPES 88887.136422/2017-
00, and FAPESP 2014/50937-1). The authors thank CNPq grant
420907/2016-5 and FAPESP #2015/24494-8. Diogo Gonçalves is
partially funded by Coordenação de Aperfeioamento de Pessoal de
Nı́vel Superior Brasil (CAPES) Finance Code 001. The authors also
thank the Italian Ministry of Education and Research (MIUR) in the
framework of the Crosslab project (Departments of Excellence).

REFERENCES

[1] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog
Computing for the Internet of Things: A Survey,” ACM Transactions on
Internet Technology, vol. 19, no. 2, Apr. 2019.

[2] C. Puliafito, E. Mingozzi, and G. Anastasi, “Fog Computing for the
Internet of Mobile Things: Issues and Challenges,” in IEEE 3rd Inter-
national Conference on Smart Computing (SMARTCOMP), May 2017,
pp. 1–6.

[3] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana, “Towards Virtual
Machine Migration in Fog Computing,” in 10th International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Nov.
2015, pp. 1–8.

[4] K. Velasquez, D. Perez Abreu, D. Goncalves, L. Bittencourt, M. Curado,
E. Monteiro, and E. Madeira, “Service Orchestration in Fog Environ-
ments,” in IEEE 5th International Conference on Future Internet of
Things and Cloud (FiCloud), Aug. 2017, pp. 329–336.

[5] Z. Zaidi, V. Friderikos, Z. Yousaf, S. Fletcher, M. Dohler, and H. Agh-
vami, “Will SDN Be Part of 5G?” IEEE Communications Surveys
Tutorials, vol. 20, no. 4, pp. 3220–3258, Fourthquarter 2018.

[6] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
Slicing and Softwarization: A Survey on Principles, Enabling Technolo-
gies, and Solutions,” IEEE Communications Surveys Tutorials, vol. 20,
no. 3, pp. 2429–2453, thirdquarter 2018.

[7] C. Puliafito, D. M. Gonçalves, M. M. Lopes, L. L. Martins, E. Madeira,
E. Mingozzi, O. Rana, and L. F. Bittencourt, “Mobfogsim: Simulation
of mobility and migration for fog computing,” Simulation Modelling
Practice and Theory, vol. 101, p. 102062, 2020.

[8] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, “Con-
solidate IoT Edge Computing with Lightweight Virtualization,” IEEE
Network, vol. 32, no. 1, pp. 102–111, 2018.

[9] C. Puliafito, C. Vallati, E. Mingozzi, G. Merlino, F. Longo, and A. Pu-
liafito, “Container Migration in the Fog: A Performance Evaluation,”
MDPI Sensors, vol. 19, no. 7, Mar. 2019.

[10] M. M. Lopes, W. A. Higashino, M. A. Capretz, and L. F. Bittencourt,
“MyiFogSim: A Simulator for Virtual Machine Migration in Fog Com-
puting,” in ACM 6th International Workshop on Clouds and (eScience)
Applications Management (CloudAM). Companion Proceedings of the
10th International Conference on Utility and Cloud Computing, 2017,
pp. 47–52.

[11] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim:
A Toolkit for Modeling and Simulation of Resource Management
Techniques in the Internet of Things, Edge and Fog Computing Envi-
ronments,” Software: Practice and Experience, vol. 47, no. 9, pp. 1275–
1296, May 2017.

[12] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO -
Simulation of Urban Mobility: An Overview,” in 3rd International
Conference on Advances in System Simulation (SIMUL), 2011.

[13] L. Codeca, R. Frank, and T. Engel, “Luxembourg SUMO Traffic (LuST)
Scenario: 24 Hours of Mobility for Vehicular Networking Research,” in
IEEE Conference on Vehicular Networking (VNC), Dec. 2015, pp. 1–8.

[14] I. Lera, C. Guerrero, and C. Juiz, “YAFS: A Simulator for IoT Scenarios
in Fog Computing,” IEEE Access, vol. 7, pp. 91 745–91 758, 2019.

[15] M. Scarpiniti, E. Baccarelli, and A. Momenzadeh, “VirtFogSim: A
Parallel Toolbox for Dynamic Energy-Delay Performance Testing and
Optimization of 5G Mobile-Fog-Cloud Virtualized Platforms,” MDPI
Applied Sciences, vol. 9, no. 6, March 2019.

[16] T. Qayyum, A. W. Malik, M. A. K. Khattak, O. Khalid, and S. U. Khan,
“FogNetSim++: A Toolkit for Modelling and Simulation of Distributed
Fog Environment,” IEEE Access, vol. 6, pp. 63 570–63 583, Oct. 2018.

[17] C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An Envi-
ronment for Performance Evaluation of Edge Computing Systems,”
Transactions on Emerging Telecommunications Technologies, vol. 29,
no. 11, Aug. 2018.

[18] H. Zhang, N. Liu, X. Chu, K. Long, A. Aghvami, and V. C. Leung,
“Network Slicing Based 5G and Future Mobile Networks: Mobility, Re-
source Management, and Challenges,” IEEE Communications Magazine,
vol. 55, no. 8, pp. 138–145, Aug. 2017.

[19] M. R. Raza, M. Fiorani, A. Rostami, P. Öhlen, L. Wosinska, and
P. Monti, “Dynamic Slicing Approach for Multi-tenant 5G Transport
Networks,” IEEE/OSA Journal of Optical Communications and Net-
working, vol. 10, no. 1, pp. A77–A90, Jan. 2018.

[20] K. Xiong, S. Leng, J. Hu, X. Chen, and K. Yang, “Smart Network Slicing
for Vehicular Fog-RANs,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 4, pp. 3075–3085, 2019.

[21] Z. Ning, J. Huang, and X. Wang, “Vehicular Fog Computing: Enabling
Real-Time Traffic Management for Smart Cities,” IEEE Wireless Com-
munications, vol. 26, no. 1, pp. 87–93, 2019.

[22] R. A. Addad, T. Taleb, H. Flinck, M. Bagaa, and D. Dutra, “Network
Slice Mobility in Next Generation Mobile Systems: Challenges and
Potential Solutions,” IEEE Network, vol. 34, no. 1, pp. 84–93, 2020.


