github.com/dyssect/dyssect

Dyssect: Dynamic Scaling of
Stateful Network Functions

fabricio.carvalho@ufms.br

Carvalho, F. B.! Ferreira, R. A2, Cunha, |2,
Vieira, M. A. M.>. Ramanathan, M. K#

UFMT and UFMS! UFMS2 UFMG? Uber Technologies, Inc.*

|1 UF771G Uber

UFMT UFMS

Introduction

Conventional Enterprise Network

AR (o b M B (% B
L — B8— 28— B
N N -/

cm— -/
Load Balancer NAT IDS Firewall
Appliance Appliance Appliance Appliance

More Expensive
Less Manageable

Introduction

Network Function Virtualization

R M S 2o
- @ s a8~
-/ . -/ A y

PN
g Load Balancer NAT IDS Firewall
NF NF NF NF
Commercial off-the-shelf (COTS)
Server
Less Mere Expensive

More tess Manageable

Introduction

Stateful Network Function

[NF Logic] [NF State]

T (0

e The vast majority of network
\ functions are stateful and may
require state updates on a
per-packet basis;

Memory

® Concurrent accesses:
o Locks?

Introduction

CPU

[NF Logic }

~

/ Memory \

[NF State J

The vast majority of network
functions are stateful and may
require state updates on a
per-packet basis;

Concurrent accesses:
o Locks?

Introduction

Stateful Network Function

/ CPU \

-
Processing core O

~

NF Logic

-
Processing core 1

NF Logic

N

s

\
Vs

N

/
o

Processing core n-1

& — — — —

Memory

——>[NF State }

_

The vast majority of network
functions are stateful and may
require state updates on a
per-packet basis;

Concurrent accesses:
o Locks?

Introduction

Queue length

[Processing core O }

Queue length

sEss {3 oo |

Incoming packets

Dispatching core
Processing core 2

Introduction

Queue length

T

Queue length

T 1] = : e

Incoming packets

Dispatching core
b . . Processing core 2

Introduction

Queue length

l-.-.hmwﬁ

Bottleneck

Queue length

EEEE {3 e

Incoming packets

Dispatching core
. . Processing core 2

Introduction

Queue length

l-.-.mmww

Bottleneck

Queue length

Incoming packets

Dispatching core
Bottleneck . . Processing core 2

10

Introduction

NF State Shards
Sharding [--—-------
n=8 |L_________

e Several research proposals use state
sharding to avoid the use of locks;

Introduction

NF State Shards
SR M 4 Y
“““““ Processing core O
---------- (oo }——
R . g ()
Sharding [==------- Assignment Processing core 1
n=8 [yl
---------- (g}
N N

e Several research proposals use state
sharding to avoid the use of locks;

12

Introduction

NF State
Hash(f) % 8 = O

Flowf ——| f _—
Sharding
n=8
-

Assignment

e Several research proposals use state
sharding to avoid the use of locks;

-

<
Processing core O

NF Logic

-

<
Processing core 1

“il NF Logic

13

Introduction

NF State
Hash(f) % 8 = O

Flowf ——| f _—
Sharding
n=8
-

-

<
Processing core O

Assignment

e Several research proposals use state
sharding to avoid the use of locks;

NF Logic]{ f

~

-

N
Processing core 1

“il NF Logic

14

Introduction

e Arecent effort proposes dynamic reassignments of shards to balance the load across cores;

—————— {_Processing core 0|

----------------------------- { Processing core1]

-- {_ Processing core2 |

------ -[Processing core O]

----------------------------- { Processing core1 |

-- { Processing core2 10% 50% 100%
------ { Processing core 0

----------------------------- { Processing core1 |

-- {_ Processing core 2]

""" {_Processing core 0| Core O Core T Core 2
----------------------------- { Processing core1] Load Load Load
-- {_ Processing core2 |

- ---- {_Processing core 0]

T { Processing core1 |

R { Processing core2 |

f------ {_Processing core 0

15

Introduction

e Arecent effort proposes dynamic reassignments of shards to balance the load across cores;

----------------------------- { Processing core1]
-- {_ Processing core2 |

----------------------------- { Processing core1 |

—————— { Processing core 0] 40% 50% 95%
—————— { Processing core 0
----------------------------- { Processing core1
—————— { Processing core 0]
—————— { Processing core 0| Core O Core1 Core 2
—————————————————————————————— Processing core1 Load Load Load
—————— { Processing core 0]

bo----- { Processing core 0

e { Processing core1 |

b------ { Processing core 0]

h------ { Processing core 0 |

16

Introduction

[{_Processing core 2|
95%
e One shard might have multiple large-volume flows; i
Core 2
e Systems cannot allocate more cores to handle the load, Load

as the shard is assigned to a single core.

17

Introduction

e \We evaluate the performance impact of the number of shards in CPU metrics:

o The throughput drops up to 43.3% comparing 1vs. 128 shards;

50 Throughput and IPC* 1 75 Cache Miss
w Throughput I IPC s L1 S L2 -
2 40 - - - -4 0.8 S 60 -
G w
- a9 - 0.6 O 0 45 -
= | 2 :
= i
S 20 |+ -1 04 Q30
S 2
= 10 - — R O 15 F
-
0
1 2 4 8 16 32 64 128 2 16 32 64 128

Number of Shards Number of Shards

*IPC = Instructions per Cycle 18

Contributions

Dyssect:

e steers packets to cores;

e mMmoves shards between cores;

e disaggregates of state from network functions;
e avoids frequent shard transfers;

e uses optimization models.

19

Dyssect

State Management

Packet —

20

Dyssect

State Management

Packet — r

Hash |

F I ow
Key

State Table

21

Dyssect

State Management

Packet = [H[P |~ o sz =MIH]
:
Hash (H)—» —[[T]
Flow Flow
Key Entry

State Table

22

Dyssect

State Management

Packet — r Insert metadata

Hash | _>|:|:|;|
How Flow

Key " Entry

State Table

MIH] P |—»
> TP — e
:
\

GetState

23

Dyssect

State Management

Hash (H)—» —_—
Flow Flow
Key e Entry

State Table

M[H] P |—»
o | NF, NF,
(State) Il State)
\4
GetState
GetState

24

Dyssect

State Management

Packet = [HI P F5af metaas "ML P = e ™ NE, ™| NF,
[State] [State] [State]
A4
Hash (H)—» — T
Flow Flow | GetState
Key Entry GetState
GetState
State Table

—» Packet

25

Dyssect

Flow Assignment

e Controller updates RSS table, migrates shards, and defines a subset of flows in a shard to
forward to an offloading core;
e Dyssect splits cores into working or offloading cores.

i Define fraction r of
Controller : : :
L p Migrate shards traffic that is sent to
Uod tmbl \ offloading cores
pdate able —
] (1) [~ k-6 Working core O .
210 @ Working core 1 } \I>®Ofﬂoading core O |
Traffic —:_l = 0 —>[Futiwi?cihon]—» == _ = :
} T~:>:;~7’® Working core 2 | ® Offloading core1 |
-] % & Working core3 |~
RSS Indirection Table

26

Dyssect

Flow Assignment

Time T,

." Working core O

Incoming packets .

O\ O\ s -

"
(m]

O
) Offloading core O

Working core 1

27

Dyssect

Flow Assignment

Time T,

. Working core 0)

Incoming packets .

O\ O\ s -

"
(m]

O
) Offloading core O

Working core 1

28

Dyssect

Correctness Analysis

Deadlock freedom

O

O

Controller can disable packet processing;
Working cores enqueue packet into
queues;

Offloading cores never blocks during
scaling operations.

If there exists an incoming packet p, at
a certain moment, p turns into an

outgoing packet.

Packet ordering

O

Controller can reassign shards, offloading
cores, or change offload ratio;

Auxiliary queues are swapped by the
Controller;

Scaling algorithms;

For any pair of packets from the same
flow, the first packet of the pair is

always processed first.

Check the formal proofs in our paper.

29

Dyssect

Flow Assignment Optimization

Optimization models:

e |Long-timescale optimization:
o minimizes the number of active working and offloading cores.

30

Dyssect

Flow Assignment Optimization

Optimization models:

e |Long-timescale optimization:
o minimizes the number of active working and offloading cores.
e Short-timescale optimization:
o minimizes the number of shard migrations and offloading core reassociations.

Check both optimization models in our paper.

31

Dyssect

Flow Assignment Optimization

Optimization models:

e |Long-timescale optimization:

o minimizes the number of active working and offloading cores.
e Short-timescale optimization:

o minimizes the number of shard migrations and offloading core reassociations.
e Constraints:

o SLO, core utilization, shard ratio, working and offloading cores relationship.

Check both optimization models in our paper.

32

Evaluation

For evaluation, we use three use cases:

e Use Case | traffic class prioritization;

33

Evaluation

For evaluation, we use three use cases:

e Use Case | traffic class prioritization;

e Use Case ll: alternate optimization targets;

34

Evaluation

For evaluation, we use three use cases:

e Use Case | traffic class prioritization;
e Use Case lI: alternate optimization targets;

e Use Case lll: SmartNIC offloading.

35

Evaluation

Use Case |

e Real trace;

e High and low priority flows;

e Scaling traffic to simulate throughputs from ~2.5 to ~22 Gbps;
e Network functions: NAT and IDS.

. High priority . Low priority
Trace a N\

Incoming Packets Wo.fking.COI're f
« 1 1 1 1 1 1 1 - :::{ Offloading Core

Working Core i”/ S
erver
N J/

((

Throughput (Gbps)

Evaluation

Use Case |

Throughput

Source +H——
25 | Dyssect H——

15
10

30

| | | | | | | | | | |

0O 5 1015 20 25 30 35 40 45 50 55 60
Time (s)

Number of cores

10

o N B~ O ©

Number of Cores

Dyssect +——
—RSS++

| | | | [| | | | | |
0O 5 1015 20 25 30 35 40 45 50 55 60
Time (s)

37

Evaluation

Use Case |
Latenc iarati
L F y 800 Shard Migrations
9 700
© -
L 08 - 5oL
3 < 400
04 - [/, Dyssect (high-priority) —— - 300 -
' RSS++ (high-priority) ——— < 200 -
0.2 g’ Dyssect (low-priority) - = - ﬁ
RSS++ Qow-priority) - - - 100
0 ‘ | | 0
0 200 400 600 800
RTT (us) Dyssect RSS++

Evaluation

Use Case II

e We explore Dyssect using a different optimization model:
o Load balance optimization model (below);

e This model minimizes the quadratic difference between a target value T and
the utilization of working and offloading cores.

minimize Y (uf — T)* +) (u} — T)* + a(Eq. 16), 1)
ceC keC
subject to Equations 2 — 11 and Equations 19 — 20

Check the equation definitions in our paper.

39

Evaluation

Use Case II

40
30
20
10

0
40
30
20
10

0

Throughput (Gbps)

(a) Batch Size =1

(b) Batch Size = 4

(c) Batch Size = 16

(d) Batch Size = 32

07 08 09 1.0 11 07 08 09 1.0 11
Parameter a of the Zipf Distribution

RSS &3 RSS++ I

State Disag [Dyssect IS

Synthetic trace (Zipf
distribution);

Load balance
optimization model,

Network functions: NAT
and IDS.

40

Evaluation

Use Case Il

e We offload the lookup function to a SmartNIC;

e SmartNIC performs the lookup and inserts the address into the packet

metadata;
e \Working cores skip the lookup if the metadata already contains an address.

Packet (Smarife ([Working Core } \"‘:=[Offloading Core]
. — T = 0| [Lookup] — [Insert Metadata] — [Working Core]—_—/
C [Working Core]— ~~~~~~ [Offloading C J
[Working Core]— """ oo o® Server

N

Evaluation

Use Case Il

L1 Miss (%) Lookup Time (us)

3.3
2.2
1.1,

16
12

SN

(a) Lookup Time

(b) Instructions per Cycle

11 T

(c) L1 Miss

(d) L2 Miss

128 256 512 1024 1518

128 256 512 1024 1518

Packet Size (bytes)

Dyssect IS

Dyssect with SmartNIC

L2 Miss (%)

We use Netronome
NFP-4000 2x40 Gbps;

Synthetic trace (Zipf
distribution with a = 1.1);

Measurements of a single
core.

42

Conclusion

e Sharding impacts on the performance of stateful network functions;

e Dyssect disaggregates states from network functions;

e Dyssect employs optimization models;

e Dyssect increases throughput up to 19% and reduces tail latency up to

32% when compared with other load-balancing proposals.
https:/github.com/dyssect/dyssect

43

Thank you!

