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Introduction

e Arecent effort proposes dynamic reassignments of shards to balance the load across cores;
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e Arecent effort proposes dynamic reassignments of shards to balance the load across cores;
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Introduction

[ {_Processing core 2|
95%
e One shard might have multiple large-volume flows; i
Core 2
e Systems cannot allocate more cores to handle the load, Load

as the shard is assigned to a single core.
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Introduction

e \We evaluate the performance impact of the number of shards in CPU metrics:

o The throughput drops up to 43.3% comparing 1vs. 128 shards;
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Contributions

Dyssect:

e steers packets to cores;

e mMmoves shards between cores;

e disaggregates of state from network functions;
e avoids frequent shard transfers;

e uses optimization models.
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State Management
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Dyssect

State Management
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Dyssect

Flow Assignment

e Controller updates RSS table, migrates shards, and defines a subset of flows in a shard to
forward to an offloading core;
e Dyssect splits cores into working or offloading cores.
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Dyssect

Flow Assignment
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Dyssect

Correctness Analysis

Deadlock freedom

O

O

Controller can disable packet processing;
Working cores enqueue packet into
queues;

Offloading cores never blocks during
scaling operations.

If there exists an incoming packet p, at
a certain moment, p turns into an

outgoing packet.

Packet ordering

O

Controller can reassign shards, offloading
cores, or change offload ratio;

Auxiliary queues are swapped by the
Controller;

Scaling algorithms;

For any pair of packets from the same
flow, the first packet of the pair is

always processed first.

Check the formal proofs in our paper.
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Dyssect

Flow Assignment Optimization

Optimization models:

e |Long-timescale optimization:
o minimizes the number of active working and offloading cores.
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Dyssect

Flow Assignment Optimization

Optimization models:

e |Long-timescale optimization:
o minimizes the number of active working and offloading cores.
e Short-timescale optimization:
o minimizes the number of shard migrations and offloading core reassociations.

Check both optimization models in our paper.
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Dyssect

Flow Assignment Optimization

Optimization models:

e |Long-timescale optimization:

o minimizes the number of active working and offloading cores.
e Short-timescale optimization:

o minimizes the number of shard migrations and offloading core reassociations.
e Constraints:

o SLO, core utilization, shard ratio, working and offloading cores relationship.

Check both optimization models in our paper.
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Evaluation

For evaluation, we use three use cases:

e Use Case | traffic class prioritization;
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e Use Case | traffic class prioritization;

e Use Case ll: alternate optimization targets;
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Evaluation

For evaluation, we use three use cases:

e Use Case | traffic class prioritization;
e Use Case lI: alternate optimization targets;

e Use Case lll: SmartNIC offloading.
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Evaluation

Use Case |

e Real trace;

e High and low priority flows;

e Scaling traffic to simulate throughputs from ~2.5 to ~22 Gbps;
e Network functions: NAT and IDS.
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Evaluation
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Evaluation

Use Case |
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Evaluation

Use Case II

e We explore Dyssect using a different optimization model:
o Load balance optimization model (below);

e This model minimizes the quadratic difference between a target value T and
the utilization of working and offloading cores.

minimize Y (uf — T)* + ) (u} — T)* + a(Eq. 16), 1)
ceC keC
subject to Equations 2 — 11 and Equations 19 — 20

Check the equation definitions in our paper.
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Evaluation

Use Case II
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Evaluation

Use Case Il

e We offload the lookup function to a SmartNIC;

e SmartNIC performs the lookup and inserts the address into the packet

metadata;
e \Working cores skip the lookup if the metadata already contains an address.
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Evaluation

Use Case Il
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Conclusion

e Sharding impacts on the performance of stateful network functions;

e Dyssect disaggregates states from network functions;

e Dyssect employs optimization models;

e Dyssect increases throughput up to 19% and reduces tail latency up to

32% when compared with other load-balancing proposals.
https:/github.com/dyssect/dyssect
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