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Abstract. Rainforests play an important role in the global ecosystem. How-
ever, significant regions of them are facing deforestation and degradation due
to several reasons. Diverse government and private initiatives were created to
monitor and alert for deforestation increases from remote sensing images, us-
ing different ways to deal with the notable amount of generated data. Citizen
Science projects can also be used to reach the same goal. Citizen Science con-
sists of scientific research involving nonprofessional volunteers for analyzing,
collecting data, and using their computational resources to outcome advance-
ments in science and to increase the public’s understanding of problems in spe-
cific knowledge areas such as astronomy, chemistry, mathematics, and physics.
In this sense, this work presents a Citizen Science project called ForestEyes,
which uses volunteer’s answers through the analysis and classification of re-
mote sensing images to monitor deforestation regions in rainforests. To evaluate
the quality of those answers, different campaigns/workflows were launched us-
ing remote sensing images from Brazilian Legal Amazon and their results were
compared to an official groundtruth from the Amazon Deforestation Monitoring
Project PRODES. In this work, the first two workflows that enclose the State of
Rondônia in the years 2013 and 2016 received more than 35, 000 answers from
383 volunteers in the 2, 050 created tasks in only two and a half weeks after their
launch. For the other four workflows, even enclosing the same area (Rondônia)
and different setups (e.g., image segmentation method, image resolution, and
detection target), they received 51, 035 volunteers’ answers gathered from 281
volunteers in 3, 358 tasks. In the performed experiments, it was possible to
observe that the volunteers achieved satisfactory overall accuracy in the clas-
sification of forestation and non-forestation areas using the ForestEyes project.
Furthermore, considering an efficient segmentation and a better image resolu-
tion, they can achieve outstanding effectiveness results in the classification task
of recent deforestation images. Therefore, these results show that Citizen Sci-
ence might be a powerful tool in monitoring deforestation regions in rainforests
as well as in obtaining high-quality labeled data.
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1. Introduction
Rainforests have an important role in the global ecosystem once they have a great diver-
sity of fauna and flora, regulate the climate and rainfall, absorb large amounts of carbon
dioxide, and are indigenous housing [M]. Unfortunately, thousands of square kilometers
of rainforests are deforested or degraded daily due to livestock, agriculture, urban area
expansion, wood extraction, and forest fires [L].

According to one of the most well-known and successful rainforests monitoring
programs - PRODES [L, H, S] - in the period between August/2018 and July/2019 the
Brazilian Legal Amazon’s deforestation reached 10, 129km2, an increase of 34% in com-
parison with the previous period (August/2017 to July/2018) [I]. These high rates of
deforestation can have irreversible and catastrophic consequences as biodiversity loss,
climate change, desertification, water shortage, increase of diseases, and even emergence
of pandemics [M, L, C, A].

As the conservation of rainforests is urgently needed, monitoring programs were
created by government agencies and non-profit institutions. These programs use remote
sensing images, image processing, machine learning techniques, and specialists’ photoin-
terpretation to analyze, identify, and quantify forest cover changes [L].

The shortage of skilled labor and the high amount of data to be analyzed is a
significant challenge for information and communication technology (ICT) [S]. A possi-
ble solution to overcome this problem is to use Citizen Science wherein non-specialized
volunteers collect, analyze, and classify data to solve several technical and scientific prob-
lems [G, S].

CS projects of a wide variety of research fields have drawn the attention of well-
known scientific magazines such as Nature [I, G] and Science [G]. Recently, the U.S. 1

and Australian 2 governments, and the European Union3, have launched official programs
to catalog and support CS projects [B].

CS can be a valuable source of data for the Earth Observation field, which includes
deforestation monitoring [F]. For CS projects ForestWatchers [L], EarthWatchers [S], and
Geo-Wiki [F] the volunteers analyze and classify remote sensing images. These classifica-
tions generate deforestation maps or alerts. For the ForestWatcher project, the volunteers
collect data in situ to confirm deforestation alerts issued by Global Forest Watch [P].

In April 2019 the ForestEyes Project4 was launched [D]. This CS project is hosted
by the Zooniverse.org platform [S] and aims to ally CS with machine learning techniques
to monitor rainforests’ deforestation. The volunteers analyze and classify remote sensing
images. These classifications will be used to train machine learning techniques that will
classify new remote sensing images. These new data can provide complementary infor-
mation to official monitoring programs such as PRODES or even generate information
for areas where such programs don’t exist.

The feasibility of the ForestEyes project depends on the quality of the data gener-
1https://www.citizenscience.gov/
2https://citizenscience.org.au/
3https://www.ecsite.eu/activities-and-services/projects/

eu-citizenscience
4https://www.zooniverse.org/projects/dallaqua/foresteyes

https://www.citizenscience.gov/
https://citizenscience.org.au/
https://www.ecsite.eu/activities-and-services/projects/eu-citizenscience
https://www.ecsite.eu/activities-and-services/projects/eu-citizenscience
https://www.zooniverse.org/projects/dallaqua/foresteyes


ated by the volunteers. The volunteers analyzed and classified Landsat-8’s [L] remote
sensing images from an area of BLA, specifically of the State of Rondônia, wherein
PRODES-based data was used as validation of the volunteers’ contributions. It is worth
mentioning that to ensure this validation, the volunteers analyzed the same Landsat-8
images used by PRODES.

This paper describes in detail all of the steps taken to validate the generated data,
including the creation of the tasks in the Zooniverse.org platform, the remote sensing im-
age processing techniques, the launch of the CS’s campaigns, the user layout continuous
enhancements, and the evaluation of the volunteers’ contributions. The remainder of this
work is organized as follows. Section 2 presents background about deforestation moni-
toring and CS. Section 3 presents the proposed ForestEyes Project. Section 4 shows the
methodologies and some results for the CS’s campaigns, whereas Section 5 presents the
comparison between the campaigns and analyses of the volunteers’ contributions. Sec-
tion 6 presents the conclusions, and Section 7 defines the future steps for ForestEyes
Project.

2. Background
This section presents background about deforestation detection/monitoring and CS
projects.

2.1. Deforestation Detection and Monitoring
The monitoring of rainforests is necessary because of their great biodiversity. Besides the
well-known Amazonian Forest, other rainforests also suffer from indiscriminate and pro-
gressive deforestation, where over 74 million hectares have been lost or heavily degraded
from 2000 to 2012 [L, H]. For BLA, there are monitoring programs - governmental and
from non-profit institutions - for deforestation measuring and preventing as PRODES and
DETER [D] from INPE, MapBiomas [S] (multi-institutional initiative), SAD from Ima-
zon [d] and GLAD from Global Forest Watch [H].

2.1.1. PRODES

Amazon Deforestation Monitoring Project (PRODES) [L, S] was developed by INPE in
1988 to carry annual deforestation surveys in BLA. Trained specialists classify remote
sensing images through photointerpretation. These remote sensing images are usually
from Landsat satellites, but other satellites as SENTINEL-2 and CBERS-4 can also be
used. By 2013, Landsat-8 was launched, which has a revisit time of 16 days, 30 meters of
spatial resolution, and 11 spectral bands.

PRODES methodology is divided into three steps: (1) an image selection tech-
nique is performed, where cloud-free images collected near August 1st are enhanced to
highlight the areas with complete removal of native forest (clear-cutting); (2) the spe-
cialists identify and delimit the deforestation polygons; and (3) the annual deforestation
rate is calculated [S]. Both thematic images and quantitative data are publicly available.
Figure 1 presents the PRODES’ mosaic for the State of Rondônia for the year 2016.

As PRODES quantifies and spatially locates annual BLA deforestation incre-
ments, once an area is classified as deforestation, it is included in an exclusion mask



that will be used in subsequent years. Therefore PRODES data don’t infer on regenerated
areas [W]. This exclusion mask also has regions of different vegetation (which PRODES
classifies as non-forest) and hydrography areas.

(a) PRODES’ mosaic of the State of Rondônia for the year of 2016.

(b) Different classes existing on PRODES 2016.

Figure 1. Rondônia’s thematic image for the PRODES year of 2016. Extracted
from TerraBrasilis [d]. In (a) Thematic image of Rondônia in the year 2016
and in (b) Legend for the thematic image where ”d” means deforestation
of the given year and ”r” is the residue. The residue is deforestation that
was not detected but occurred in previous years [M].

2.1.2. DETER

The monitoring program DETER was created to detect near-real-time deforestation as
quick actions are needed to stop the beginning of a deforestation process. It began by
using imagery from MODIS (Moderate Resolution Imaging Spectroradiometer) [J] with
a spatial resolution of 250 meters and a revisit time of roughly 1.5 days. An alert is
sent to authorities when a deforestation process is identified. These alerts are also posted
every month on the program’s website. Nowadays, DETER also uses images from other
satellites with different spatial resolutions to improve deforestation detection [D].



2.1.3. TerraBrasilis

Recently INPE deployed a new platform, called TerraBrasilis [d], which provides an in-
teractive dashboard in which users can access and use spatial data generated by PRODES
and DETER. Also, the data generated by INPE’s monitoring programs are used by other
programs as TerraClass [A, N] and MapBiomas (Brazilian Annual Land Use and Land
Cover Mapping Project) [S], for instance. The project TerraClass was launched in 2011
through a partnership between INPE and EMBRAPA (Brazilian Agricultural Research
Corporation) to produce maps showing land use and the cover of the deforested areas
mapped by PRODES [A].

2.1.4. MapBiomas

MapBiomas project began in 2015, and it is a multi-institutional initiative to generate an-
nual land use and land cover time series for all Brazilian territory, covering all six official
Biomes [S]. Recently MapBiomas has launched an alert system from information gener-
ated by DETER, SAD, and GLAD to validate and refine data from daily high-resolution
images with a spatial resolution of 3m, creating surveys to be sent to different authorities.

2.1.5. SAD and GLAD

The monitoring programs SAD (Deforestation Alert System) and GLAD (Global Land
Analysis & Discovery) are held by the non-profit institutions Imazon (Institute for hu-
manity and amazon environment) and GFW (Global Forest Watch), respectively. The
first analyzes MODIS images with Normalized Difference Fraction Index (NDFI) and
provides surveys every month on its website [d]. The second program uses Landsat im-
ages and decision trees to alert tree-cover loss not only in BLA but also in other areas
with rainforests as Congo Basin and Southeast Asia [H].

2.2. Citizen Science (CS)

The collection, analysis, and classification of data for scientific research through vol-
unteers’ contributions (most of them are non-specialist) is known as CS [G, S, I]. The
remotest idea of CS goes back more than 2000 years, where people helped to monitor
migratory locusts outbreaks destroying harvest in ancient China [I].

The pioneer project called Christmas Bird Count [S] created by ornithologist
Frank Chapman in 1900 proposes carrying out a census of the bird population as an al-
ternative to hunting birds on Christmas. Currently, the project is held every year by the
National Audubon Society. Besides ecology, CS nowadays is being used in a great variety
of research fields as astronomy [F, W], chemistry [C], mathematics [C], and physics [A].

Advances and worldwide growing popularity for ICT resources remotely dis-
tributed (e.g., computers, tablets, and mobile phones) helped to increase the dissemi-
nation of CS projects [S]. CS can also be referred to as Citizen Cyberscience, which can
be divided into three subcategories: Volunteered Computing, Volunteered Thinking, and
Participatory Sensing [H].



• Volunteered Computing: a distributed processing power is provided by several
volunteers donating their computational resources. The first and best-known ex-
ample of Volunteered Computing project is SETI@home [A], launched in May
1999 by the UCLA/Berkeley. To participate, the volunteers execute a free program
that downloads and analyzes radio telescope data, searching for extraterrestrial in-
telligence. LHC@home [L] and climateprediction.net [S] are other examples of
projects.

• Volunteered Thinking: the volunteers use their cognitive skills to analyze data
or to perform different kinds of tasks. Galaxy Zoo, launched in 2007, is a well-
known example of this kind of CS, requiring, for more than a decade, volunteers
to classify images of galaxies according to patterns available [L]. Within 24 hours
of launch, they received almost 70, 000 classifications in one hour. More than 50
million classifications were received during its first year by more than 150, 000
people. With the success of Galaxy Zoo, it evolved into Zooniverse.org, an online
platform that hosts a wide variety of Volunteered Thinking projects. Until 2013, it
collected more than 300 million analyses from 1 million volunteers [S]. FoldIt [C],
Stardust@home [W], and Planet Hunters [F] are other examples of Volunteered
Thinking projects.

• Participatory Sensing: the volunteers are responsible for gathering data or in-
formation, usually in situ. The eBird project, released in 2002 by Cornell Lab
of Ornithology and National Audubon Society, aims to engage citizen scientists
to report bird observations through standardized protocols, documenting bird dis-
tribution, habitat, and patterns [S, S]. Other examples of participatory sensing
projects are CoralWatch [M] and NoiseTube [M].

The motivation to volunteer contributions to a CS project was addressed by sev-
eral authors. Altruism, for example, was cited as a major factor for CS projects related
to nature conservation [C, B, K]. For projects on different purposes, like Galaxy Zoo
and FoldIt, the main reasons were research contribution and the interest in science [R, C].
Other important factors are the importance of online communities [R, H] and competitive-
ness [H] through a volunteers’ ranking. For the eBird project, for example, a substantial
increase in data gathered, collecting more observations in one-month than in two years’
project, appears after some changes that included competition between volunteers [H].

Many CS projects have shown that citizen scientists can produce high-quality data,
being as efficient as specialists [C, A, G, K, D]. However, statistical data analyses and
validation heuristics or algorithms are also important to discard bad or non-reliable data
received from volunteers, ensuring good data quality. To send redundant tasks to multiple
volunteers, allowing to extract the information that constitutes the majority or consensus
between the volunteers, is widely used as a good data quality mechanism.

Calibration tasks containing already classified samples by specialists could also
be used as a quality mechanism since they allow a volunteers and specialists comparison.
In Galaxy Zoo, for example, only registered volunteers can participate, assigning weights
to individual users according to the volunteer’s skill [R, L, A].

To overcome the data quality challenge in CS projects, l [L] proposes a method
using volunteers’ diversity to improve data accuracy by a Bayesian inference algorithm.
A survey, gathering information about the volunteer’s education level and the motiva-



tion to CS, is used to group the volunteers into distinct classes. This method shows an
improvement in data accuracy compared to majority voting.

2.3. ForestWatchers Project

The ForestWatchers was a CS project to monitor the rainforests through the volun-
teer’s collaboration connected to the Internet [A, L]. It was launched in 2012 by re-
searchers of the Institute of Science and Technology of Federal University of São Paulo
(ICT/UNIFESP), the Laboratory for Computing and Applied Mathematics at the National
Institute for Space Research (LAC/INPE), and the Citizen Cyberscience Centre (CCC).

The project was composed of three experimental applications: (1) Best-Tile; (2)
Deforestation Classification; and (3) Correct Classification. The Correct Classification
application used PRODES classification and remote sensing images from MODIS sensor
to train an artificial neural network (ANN) [H]. New remote sensing images were an-
alyzed by this ANN, creating segmented images in Forest (represented by green pixels)
and Non-Forest (displayed as red pixels). Tiles with size 3×3 pixels - corresponding to an
area of approximately 56 hectares - with confidence below a given threshold were sent for
volunteers’ inspection where they agreed or disagreed with the ANN’s classification [L].

Two campaigns were performed, each one with an area of BLA: one from the
State of Rondônia for the year of 2011, with 72 tasks; and the other was from Awá-Guajá
Indigenous Reserve in 2014, with 26 tasks.

3. The Proposed ForestEyes Project
The ForestEyes Project [D], a CS project inspired by ForestWatchers Project and launched
in April/2019, aims to monitor deforestation areas, where volunteers classify remote sens-
ing image’s segments that can be used as training sets of classification algorithms. These
classification algorithms are used to label new segments, providing complementary infor-
mation to official monitoring programs or even generating data for areas where do not
exist this kind of programs.

The project can be divided into five modules: (1) Pre-processing; (2) Citizen Sci-
ence; (3) Organization and Selection; (4) Machine Learning; (5) and Post-processing.
A schematic representation of these modules can be seen in Figure 2 where the colored
items are the ones discussed in this paper.
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Figure 2. ForestEyes Project’s schematic representation. The colored items are
the modules discussed in this paper.

3.1. Pre-processing Module

The Pre-processing Module is responsible for the acquisition, processing, and segmenta-
tion of the remote sensing images. Figure 3 shows the steps (a) to (g) of the Pre-processing
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Figure 3. Schematic representation of the Pre-processing Module steps in the
ForestEyes Project.

Module. Firstly, in (a), the acquisition of the remote sensing images is performed. Cur-
rently, the images used by the project are from Landsat-8, the same ones that are ana-
lyzed by PRODES. The Landsat-8 scenes are freely collected at EarthExplorer platform5.
Landsat-8 has 11 spectral bands but only 7 bands - coastal aerosol or ultra-blue, blue,
green, red, near-infrared or NIR, shortwave infrared 1 or SWIR 1, and shortwave infrared
2 or SWIR 2 - are acquired. In (b), the region of interest is cropped and resampled to
standardize the remote sensing image according to the PRODES’ mosaic.

Generally, some segmentation algorithms have a 3-band image (RGB) as input,
and the acquired image is composed of 7 bands. In (c), a dimensionality reduction tech-
nique (Principal Component Analysis - PCA) is applied to generate 3 grey color images
that are joined into one new 3-band image, simulating RGB image in (d). This new image
is used as input to a segmentation algorithm in (e). In this step, 3 segmentation algo-
rithms were used: (1) Simple Linear Iterative Clustering (SLIC) [A]; (2) Image Foresting
Transform-SLIC (IFT-SLIC) [A]; and (3) MaskSLIC [I]. In (f), each segment becomes a
sample included in the database in (g). Some of the samples are sent for the Citizen Sci-
ence Module, and the remaining samples compose the test set of the Machine Learning
Module.

3.2. Citizen Science Module

At the Citizen Science Module is performed the interaction with the volunteer, and The
Zooniverse.org platform was chosen to host this module once it has a large and consoli-
dated community. This platform allows the creation of one or more workflows, defined
as the sequence of tasks to be handled by the volunteers. On the ForestEyes Project, the
volunteers analyze and classify the segments into three classes (Forest, Non-Forest, or
Undefined), according to the proportion of pixels that belong to each class. If 70% or
more pixels inside the segment belong to Forest or Non-Forest, the volunteer needs to
assign this majority class. Otherwise, the volunteer needs to assign as an Undefined class.
The segments are presented with different color-compositions, and a tutorial is available
to volunteers.

After 15 or more responses received for each segment from distinct volunteers, the
workflow is considered finished, and the contributions are downloaded from the Zooni-
verse.org platform. These contributions are sent for analysis at the Organization and Se-
lection Module.

5https://earthexplorer.usgs.gov/

https://earthexplorer.usgs.gov/


3.3. Organization and Selection Module

At the Organization and Selection Module, the class of each segment is defined by the
majority vote of the volunteers’ answers, and analyses are performed such as the tasks’
difficulty level (Section 3.3.3), consensus convergence (Section 3.3.4), and the volunteers’
hit rates and score (Section 3.3.5).

The Organization and Selection Module is also responsible for the comparison
between volunteers’ classifications with a given groundtruth when available. For now,
PRODES data were used to build different groundtruth that will be explained in Sec-
tion 3.3.2. For the groundtruth, it was needed the definition of a metric called Homogene-
ity Ratio (HoR), presented in Section 3.3.1.

With the classification of the segments, it is possible to create the training set of
the Machine Learning Module. Only the segments with classes Forest and Non-Forest are
considered, discarding the Undefined segments.

3.3.1. Homogeneity Ratio (HoR)

The ForestEyes’ volunteers choose between three classes: Forest, Non-Forest, and Unde-
fined. However, a pixel-based groundtruth is built as a binary classification (Forest and
Non-Forest). This Non-Forest class encompasses everything that is not Forest, such as
deforestation, hydrography, clouds, and others.

To evaluate the quality of the segments, a Homogeneity Ratio (HoR) is defined
as the percentage of pixels present inside each segment of the majority class in a binary
classification task (Forest and Non-Forest). According to equation (1), NFP represents
the number of Forest pixels, NNP the Non-Forest pixels’ number, and NP the total pixels
for a segment (NP = NFP +NNP ).

HoR =
max(NFP,NNP )

NP
(1)

The HoR metric is partitioned in five different ranges to better represent their
distribution: 0.5 ≤ HoR < 0.6, 0.6 ≤ HoR < 0.7, 0.7 ≤ HoR < 0.8, 0.8 ≤ HoR <
0.9, and HoR = 1.0. Therefore, if a segment has 0.5 ≤ HoR < 0.6 to Forest class means
that it has 0.5 ≥ HoR to Non-Forest class.

3.3.2. Groundtruth

To compare the classification of the volunteers with PRODES data, two strategies were
used to define the groundtruth. The first one is pixel-based. Given an image from
PRODES mosaic (Figure 4(a)), all PRODES’ classes different of Forest (deforestation,
residue, hydrography, clouds, non-forest vegetation, and others) are defined as Non-
Forest, resulting in a binary image (Figure 4(b)) that will be referred as GT-PRODES.

The second strategy of groundtruth is segment-based, where two new GTs are
created: GT with Undefined (GT-U) and GT with the majority (GT-M). These two GTs
are created by considering HoR for each segment.



Figure 4. Example of PRODES binarization where the resulting binary image
becomes the GT-PRODES. The image presents an area in the State of
Rondônia of approximately 64, 000 hectares.

With GT-U, the segments with HoR < 0.7 are classified as Undefined, otherwise
(HoR ≥ 0.7) receive the respective Forest or Non-Forest label. As for GT-M the segment
is classified considering its majority class [D]. Figure 5 presents GT-U and GT-M for the
same region depicted in Figure 4.

Figure 5. Examples of GT-U and GT-M for the same region.

The volunteer classification accuracy is defined here by equation (2). Let NSC
be the number of samples correctly classified and TNS the total number of samples. For
GT-PRODES, the samples are just the pixels, and for GT-U and GT-M, the samples are
the segments.

Accuracy = 100× NSC

TNS
(2)

3.3.3. Task’s Difficulty Level

According to c [A], the task’s difficulty level can be calculated using the volunteers’
answers and Shannon’s entropy (HE) [L], which is given by equation (3). The higher the
entropy value, the greater the difficulty of the task.

HE = −
N∑
i=1

pi × log2 pi (3)

Where pi is the probability of the class i be chosen, calculated by the ratio between
the number of votes given to class i and the total of votes for the task, and n is the number
of possible classes in the task.

The tasks’ entropy values are normalized to the range (0, 1) and empirically sepa-
rated into three difficulty levels: Easy (HE ≤ 0.33); Medium (0.33 < HE ≤ 0.66); and



Hard (HE > 0.66).

The average time to the task accomplishment by the volunteers is also taken to be
used to measure the difficulty level. This metric could be correlated to entropy, accuracy,
or HoR, showing different task hardness applied to different volunteer groups and CS
campaigns.

3.3.4. Consensus Convergence

The analysis of the consensus convergence is used to evaluate the number of answers
needed in each task to define its final classification. This analysis is performed by check-
ing if the classification given with the predefined number of answers remains the same
with fewer answers. For the ForestEyes Project, the first 15 answers define the final clas-
sification of each task. Therefore the consensus convergence analysis was considering the
achieved classifications for 5, 7, 9, 11, and 13 answers.

3.3.5. Volunteers’ Hit Rates and Score

As in c [A], it is assumed that the answer given by volunteers’ consensus is the correct
one. The number of hits of each volunteer is incremented by 1 when the volunteer agrees
with the canonical answer and remains unchanged if it doesn’t agree. The volunteer’s hit
rate (HR) and score (VS) are calculated through equations (4) and (5), where hits mean
the number of answers the volunteer agreed with the consensus and total answers is the
number of answers that the volunteer gave.

HR = 100× hits

total answers
(4)

V S = (0.3× total answers) + (0.7× hits) (5)

Besides evaluating the volunteers’ answers in comparison with the consensus, (4)
can also be used to evaluate the volunteers’ answers with the GT bases GT-U and GT-M.

3.4. Machine Learning Module

In the Machine Learning Module, a classification algorithm is trained with the set built
from the Organization and Selection Module. Then, this algorithm is applied to a test set
that consists of segments that were not sent to the Citizen Science Module.

3.5. Post-processing Module

The Post-processing Module will evaluate the obtained results from the Machine Learning
Module, creating deforestation alerts, for example. Also, it is planned a feedback cycle
where test segments will be sent to the Citizen Science Module to improve the training
set and consequently improve the classification algorithm.



4. Citizen Science’s campaigns
In this section are shown the methodologies and some results of the CS’s campaigns.
Each subsection describes one single campaign, also known as a workflow in the Zooni-
verse.org platform, detailing the image used, segmentation algorithms, and user interface.

4.1. Beta-Review

To launch a CS project as a Zooniverse’s project, a Beta-Review is needed. The interface
is reviewed by volunteers who evaluate the project and provide improvement suggestions.
Based on this evaluation, the platform’s team defines if the project is ready for an official
launch [D].

The ForestEyes’ Beta-Review consisted of a workflow with the same tasks as the
ForestWatchers’ Correct Classification plus six more tasks from Awá-Guajá as it is needed
a minimum of 100 tasks for a project to be sent for Beta-Review. The volunteers needed
to analyze tiles highlighted by red squares with size 3 × 3 pixels from remote sensing
images obtained by MODIS sensor, which has a spatial resolution of 250m. Figure S1
shows the user interface for this Beta-Review.

Contrary to the ForestWatchers Project, which showed the original remote sensing
image and the image classified by an automatic procedure, this Beta-Review only showed
images from the MODIS sensor. Furthermore, a new answer was created (Undefined
class), aiming to identify tasks where there is too much mixture of Forest and Non-Forest
pixels (border regions), usually resulting in a low HoR.

The Beta-Review received 2, 275 answers being 1, 604 answers from 77 registered
volunteers and 671 answers from 125 anonymous volunteers. For Awá-Guajá 2014, 31
tasks were classified as Forest, and just one as Non-Forest whereas for Rondônia 2011,
65 tasks were classified as Non-Forest, 4 as Forest and in 3 tasks there were ties. Table 1
presents the frequency of tasks over difficulty levels based on entropy ranges.

Table 1. The frequency of the tasks with difficulty level for the Beta-Review work-
flow in the ForestEyes Project.

Difficulty Level Easy (E) Medium (M) Hard (H)
Entropy (HE) HE ≤ 0.33 0.33 < HE ≤ 0.66 HE > 0.66

Awá-Guajá 2014 18 (56.25%) 12 (37.5%) 2 (6.25%)
Rondônia 2011 4 (5.56%) 26 (36.11%) 42 (58.33%)

Notice that the volunteers had high consensus with Awá-Guajá tasks, since it was
necessary only to compute 5 answers to achieve the same results as computing the first 15,
and 93.75% of the tasks were considered easy or medium difficulties. As for Rondônia,
the majority of tasks (58.33%) were considered hard, demanding 9 or more answers to
achieve a consensus convergence higher than 90%.

Although the Rondônia tasks could be considered a challenging task for the volun-
teers, their classification results were 88.9% when compared with PRODES classification
(GT-PRODES). As feedback from the volunteers, two problems have been reported: (1)
image resolutions, which can be observed in Table 1 with a high number of hard tasks;



and (2) how tasks were presented to volunteers. So new workflows were created taking
into account their feedback and will be explained in the following.

4.2. First Official Workflows

In the first official workflow for the ForestEyes Project at the Zooniverse.org platform,
the remote sensing images from the Landsat-8 satellite were used, which allow a better
resolution than MODIS sensors. This image covers an area in Rondônia in the year of
2016, and was acquired at EarthExplorer containing 7 out of 11 bands. However, this
image was resampled from resolution 30m to 60m, matching with the classified image by
PRODES [D]. The size of the generated image is 558 × 318 pixels corresponding to an
area of approximately 64, 000 hectares.

Besides using an image with better resolution, a new interface to display the tasks
was presented as required by volunteers. So, instead of using fixed square tiles, it was
decided to use segments generated by the SLIC algorithm. Therefore, the steps of the
Pre-processing Module were developed as explained in Section 3.

For the user interface, presented in Figure S2, two different color composition
images were available as in Figure 6. In (a) is the original Landsat-8’s RGB, and in (b)
is a false-color image composed of the bands 7 (shortwave infrared 2), 5 (near-infrared),
and 3 (green) from Landsat-8. This new composition will be referred to as 753 false-color
composition.

(a) RGB. (b) 753 false-color composition.

Figure 6. Examples of color compositions available to volunteers.

With this new workflow, the ForestEyes Project was officially launched in April
18, 2019, where just one week later, all 1, 022 tasks have been completed, receiving
19, 803 answers where 17, 239 answers were from 151 registered volunteers and the re-
maining from 76 anonymous volunteers.

The volunteers classified 1, 022 tasks being 467 Forest, 467 Non-Forest, 73 Unde-
fined, and 15 tasks tied that were randomly chosen, resulting in a GT-PRODES accuracy
of 84.15%, GT-U and GT-M accuracies were of 84.25% and 86.50%, respectively.

The second workflow was created with an image of the same area acquired in an-
other year (2013), where its user interface can be seen in Figure S3. This workflow was
also completed in almost a week, reaching 15, 610 answers for 1, 028 tasks, with 137 reg-
istered volunteers giving 14, 578 answers and 41 anonymous providing 852 contributions.



These 1, 028 tasks were classified as 478 being Forest, 470 Non-Forest, 74 Unde-
fined, and ties happened in 6 tasks, resulting in a GT-PRODES accuracy of 83.76%, GT-U
and GT-M accuracies of 84.34% and 88.33%, respectively.

Performed analyses over the results indicated that registered volunteers con-
tributed more than the anonymous. Also, they achieved better accuracies either con-
sidering the volunteers’ consensus and the groundtruth hit rates (GT HRs), providing
more homogeneous answers than the anonymous volunteers. Furthermore, it is possible
to observe that the consensus and GT HRs increase as volunteers answered more tasks,
stabilizing with a reasonable value [D].

Different from Rondônia 2011, where the majority of tasks were hard, in these new
workflows with a better image resolution, around 65% of the tasks were considered easy,
with just 13.8% being hard, corresponding to 283 tasks. Also, the consensus convergence
for both workflows (2016 and 2013) achieved more than 90% with only 5 answers.

The comparison of the volunteers’ classifications for 2016 and 2013 could show
the areas where occurred deforestation between those years. Therefore the difference
between them was taken and compared with the difference between GT-PRODES 2016
and GT-PRODES 2013.

The difference between the two GT-PRODES showed that 2, 184 pixels corre-
spond to deforestation between the years of 2014 and 2016. However, from the differ-
ence between the two workflows, only 570 were correctly classified as Non-Forest by
the volunteers, 302 were labeled as Undefined, in 176 tasks happened ties, and 115 were
wrongfully classified as Forest. These results may have happened due to errors in the im-
age segmentation process, failures in the tasks display, variability in the spectral satellite
image characteristics, or volunteers’ error.

Intending to get results even closer to GT-PRODES, especially for the detection of
areas with recent deforestation, k-means clustering was performed on the tasks considered
hard (high entropy), Undefined, and the ties, resulting in a new workflow that is explained
next.

4.3. Refining Segmentation Process through Clustering

From the results obtained by l [D], and depicted in Section 4.2, the Undefined tasks, the
tasks with ties, and the hard segments (HE > 0.66), received a new segmentation process
aiming to refine the polygons/regions. This segmentation turns each original task into two
or more samples, which were organized in a new workflow at the Zooniverse.org platform.

The k-means [L] algorithm was used to refine the depicted segments, using the
PCA in the pre-processed image, and the elbow method [K] to define the optimal number
of clusters. An example of the new segmentation process can be viewed in Figure 7.

Since the k-means algorithm does not take into account the spatial pixel distribu-
tion, distant pixels located outside a new segment are also considered an integrated part of
the same cluster. Therefore, the number of created news segments could be greater than
k. Some of them could also be too small to visualize.

To make the interface and image analysis more friendly, the segments with less
than 9 pixels were discarded, reaching 1, 285 new tasks sent to volunteers where 637



ORIGINAL TASK

NEW TASKS

Figure 7. Examples of new tasks for the new workflow. The original task was
divided into four new segments that were sent to volunteers.

are related to 2013 and 648 from 2016. The segments had an average size of 35 pixels,
representing a minor area than the previous workflows, which had 173 pixels on average.

The user interface, presented in Figure S4, showed two zoomed images side-by-
side representing the available color compositions, 753 false-color and RGB. Also, due
to possible problems with the segments’ size, a new answer option was available to vol-
unteers (”Segment too small”), making possible a more detailed quality evaluation of the
new tasks.

From the 1, 285 tasks and considering the first 15 answers, 598 received Forest la-
bel, 621 received Non-Forest, 29 were classified as Undefined, 7 was considered too small,
and draws happened in 30 tasks. The workflow received 19, 496 answers, being 18, 789
from 142 registered volunteers, and 707 from 40 anonymous. For better comprehension,
the results were divided into the ones regarding 2016 (defined here as refined2016) and
the ones from 2013 (defined here as refined2013).

For refined2013, 312 segments were labeled as Forest, 283 as Non-Forest, 20 as
Undefined, 4 as Small, and in 18 happened ties, resulting in accuracy of 67.50% for
GT-PRODES, 59.34% for GT-U, and 67.19% for GT-M. Whereas for refined2016, 286
tasks were classified as Forest, 338 as Non-Forest, 9 as Undefined, 3 as Small, and in 12
happened ties. For the GT-PRODES accuracy was 71.91%, GT-U reaches 62.65% and
GT-M 72.68%.

Although the results didn’t achieve satisfying values, being very bellow compared
to the other workflows, when integrating these new classifications to the first official work-
flows described in Section 4.2, the previous results from the first workflows regarding
GT-PRODES are increased by more than 4%. It also increased the monitoring of recent
deforestation by approximately 85.9%. However, improvements were still required since,
even with these optimizations, just 48% of GT-PRODES pixels with recent deforestation



were found.

4.4. New Image Resolution and Segmentation Algorithm

By 2017, the PRODES’ mosaics started to have a resolution of 30m, enabling the use of
the Landsat-8 images without needing resampling. The use of images with better resolu-
tion could improve the user visualization and consequently the volunteers’ classification.

A Landsat-8 image for a similar region defined for the previous workflows was
collected, as close as possible. This image has 1058 × 625 pixels, corresponding to an
area of approximately 59, 500 hectares, and is the same used to build PRODES mosaic of
2017.

To improve the segmentation, another algorithm (IFT-SLIC) was tested. This al-
gorithm is an extension of SLIC in an IFT framework [A]. Both SLIC and IFT-SLIC
were applied to the new remote sensing image, and two new workflows were created at
the Zooniverse.org platform: SLIC 2017 and IFT-SLIC 2017. Both had the same user
interface that can be seen in Figure S5.

By analyzing the HoR’s distribution ranges of each algorithm, SLIC presented
higher percentage of segments with HoR = 1.0 (43.6%) and higher percentage of seg-
ments with HoR ≥ 0.7 (90.2%) compared to IFT-SLIC that had 39.1% and 87.1%, re-
spectively.

For SLIC 2017, 14, 339 answers were received from 64 registered volunteers and
359 answers from 19 anonymous volunteers, resulting in 14, 698 answers for the 973
tasks, where 417 were classified as Forest, 450 as Non-Forest, 104 as Undefined, and in 2
tasks happened ties. The accuracy were 83.63% for GT-PRODES, 87.87% for GT-U, and
87.05% for GT-M. With IFT-SLIC 2017, 15, 360 answers were received, where 14, 977
from 79 registered volunteers, and 383 from 20 anonymous users. The 1, 008 tasks were
classified with 448 as being Forest, 443 as Non-Forest, and 117 Undefined, resulting in a
GT-PRODES accuracy of 81.39%, GT-U of 86.31%, and GT-M of 85.62%.

SLIC 2017 presented better results regarding all GTs compared with IFT-SLIC
2017. This could be explained by SLIC’s higher percentage of homogeneous segments
(HoR ≥ 0.7 and HoR = 1.0), which may have helped the volunteers in the classification
task.

4.5. Improving the Detection of Areas with Recent Deforestation

As the project proposes to monitor rainforests’ deforestation, detecting areas with recent
deforestation is the most important challenge to overcome. As seen in the refined work-
flow (Section 4.3), only 48% of recent deforestation was found, requiring an enhancement
process.

Firstly, to exclusively monitor areas with recent deforestation, it is needed to seg-
ment images only in non-consolidated deforestation areas detected by PRODES or defor-
ested areas undetected by previous campaigns.

In this new workflow, a segmentation algorithm called
MaskSLIC [I], which allows to segment regions outside a mask over the image, was
adopted. A mask from the PRODES 2017 image was created, taking into account only a



period of deforestation before August/2016. These pixels with recent deforestation (en-
compassing the deforestation between August/2016 and July/2017) were the targets to be
detected in this new campaign.

The number of segments was defined as the number of pixels outside the mask
divided by 70 pixels, which approximately corresponds to the minimum size area of de-
forestation monitored by PRODES (6.25 hectares) [G]. So, the final number of segments
was 4, 466.

As sending all these segments to the volunteers would be impractical, an analysis
using the groundtruth and HoR values was performed to build this new workflow. Hence,
all the Non-Forest and Forest segments with HoR < 1.0, and some Forest segments with
HoR = 1.0 were selected, resulting in 92 tasks.

Remaining vegetation are commonly found in the Amazon deforestation process,
which hinders the recent deforestation detection [O] not only for automatic algorithms
but also for people. To help the volunteers’ classification task, an NDVI [G] image was
also displayed in the interface. This vegetation index is calculated as a ratio between
bands red and NIR, given by Equation (6). It results in a grayscale image, where the
darkest pixels can be water, clouds, rock, or sand; moderate pixels can be grassland or
shrub, and the brightest pixels (closest to white) represent dense green leaves. Figure 8
shows an example of images displayed to volunteers in this new ForestEyes’ workflow
with the MaskSLIC algorithm, representing an area with recent deforestation, and Figure
S6 presents the user interface of this workflow.

NDV I =
NIR−Red

NIR +Red
(6)

Figure 8. Example of task for the new ForestEyes’s workflow with MaskSLIC. The
images show a recent deforested area.

This new workflow received 1, 481 answers from 28 volunteers where 1, 476 an-
swers from 26 registered volunteers and 5 answers from 2 anonymous. In a total of 92
tasks, 53 were classified as Forest, 23 as Non-Forest, and 16 as Undefined. The resulting
accuracies were 75.65% for GT-PRODES, 85.87% for GT-U, and 80.43% for GT-M.

Considering just recent deforested areas, the scheme presented in this subsec-
tion shows an improvement in the detection of areas with recent deforestation achieving
65.95% for GT-PRODES accuracy wherein the previous workflows reached only 48%.
However, the images taken for both workflows are not the same, differing by years, for
almost the same coverage area.



5. Comparison Between Workflows and Discussions
This section shows different comparative analyses between workflows. Firstly, the gen-
eral information is presented regarding the number of tasks, volunteers, and answers for
each workflow. Next, accounting for the workflows tasks’ contributions, the consensus
convergence, and CS’s accuracy for the different GTs are evaluated and analyzed. The
tasks’ difficulty levels by entropy and answers’ average time are also calculated and corre-
lated. Finally, the volunteers’ ranking is built according to the different scores computed
from all workflows.

5.1. General Information

Table 2 shows the general information for the ForestEyes’ official workflows, where the
registered volunteers had significant participation, even reaching 295 times greater than
the anonymous answers for the MaskSLIC workflow.

Table 2. Summary of the ForestEyes’ workflows.

Workflow 2013 2016 refined
2013 & 2016

2017
SLIC IFT-SLIC MaskSLIC

Number of Tasks 1,028 1,022 1,285 973 1,008 92

Registered volunteers 137 151 102 64 79 26
Anonymous volunteers 41 76 40 19 20 2

Total of volunteers 178 227 142 83 99 28

Registered Answers 14,758 17,239 18,789 14,339 14,977 1,476
Anonymous Answers 852 2,564 707 359 383 5

Total of Answers 15,610 19,803 19,496 14,698 15,360 1,481

For the next results, the refined workflow 2013&2016 was divided into the tasks
from 2013 (refined2013) and the tasks from 2016 (refined2016).

5.2. Consensus Convergence

The consensus convergence by the number of redundant contributions, defined in Sec-
tion 3.3.4, was taken for the ForestEyes’ official workflows, resulting in Table 3. For all
workflows, except refined2013, the convergence for just 5 answers is higher than 90%.
For SLIC and IFT-SLIC, almost 97% of the tasks have the same classification with 5 and
15 answers. Furthermore, only MaskSLIC presents a decrease when the considered num-
ber of answers reaches 13, but the convergence’s percentage remains high, with almost
95%.

For future workflows is planned to use fewer answers than the predefined 15. The
first attempt will be with 11 answers.

5.3. Citizen Science’s Accuracy

With the 3 GTs (pixel-based GT-PRODES, segment-based GT-U and GT-M) defined in
Section 3.3.2, the classifications performed by ForestEyes’ volunteers achieved the results
presented in Table 4.



Table 3. Consensus Convergence for ForestEyes’ workflows.

Workflows Number of Answers
5 7 9 11 13

2013 94.75% 95.72% 96.00% 97.47% 98.54%
2016 90.50% 93.44% 95.30% 96.80% 98.14%

refined2013 88.23% 90.11% 90.11% 93.41% 96.08%
refined2016 91.36% 94.44% 95.68% 96.60% 97.84%

SLIC 96.81% 97.74% 98.15% 99.08% 99.08%
IFT-SLIC 97.32% 98.21% 98.51% 99.21% 99.60%
MaskSLIC 91.30% 93.48% 95.65% 96.74% 94.56%

Table 4. Overall accuracies for each workflow and GT in the ForestEyes Project.

Resolution Workflows GT-PRODES GT-U GT-M
(Pixel-based) (Segment-based)

60m

2013 83.76% 84.34% 88.33%
2016 84.15% 84.25% 86.50%

refined2013 67.50% 59.34% 67.19%
refined2016 71.91% 62.65% 72.68%

30m
SLIC 83.63% 87.87% 87.05%

IFT-SLIC 81.39% 86.31% 85.62%
MaskSLIC 75.65% 85.87% 80.43%

The workflows with 60m resolution images (2013, 2016 and the refined workflow)
have GT-M accuracy better than GT-U, which is explained by their poor accuracy for
Undefined segments, reaching only 27.94% for the 2016 workflow. Maybe the volunteers
just looked the simple majority class into the segment.

The Undefined class presented better accuracy for the workflows from the 2017
remote sensing image (30m resolution), especially to MaskSLIC workflow, where it
achieved a reasonable value of 61.54%. However, compared to the other classes (For-
est or Non-Forest), its accuracy is still low. The complex segments needing refinement
or adjustments usually demand an undefined classification, but this situation could not
be perceived and handled. Investigations to identify Undefined segments before they are
sent to volunteers are ongoing, enhancing the image segmentation, which will create bet-
ter tasks to be sent to volunteers.

The Forest class had the best accuracy for all workflows and GTs, being above
88% for most cases. For GT-PRODES, although MaskSLIC had the worst accuracy com-
pared to the 2013, 2016, SLIC, and IFT-SLIC workflows, it achieved 65.95% accuracy
for Non-Forest class which in this case represent pixels for recent deforestation. The ar-
eas with recent deforestation detected by previous workflows reached only 26% for the
difference between the original 2016 and 2013. By using refined segments (Section 4.3)
it increased to 48%. So the accuracy was significantly improved applying the last work-



flow’s methodology, although the years and image resolution are different. For future
workflows is advisable to use MaskSLIC instead of getting the difference between two
images segmented by SLIC. However, a better segmentation segment method will con-
tinue to be sought.

5.4. Task’s Difficulty Level

With the definition of entropy (HE) and its classification, given in Section 3.3.3, Table 5
shows the difficulty level frequency for each workflow. Although IFT-SLIC seems to be
easier for volunteers, SLIC was the one that achieved the best results for all three GTs
(see in Table 4).

The workflows with resolution images of 30m show a desirable decrease in the
proportion of hard tasks. However, MaskSLIC didn’t present the same magnitude for
decreasing as the other two workflows. Also, it presented low GT accuracy when com-
pared to the former workflows, showing how challenging can be the detection of recent
deforestation, even with NDVI’s image.

Another difference between MaskSLIC and the other 2017 workflows methodol-
ogy refers to the segments’ size. In MaskSLIC, the segments had an average size of 70
pixels, which could have affected the visualization and the pattern recognition by the vol-
unteers. Remembering a similar issue occurred with the refined segments (Section 4.3).

Table 5. Tasks’ difficulty level frequency for ForestEyes’ workflows.

Difficulty Level Easy (E) Medium (M) Hard (H)
Entropy (HE) HE ≤ 0.33 0.33 < HE ≤ 0.66 HE > 0.66

2013 681 (66.25%) 205 (19.94%) 142 (13.81%)
2016 648 (63.40%) 233 (22.80%) 141 (13.80%)

refined2013 365 (57.30%) 161 (25.27%) 111 (17.43%)
refined2016 457 (70.52%) 99 (15.28%) 92 (14.20%)

SLIC 665 (68.35%) 267 (27.44%) 41 (4.21%)
IFT-SLIC 734 (72.82%) 241 (23.91%) 33 (3.27%)
MaskSLIC 59 (64.13%) 23 (25.00%) 10 (10.87%)

Table 6 shows the difficulty level by each class. It is possible to verify that Un-
defined tasks were the hardest ones, followed by the Non-Forest tasks, being Forest seg-
ments the easiest ones. For workflows with 60m resolution, the vast majority of Undefined
segments were difficult. However, for workflows with 30m resolution, the great majority
of Undefined tasks were easy or of medium difficulty, which can explain the improvement
of Undefined and GT-U accuracies.

For MaskSLIC, most Non-Forest segments were hard or of medium difficulty,
contrary to the findings with SLIC and IFT-SLIC workflows. This reinforces how chal-
lenging can be the detection of recent deforestation.



Table 6. Tasks’ difficulty level frequency for each class for ForestEyes’ work-
flows. The Forest class is defined as F, Non-Forest as NF, Undefined as U,
and Small as S.

Difficulty Level Easy (E) Medium (M) Hard (H)
Entropy (HE) HE ≤ 0.33 0.33 < HE ≤ 0.66 HE > 0.66

2013 84.10%F/59.36%NF 9.83%F/30.43%NF/20.27%U 6.07%F/10.21%NF/79.73%U
2016 81.58%F/56.74%NF/2.74%U 10.92%F/35.12%NF/24.66%U 7.50%F/8.14%NF/72.60%U

refined2013 68.59%F/53.36%NF 19.23%F/33.21%NF/20.00%U/50.00%S 12.28%F/13.43%NF/80.00%U/50.00%S
refined2016 81.47%F/66.27%NF 10.49%F/19.53%NF 8.04%F/14.20%NF/100%U/100%S

SLIC 82.49%F/65.11%NF/26.92%U 16.07%F/31.33%NF/56.73%U 1.44%F/3.56%NF/16.35%U
IFT-SLIC 82.14%F/74.94%NF/29.06%U 15.85%F/23.25%NF/57.26%U 2.01%F/1.81%NF/13.68%U
MaskSLIC 81.13%F/43.48%NF/37.50%U 13.21%F/39.13%NF/43.75%U 5.66%F/17.39%NF/18.75%U

5.5. Tasks’ Time

The Zooniverse.org platform registers logs for each answer, which define the date and
time for the initial and final steps. Therefore, the time spent on each answer was evaluated
and filtered to eliminate some outliers. The average times were calculated regarding all
workflows’ answers. Measurements were taken for different categories, including the
various tasks classes (Forest as F, Non-Forest as NF, Undefined as U and Small as S), the
volunteers’ type (registered as R and anonymous as A), and the difficulty levels (easy as
E, medium as M and hard as H). All these results are presented in Table 7.

Table 7. Average time (in seconds) regarding different categories. The classes
Forest, Non-Forest, Undefined, and Small are defined as F, NF, U, and S.
The registered and anonymous volunteers are defined as R and A. The
difficulty levels Easy, Medium, and Hard are defined as E, M, and H.

Workflows Average Time (s)
General Classification Volunteers Difficulty Level

2013 5.83 5.15F/5.85NF/9.06U 5.76R/7.19A 5.06E/6.80M/8.19H
2016 6.96 6.08F/6.94NF/10.48U 6.56R/9.75A 5.80E/8.33M/10.07H

refined2013 3.84 3.57F/3.42NF/6.44U/5.79S 3.75R/6.00A 3.13E/4.45M/5.29H
refined2016 3.49 3.34F/3.07NF/6.25U/6.44S 3.41R/5.69A 3.10E/3.95M/4.95H

SLIC 3.29 2.91F/3.15NF/4.78U 3.23R/5.72A 2.86E/4.12M/4.87H
IFT-SLIC 3.54 3.34F/3.21NF/4.86U 3.51R/4.99A 3.16E/4.50M/5.11H
MaskSLIC 5.31 4.84F/5.73NF/6.07U/6.36S 5.30R/8.33A 4.30E/6.40M/8.71H

The answers that received Undefined or Small classification, anonymous volun-
teers, and hard tasks took longer. Considering the difficulty level is possible to see that
the average time increases as the difficulty increases, once tasks with medium difficulty
took longer than the easy ones, and the hardest took longer than the medium.

The MaskSLIC workflow had an average time greater than SLIC, which has
the same image resolution. This could have happened due to a small segment size in
MaskSLIC, joined to user interface characteristics, since it requires analysis of three im-
ages instead of two as the other workflows. Also, from Table 5 this last workflow pre-
sented a percentage of hard tasks closer to the 2013 and 2016 workflows than the other
workflows with 30m resolution (SLIC and IFT-SLIC).



The 2016 workflow may have had a longer average time because the volunteers
had to flip the images to see both color compositions while the other workflows displayed
the color compositions side-by-side as default. Both 2016 and 2013 workflows also didn’t
have a default zoom for the tasks, different from the subsequent workflows. Therefore,
the volunteers needed to zoom in to get closer to the tasks, which could dispense some
time. These conditions could explain why 2016 and 2013 workflows have almost 6s/7s as
average time while the new tasks from refined2016 and refined2013 spent only 4s.

5.6. Accuracy Regarding Task’s Difficulty Level and HoR

Figure 9 shows the accuracy for different GT (GT-U and GT-M) by considering the tasks’
difficulty level and HoR. It can be seen that for both GTs, the accuracies drop as the
difficulty arises for most workflows (Figures 9 A and C). As for HoR, for GT-M (Figure 9
D), the accuracy increases as the segments are more homogeneous, except for MaskSLIC
once it had a reasonable Undefined class accuracy, especially with segments with HoR
between 0.6 and 0.7.

For GT-U (Figure 9 B), the volunteers had better accuracy for segments with HoR
below 0.6 than segments with HoR between 0.6 and 0.7 once as less homogeneous the
segment as better the volunteers classify them as Undefined. However, the accuracy is still
low, reinforcing the need to early notice Undefined segments, to perform segmentation
refinements, and only after that, send them to the volunteers.

This behavior does not occur for MaskSLIC, wherein GT-U accuracy for HoR
between 0.6 and 0.7 was much higher than the first range (HoR below 0.6). This could
have happened due to these tasks’ visualization (i.e. color or distribution of the pixels and
segments’ shapes), which enabled the volunteers to notice the mixture between Forest and
Non-Forest pixels. More investigation is planned to understand this abnormal outcome.

Easy Medium Hard
Difficulty Level

40

50

60

70

80

90

Ac
cu
ra
cy
 (%

)
GT

-U

A

0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 1.0
HoR's ranges

0

20

40

60

80

100

Ac
cu
ra
cy
 (%

)

B

Easy Medium Hard
Difficulty Level

40

50

60

70

80

90

100

Ac
cu
ra
cy
 (%

)
GT

-M

C

0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 1.0
HoR's ranges

0

20

40

60

80

100

Ac
cu
ra
cy
 (%

)

D

Workflows
2013
2016
refined2013
refined2016
SLIC
IFT-SLIC
MaskSLIC

Figure 9. Accuracies for each workflow considering difficulty level and HoR.



5.7. Volunteers’ Score

The volunteers’ scores, according to the metrics defined in Section 3.3.5, were evaluated,
generating a volunteers’ ranking where the first five positions are shown in Table 8. The
consensus hits at the third column show the number of contributions in agreement to the
consensus. The hit rate (HR) consensus represents the same value as a relative measure-
ment. The fifth column presents the Volunteer Score (V S) value. The last two columns
show the HR related to GT-U and GT-M.

Table 8. Volunteers’ ranking for ForestEyes Project.

User id Number
answers

Consensus
hits

HR
consensus V S

HR
GT-U

HR
GT-M

1805790 4,459 4,194 94.06% 4273.5 86.61% 86.41%
1917133 3,255 3,065 94.16% 3122 78.59% 82.33%
1756349 3,266 2,950 90.32% 3044.8 71.28% 73.48%
1733572 3,266 2,860 87.57% 2981.8 77.56% 78.44%
1061480 2,633 2,480 94.19% 2525.9 86.14% 90.32%

... ... ... ... ... ... ...

By dividing the volunteers into registered and anonymous, the average HRs for
consensus, GT-U, and GT-M were calculated and are presented in Table 9. Besides the
registered volunteers contributing more than the anonymous, as seen in Table 2, they also
achieve better performance.

Table 9. Average HRs for registered and anonymous volunteers.

Average HR Registered Anonymous

Consensus 79.22% 75.62%
GT-U 69.21% 63.13%
GT-M 72.24% 69.03%

6. Conclusion

This paper described the ForestEyes Project and the steps taken to attest its feasibility
regarding the volunteers’ contributions which encompassed the following modules: Pre-
processing, Citizen Science, and Organization and Selection. The remote sensing images
used were from Landsat-8 satellites, and PRODES-based data were used as groundtruth.

The six official CS campaigns covered variations in image resolution (60m and
30m), segmentation algorithm (SLIC, IFT-SLIC, and MaskSLIC), and user interfaces.
More than 86, 000 contributions were received from 644 distinct volunteers, being 174
anonymous and 470 registered. The registered volunteers contributed much more than
the anonymous and achieved higher average HRs for both consensus and GTs.

The upgrade of the image resolution combined with the user interface enhance-
ment seems to improve the volunteers’ contributions, reaching higher accuracy regarding



the Undefined class and decreasing the percentage of hard tasks. However, more improve-
ments are needed to identify Undefined segments before sending them to volunteers. The
recognition of Undefined segments is a very important issue as it enables the refinement
of these segments and thus improves the volunteers’ accuracy regarding GT-PRODES.

The good results obtained in this paper show the power of the CS and the Zooni-
verse.org community. The continuous improvements in the ForestEyes Project could en-
able the use of CS data as a possible complement to official forest monitoring programs,
observing recently deforested areas and contributing to the preservation of the world’s
biggest cradle of biodiversity.

7. Future Work

As future work to turn the ForestEyes Project into an operational system, some challenges
need to be overcome, such as:

• Pre-Processing Module: new segmentation methods (for example, Deep Learning
for semantic segmentation [L]), automatic pre-identification of Undefined seg-
ments, processing to be performed with new types of Non-Forest (as clouds and
rivers).

• Citizen Science Module: the selection of segments to be sent to the volunteers, less
dependence on PRODES classification, investigations into the volunteers’ percep-
tions or cognition, and visualization enhancements.

• Machine Learning Module: the development of this module is ongoing, where the
volunteers’ classifications will be used with a machine learning paradigm, known
as Active Learning (AL) [T], to build a robust training set. A previous work [D]
showed the feasibility of using AL with PRODES data, where the training set was
incremented with pixels. This new training set will be composed of segments, so a
new type of representation is required, wherein Haralick texture features [H] and
deep learning features can be applied.

• Next campaigns: to check the deforestation pattern in other forest areas, new ge-
ographical regions, new satellites, and to apply this project to other application
domain as the use and occupancy of urban land in hillsides in the fountainhead
protection area.
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