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Abstract—The lack of authentication in the Internet’s data
plane allows hosts to falsify (spoof ) the source IP address in
packet headers, which forms the basis for amplification denial-
of-service (DoS) attacks. Current approaches to locate sources
of spoofed traffic lack coverage or are not deployable today.
We propose a mechanism that a network with multiple peering
links can use to coarsely locate the sources of spoofed traffic in
the Internet. More precisely, the network can monitor and map
spoofed traffic arriving on a peering link to the set of sources
routed toward that link. We propose mechanisms the network
can use to systematically vary BGP announcement configurations
to induce changes to Internet routes and to the set of sources
routed to each peering link. A network using our technique
can correlate observations over multiple configurations to more
precisely delineate regions sending spoofed traffic. Evaluation of
our techniques on the Internet shows that they can partition the
Internet into small regions, allowing targeted intervention.

Index Terms—IP spoofing, security, amplification, denial-of-
service, routing policies, topology discovery

I. INTRODUCTION

The lack of authentication in the Internet’s data plane
allows hosts to falsify (spoof) the source IP addresses of their
traffic and send unsolicited traffic to arbitrary destinations.
These vulnerabilities form the basis for amplification denial-
of-service attacks [1], which have been effectively employed
against large-scale distributed service providers (e.g., [2]). The
spoofed source addresses make the origins of such attacks
seemingly untraceable, complicating attribution, mitigation
efforts to squelch the attack, or targeted efforts to convince
networks to disallow spoofed traffic.

Over the last two decades, researchers have proposed dozens
of IP traceback techniques for identifying the routes taken
by spoofed packets [3]–[9]. Approaches include temporarily
congesting links to perturb (attack) traffic, modifying routers
to encode information (usually in the IP ID field) about
routers traversed by a small fraction of packets, modifying
routers to send information about a fraction of forwarded
packets towards destinations, or modifying routers to store
packet digests and provide an interface for querying for a
packet’s signature. Despite all the research, none of these
approaches has been deployed and increased our ability to
locate the origins of spoofed traffic, because they require
changes to routers, cooperation from other networks, and wide
deployment to provide accurate identification. Since these
techniques face nearly insurmountable barriers to adoption,

today’s networks get a single data point on the spoofed traffic’s
route: which peering link receives the traffic.

In this paper, we explore how a network can manipulate this
information source—the peering link where traffic ingresses a
network—to more precisely locate sources of spoofed traffic.
Our key observation is that the routes are partially under
an origin network’s control, and so the network receiving
the spoofed traffic has some ability to impact on which link
it receives traffic, instead of relying on routers that are not
under its control. We propose techniques that are fundamen-
tally different from existing traceback approaches and can be
used today, requiring no changes to deployed equipment nor
cooperation from other networks. Our techniques work best
when the spoofed traffic originates from few sources, as is
common in amplification DoS attacks [10].

With our approach, a network announces an IP prefix
through multiple peering links, a practice known as anycast.
Each link attracts traffic from non-overlapping regions of the
Internet called the link’s catchment. The network can infer
the sources in each catchment by inspecting non-attack traffic
at each ingress link and mapping the source IP addresses to
their respective prefixes and controlling autonomous systems
(ASes), or by sending out pings and measuring which link
replies arrive at [11]. To measure the amount of spoofed traffic
on each link, the network can run an amplification honeypot
that does not receive legitimate traffic (e.g., AmpPot [10]) or
infer the set of valid source addresses from each peering link
and label the traffic from other addresses as spoofed [12], [13].
The amount of spoofed traffic arriving at each peering link can
then be attributed to the sources routed toward that link. Many
sources are routed toward the same peering link, however, so
simply attributing an attack traffic volume to a peering link is
not precise enough to isolate attack sources.

To track down sources of spoofed traffic, we present system-
atic approaches to vary IP prefix announcement configurations
that allow networks to induce changes to routes toward their
prefixes and, more importantly, in the set of ASes routed
toward each peering link (the catchment). Networks using our
techniques can correlate spoofed traffic observed from sets of
sources across multiple announcement configurations to infer
regions of the Internet sourcing spoofed traffic. Figure 1 pro-
vides intuition for how such measurements can be combined
to identify networks that allow spoofed packets:

• In configuration 1, the operator announces a prefix
through three peering links with networks m, n, and p;ISBN 978-3-903176-28-7 c© 2020 IFIP
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Figure 1: Example with catchments and resulting clusters for
three announcement configurations performed by an origin
network peering with ASes m, n, and p.

measures the catchment (colored polygons) and traffic
arriving on each peering link; and identifies that the
spoofed traffic is concentrated on the link with n, i.e.,
sent by networks in n’s catchment (red arrow).

• The operator later withdraws the announcement to
n (configuration 2), measures catchments and traffic
volumes again, and identifies that the spoofed traffic is
now concentrated on the peering link with m.

• Configuration 3 announces the prefix from n again, but
poisoning AS u (which causes AS u to ignore the route
from n and choose the route from p instead). The operator
can measure catchments and traffic to identify that the
spoofed traffic is concentrated on the peering link with p.

• Finally, the operator can intersect the measured
catchments to partition networks into clusters (bottom
right), and correlate clusters with observed spoofed
traffic (red arrows) to identify that the spoofed traffic is
concentrated on networks comprising λ.

We evaluate our techniques running experiments on the
PEERING platform [14]. We deploy 705 different announce-
ment configurations from seven peering links, identifying
multiple, different routes from each source covered in our
measurements. We show that correlating information across
multiple announcement configurations on PEERING allows us
to partition the Internet into small regions with as few as one
AS and with 1.40 ASes on average. The small size make these
regions candidate targets for countermeasures or notifications.
Our results indicate that networks with peering footprints
larger than PEERING’s, as will be the case for most regional
transit networks, can more effectively manipulate routes to
achieve even higher accuracy and quicker localization.

Our techniques allow identification of networks that do
not employ BCP38 (ingress filtering) [15] and allow spoofed
traffic, helping Internet bodies focus efforts and drive adoption
of best practices. They can also be used to drive automatic DoS
mitigation systems that use, e.g., BGP communities to trigger
remote traffic blackholing [16] or BGP flowspec to configure
traffic filters [17].

II. BACKGROUND ON BGP

The BGP best-path selection algorithm defines the preferred
route to an IP prefix as the route with the highest local

preference (LocalPref), a value set by the AS according to
private routing policies. If multiple routes have the same
LocalPref, BGP chooses the route with the shortest AS-path
length. If multiple routes remain tied for best, BGP applies
other tiebreakers that include intra-domain (IGP) routing costs,
hints received from neighboring ASes (MED), and route age
(to reduce oscillations) [18].

An AS that controls an IP prefix can configure its BGP
announcements to influence routes, e.g., to achieve traffic en-
gineering goals [19], [20]. First, an AS can announce (anycast)
an IP prefix from all or a subset of its peering links. This
strategy is used by content distribution networks so remote
ASes, and users therein, route to a topologically close location,
improving performance and increasing reliability [19], [21].
Second, an AS can influence BGP’s tie breaking at remote
ASes by prepending its AS number to the announcement’s
AS-path, making the AS-path artificially longer. This strategy
is used by multihomed ASes to signal on which link it prefers
to receive traffic [20], [22]. Third, an AS can influence the use
and propagation of its announcements through a remote AS
using BGP poisoning [18], [23]–[25]. A poisoned announce-
ment targets one or more ASes, and includes the target ASes’
numbers in the AS-path; this triggers loop prevention and
causes poisoned ASes to ignore the announcement.

III. LOCATING SOURCES OF SPOOFED TRAFFIC

We define an announcement configuration for an IP prefix
as a triple c = 〈Ac;Pc;Qc〉. We denote the set of peering links
of an origin AS by L. Ac ⊆ L is the set of locations from
which the prefix is announced. Each location inAc announcing
the prefix will attract traffic from non-overlapping regions of
the Internet that we call a catchment. Pc ⊆ Ac is the set of
locations where the prefix is announced with prepending, and
Qc is a mapping from announcement locations in Ac to sets of
poisoned ASes. We drop the subscripts when the configuration
is clear from context. For example, consider an AS with
four peering links labelled from l1 to l4. A configuration
c = 〈{l1, l2}; {l1}; {l1 : ∅, l2 : {a, b}}〉 means the prefix is
announced through peering link l1 with AS-path prepending,
announced through peering link l2 poisoning ASes a and b,
and not announced through links l3 and l4.

A. Systematic Route Changes

We propose a method that an origin AS with multiple
peering links can use to generate announcement configurations
that systematically induce route and catchment changes.

a) Varying announcement locations: Announcing a pre-
fix from more peering links increases route diversity and leads
to smaller catchments, on average. Smaller catchments provide
better localization of spoofed traffic.

We propose that the origin AS deploy a sequence of configu-
rations starting by announcing from all available peering links,
i.e., A = L; then make announcements from all proper subsets
of available locations L in decreasing size order. Deploying
all configurations removing up to r links from L is guaranteed
to discover at least r+1 routes for all sources in the Internet.



Whenever we withdraw the prefix from the peering link a
source is routed to, that source will need to be routed to an
alternate link. This is a deterministic way to uncover route
diversity that scales with a network’s peering footprint (i.e.,
the size of L).

In Figure 1, Configuration 1 shows catchments when the
origin AS announces a prefix through three peers: m, n, and
p; Configuration 2 shows catchments when the origin AS
announces through m and p only.

b) Varying the AS-path length with BGP prepending:
For any given announcement configuration, a router may have
multiple routes with the same LocalPref to choose from. In
these cases, the router chooses the preferred route based on
the AS-path length or subsequent BGP tiebreakers.

Given a configuration with a set of announcement loca-
tions A ⊆ L, we propose that the origin AS generate and
deploy additional configurations prepending announcements
from subsets of locations P ⊆ A, in increasing size order.
To make prepended routes longer than most other routes, the
origin can prepend its AS number four times, which is longer
than most AS-paths in the Internet [26]. Deploying config-
urations that prepend announcements from all combinations
of up to s locations induces BGP’s tie-breaking mechanism
to choose up to s alternate routes. More precisely, prepending
will cause a router to change away from its (previously shorter
and preferred) route whenever an alternate route with the same
LocalPref and no prepending is available.

Manipulating BGP tiebreakers like the AS-path length is
a general idea. Unfortunately, BGP tiebreakers after the AS-
path length cannot be controlled (e.g., IGP costs) or do not
propagate to distant ASes (e.g., MED), and thus cannot be
employed by the origin for route manipulation.

c) Controlling route propagation with BGP poisoning:
BGP AS-path prepending is ineffective when routers choose
routes based on LocalPref, i.e., before applying BGP tiebreak-
ers. In these cases, the origin AS can still try to induce
route changes by making a remote router’s preferred route
(with highest LocalPref) unavailable using BGP poisoning.
The origin AS can try to induce routers in a remote AS r
to change routes by poisoning r (or other intermediate ASes
between itself and r) in some announcements. Target ASes
for BGP poisoning can be chosen using different strategies
depending on the goal [18], [23]–[25].

We propose a specific targeting strategy that attempts to
induce large sets of ASes to change routes. Figure 2 illustrates
how the strategy works. Suppose the origin AS o is directly
connected to neighboring ASes x, n, and y. Figure 2a shows
the routes used by each AS to reach AS o when the origin
o anycasts the prefix to all neighbors without poisoning.
Figure 2b shows the routes when the origin o poisons AS u on
announcements through link o–n. Poisoning an upstream AS
u that is a neighbor of AS n will prevent routes (and traffic)
from traversing the link n–u (red X in Figure 2b), causing
routing changes at all sources previously routed through link
n–u. Therefore, ASes a, b, c, and u need to find an alternate
path to reach AS o (dashed lines). Configuration 3 in Figure 1

Figure 2: Example of AS o poisoning AS u through link
o–n to force all ASes previously routing through link n–u
to choose a different route.

illustrates the change in catchments when we poison AS u on
the announcement through n. We use BGP poisoning to move
traffic away from links that are close to (1 AS-hop away from)
the origin AS, as those links are used to route more sources
toward the origin AS than links that are farther away, thus
inducing a higher number of path changes.

This approach is similar and complementary to our pro-
posal to control announcement locations (choosing A), as
it attempts to control route propagation through a directly-
connected network’s links. Unfortunately, BGP poisoning may
be ineffective: an AS may disable BGP loop prevention for
traffic engineering, e.g., when interconnecting multiple sites
over the Internet by announcing different prefixes from each
site; and ASes may filter poisoned announcements, e.g., tier-1
ASes often filter announcements from clients whose AS-path
contains other tier-1 ASes, as such announcements normally
indicate a route leak [27]. As a result, we use BGP poisoning
as a best-effort approach to complement the previous two
techniques, which are more reliable.

B. Correlating Observations

We define a cluster as a set of sources that are in the same
catchment across all announcement configurations. We start
by placing all sources into a single cluster. We iterate over
all catchments in all configurations; for each catchment α we
iterate over all clusters κ identified so far and split any cluster
κ that overlaps α into up to two clusters: κ ∩ α and κ \ α
(we do not split κ if κ ∩ α = κ). The bottom right corner
of Figure 1 shows the clusters obtained after performing the
three announcement configurations.

Our techniques generate different announcements to induce
route changes with the goal of reducing the size of clusters.
Small clusters allow the identification of networks responsible
for sending spoofed packets and enable targeted intervention.

C. Estimating Volume of Spoofed Traffic

An origin AS can estimate the presence or volume of
spoofed traffic received on each catchment by hosting a
honeypot that emulates a service vulnerable to (but that does
not contribute to) amplification attacks to attract spoofed
traffic [10]. Another approach is to infer legitimate sources



Table I: PoPs and providers of the PEERING platform used
in the experiments.

Mux Transit Provider
AMS-IX Bit BV (AS12859)
GRNet GRNet (AS5408)
USC/ISI Los Nettos (AS226)
NEU Northeastern University (AS156)
Seattle-IX RGnet (AS3130)
UFMG RNP (AS1916)
UW Pacific Northwest GigaPoP (AS101)

for each peering link and label all traffic received from other
sources as spoofed [12], [13].

IV. EXPERIMENTAL SETUP

We evaluate our techniques in the Internet by making
announcements from the PEERING platform [14]. PEERING is
a research platform that operates an AS with multiple points-
of-presence (PoPs) in various locations spread across three
continents. We make announcements from seven PEERING
PoPs, using one provider at each PoP. At PEERING PoPs at
IXPs, which have multiple providers and peers, we choose
one provider and use it throughout the experiment. Table I
summarizes information about the PoPs and providers we
used. We next describe how we generate configurations using
our techniques and how we measure catchments.

a) Announcement configurations: BGP convergence de-
lay plus the time required to measure catchments (§III-B)
implies an origin AS cannot change configurations frequently
and limits the rate at which catchments can be discovered.
Here we discuss how we use our techniques to maximize
information from a limited number of configurations.

We start with a configuration that announces (anycasts) a
prefix to one transit provider in each of 7 active PEERING
PoPs. Given that the number of announcements required by
our first technique to discover r routes from each AS on the
Internet grows exponentially, we limit r to 4, which requires∑3

x=0

(
7

7−x

)
= 64 configurations. For each such configuration

c, we generate an additional |Ac| configurations, prepending
from each active location in turn. This requires an additional∑3

x=0[7 − x]
(

7
7−x

)
= 294 configurations. Finally, we iden-

tify 347 neighbors of PEERING’s directly-connected transit
providers using a combination of CAIDA’s AS-relationship
database [28], our own traceroute measurements, and public
BGP feeds from RouteViews [29] and RIPE RIS [30]. We then
generate 347 additional configurations, each announcing from
all locations but poisoning one neighbor of a transit provider
(on the announcement through that transit provider). In total,
we generate 705 configurations.

b) Measuring catchments: PEERING prefixes carry no
production traffic, so we cannot passively observe traffic to
infer catchments. Also, concerns about executing Internet-wide
scans from the PEERING platform limits our ability to issue
measurements from the platform to the wide-area Internet.
Instead, we measure catchments using a combination of AS-
paths observed on BGP update messages towards PEERING
prefixes collected from public feeds and traceroutes issued

from RIPE Atlas toward PEERING prefixes [31]. We use all
public BGP feeds from RouteViews [29] and RIPE RIS [30].
We partnered with RIPE and received permission to issue
traceroute measurements every 20 minutes from 1600 RIPE
Atlas probes, 7x more measurements than normally supported
(our probing rate is still low, only targets PEERING prefixes,
and has not raised complaints). Our dataset covers 1885 ASes,
including all Tier-1 ASes and 73% of ASes with customer cone
larger than 300 ASes [28].

We keep each announcement configuration active for 70
minutes to wait for route convergence and ensure, with high
probability, that we collect at least three rounds of traceroutes
after routes to our prefixes have converged, as convergence
takes less than 2.5 minutes 99% of the time [25].

We map traceroute hops into ASes using IP-to-AS data
from Team Cymru [32] and using IXP-specific data from
PeeringDB [33]. In a traceroute measurement, if consecutive
unresponsive hops are surrounded by responsive ones, we
check whether the surrounding hops have a single sequence
of responsive hops between them in other traceroutes; if that
is the case, we substitute the unresponsive hops with the
responsive ones. After this step, we map unresponsive hops
whose surrounding responsive hops map to a single AS a to
the same AS a. If surrounding hops map to different ASes,
we check whether public BGP feeds have a single sequence
of ASes between them in AS-paths; if that is the case, we
substitute the unresponsive hops to match the public AS-paths.
If we still have unmapped or unresponsive hops, we ignore
those hops on the AS-level path.

c) Source granularity: Our techniques are orthogonal to
the granularity at which sources are defined. The only require-
ment is that each source appears in at most one catchment
for each announcement configuration. For the evaluation, we
define sources at the AS granularity. Different routers within
an AS may choose different routes to a destination [34], e.g.,
routers in the US and Europe may choose different routes
towards the announced prefix. In our dataset, this may also
happen due to incorrect IP-to-AS mapping. Whenever we
observe multiple routing decisions by an AS from multiple
vantage points, we give higher priority to BGP measurements
(over traceroute) to minimize errors due to IP-to-AS mapping.
If multiple measurements of the same type remain, we assign
the AS to the catchment most common across the available
measurements. On average, we observe 2.28% of ASes in
multiple catchments in an announcement configuration.

d) Source visibility: A source observed in some config-
urations may not respond to measurements in other configu-
rations (e.g., due to route changes, BGP poisoning, or mea-
surement errors). In these configurations, it is impossible to
identify the catchment where the missing sources belong. We
approach this problem in two steps. First, we limit our analysis
to the set of sources that are observed in the first announcement
anycasting the PEERING prefix from all 7 locations, without
prepending or poisoning (i.e., the ASes observed on the default
routes to the prefix). This avoids considering ASes observed
only in a few, specific configurations. Second, we compute the
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number of configurations.
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frequency that a source s and each other source are in the same
catchment across all configurations where s was observed. We
define smax as the other source whose catchment s appears
most frequently in (i.e., s and smax route similarly). For each
deployed configuration where source s was not observed, we
assign s to the same catchment as smax.

e) Ethical concerns: PEERING prefixes do not carry
production or user traffic, so no user traffic was impacted
during our experiments. In practice, we expect networks to
use prefixes dedicated to the location of sources of spoofed
traffic to avoid impacting real users or applications.

Our route manipulation does not affect other prefixes or
networks in the Internet. We note that anycast and AS-path
prepending are common traffic engineering practices and can
be observed on thousands of prefixes in routing tables today.

BGP poisoning has been used for more than a decade in
research as a mechanism to route around failures and traffic
blackholes [25], identify static default routes [23], discover
network links [24], and characterize interdomain routing poli-
cies [18]. BGP poisoning does not impact the poisoned AS,
routes to its prefixes, or its traffic. The PEERING platform
conservatively limits each announcement to two poisoned
ASes. To clearly signal BGP poisoning, PEERING requires
experiments to surround each poisoned AS with PEERING’s
own AS47065. This avoids incorrect inference of peering links
from BGP AS-paths (any false links inferred from poisoning
would be with AS47065, which is easy to filter), and makes
attribution to the PEERING platform trivial. PEERING maintains
a blacklist of ASes that opt-out of BGP poisoning from the
platform, but this list is currently empty as no ASes have
complained about poisoning.

V. EVALUATION

In this section, we provide results on cluster sizes and show
that we can manipulate routes to locate sources of spoofed
traffic with good precision. Our results also indicate that large
networks can apply the technique proposed to even greater
effect, and that our techniques may potentially be used to
locate sources of spoofed traffic during DDoS attacks.

A. Cluster Sizes

For our PEERING announcements, Figure 3 shows the
complementary cumulative distribution of cluster sizes, with
logarithmic scales on both axes. We show one distribution at
the end of each phase (i.e., after 64 configurations varying
locations, 358 varying locations and prepending, and 705
including all techniques). We find all our techniques are
effective in reducing cluster sizes. After deploying all 705
configurations built by the three techniques, 92% of clusters
have a single AS. This indicates that, depending on the number
and locations of the sources of spoofed traffic, our techniques
may precisely locate them. Although most clusters are small
and most ASes are in small clusters, large clusters account
for a significant number of ASes. After deploying all 705
configurations, 14 clusters are larger than 5 ASes and contain
7.9% of the ASes in our dataset. Reducing cluster sizes at
the tail is important to identify sources of spoofed traffic into
small clusters and allow targeted intervention.

The lines in Figure 4 show the mean and 90th percentile
of cluster sizes as a function of the number of configurations.
Axes use a logarithmic scale and we sort configurations by
the order in which they were deployed. We indicate when
each phase finishes with vertical lines. The 90th percentile may
increase whenever announcements partition large clusters. We
observe diminishing returns in our ability to reduce cluster
sizes by deploying additional announcement configurations.
However, an origin AS can effectively manipulate routes
towards each prefix, systematically causing catchment changes
even after hundreds of configurations. In particular, the results
indicate we could have obtained even smaller clusters by
performing more announcements. The small steps following
the vertical bars indicate that changing techniques used to
generate configurations induces different route changes (new
routes) and reduces cluster sizes.

B. Impact of Peering Footprint

Figure 5 is similar to Figure 4, but it shows different lines
for cases where we consider only a subset of our configura-
tions, emulating networks with fewer PoPs by discarding one
or two of the seven PoPs we used. The “all locations” line
includes all 64+294 = 358 configurations using all 7 locations
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and prepending. The “six locations” line includes a subset of∑2
x=0

{(
6

6−x

)
+ [6− x]

(
6

6−x

)}
= 118 configurations using

up to 6 locations. The shaded area shows the minimum and
maximum mean cluster sizes across all

(
7
1

)
= 7 possible

subsets (each subset discarding one of the 7 PEERING PoPs we
used). Similarly, the “five locations” line includes a subset of∑1

x=0

{(
5

5−x

)
+ [5− x]

(
5

5−x

)}
= 31 configurations using up

to 5 locations. The graph shows that having more locations al-
lows the generation of more configurations, leading ultimately
to smaller cluster sizes, and also yields smaller cluster sizes for
the same number of announcements. This result indicates that
a network with a footprint larger than PEERING’s could achieve
even higher localization precision. Moreover, although small
networks with few peering locations may not be able to apply
our techniques effectively, any network with a large peering
footprint can deploy our techniques to identify the sources of
spoofed traffic and help other networks mitigate amplification
DDoS attacks.

Figure 6 is similar to Figure 3 and shows the comple-
mentary distribution of cluster sizes but considering fewer
announcement locations. The three lines and shaded areas
correspond to the same three scenarios described in Figure 5.
The “all locations”, “six locations”, and “five locations” lines
show the distributions of cluster sizes after 358, 118, and
31 announcements, respectively; in other words, we show the
distribution of cluster sizes at the end of the curves in Figure 5.
We observe that discarding some announcement locations
leads to larger cluster sizes at the tail. While the “all locations”
line shows 0.1% of clusters with more than 25 ASes, the “six
locations” and “five locations” lines show 1.27% and 4.29%
of clusters with more than 25 ASes, respectively.

We have also evaluated the distribution of cluster sizes as
a function of the distance, in number of AS-hops, between
PEERING PoPs and ASes. Figure 7 shows the distribution of
cluster sizes across all ASes in our dataset. We break ASes into
groups based on their AS-hop distance to the closest PEERING
location observed across all configurations. We find that ASes
that are 1 or 2 AS-hops away from PEERING PoPs are in
clusters with 1.85 ASes on average, while ASes 3 or more
AS-hops away are in clusters with 2.64 ASes on average. As

we expected, ASes closer to announcement locations are easier
to isolate (in smaller clusters), but most ASes farther away are
also in small clusters, indicating that we may still be able to
identify sources of attacks that are farther away with actionable
precision. Figure 7 shows that large clusters (e.g., with 10
ASes or more) are usually further away from announcement
locations. As future work, we plan to investigate targeted
poisoning of distant ASes to induce route changes specific
to split these large distant clusters.

C. Localization Speed

The number of possible announcement configurations grows
exponentially with the number of peering links |L|. A straight-
forward approach to speed up localization is to use multiple
prefixes and deploy multiple configurations concurrently. This
approach, however, requires spare IP space, which may be
limited in IPv4. In the following we discuss heuristics that do
not depend on additional resources.

When locating the sources of spoofed traffic at runtime,
e.g., during an attack, a network can reuse previous catchment
measurements or remeasure catchments during identification.
For example, an origin AS employing our techniques deploys
time-consuming announcement configurations and measures
catchments prior to the occurrence of an amplification DDoS
attack. This involves a trade-off between identification accu-
racy (reusing previous catchment measurements may incur
errors due to route changes) and identification delay (mea-
suring catchments during identification takes time), which
depends on route stability and could be improved by resource-
efficient solutions for inferring path changes. While an attack
is ongoing, the origin AS can then assume that catchments
remain unchanged since their last measurement and deploy
configurations in optimal order to quickly reduce cluster sizes.

The solid line in Figure 8 shows the mean cluster size
as function of the number of announcement configurations
when the origin AS chooses the sequence of configurations
at random, without repetition. The shaded area shows the
variance across 30,000 random sequences. The dashed line
shows the mean cluster size as a function of the number of
announcement configurations deployed when the origin AS
chooses the configuration that results in the smallest mean
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Figure 9: Percentage of ASes following well-known routing
policies across configurations.
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Figure 10: Distribution of cluster size as function of traffic
volume for different distributions of spoofed sources.

cluster size before deploying each configuration. Compared to
the solid line, we observe that localization can be made signifi-
cantly faster if catchments are measured prior to an attack, and
configurations deployed in optimal order. For example, after
running ten configurations, while the random sequence yields
a mean cluster size of 7.8 ASes, the optimal sequence yields
a cluster size of 3.5 ASes. While our techniques can be used
offline to identify networks that allow spoofed packets and
drive adoption of filtering, this result indicates the techniques
might be useful at run time as a source of information for
active attack mitigation mechanisms.

Another approach to increase localization speed is to pre-
dict the catchments of announcement configurations and only
deploy the most promising configurations, discarding or post-
poning configurations predicted to provide little additional
information (i.e., not induce new, different route changes).

An AS in the Internet can receive multiple routes from its
neighbors via BGP and choose the best according to its policy.
We evaluate routing choices of ASes in our dataset according
to BGP’s first two decision criteria: (i) best relationship, which
states an AS prefers routes through a client network first,
through a peer second, and through a provider last; (ii) shortest
path, which states that, when multiple equally-preferred routes
are available (tied according to the relationship criterion), the
AS chooses the shortest one. We do not consider additional
decision criteria as we cannot observe them from AS-paths we
collect from BGP updates or traceroute measurements.

The dashed line in Figure 9 shows the distribution of the

fraction of ASes observed to follow the best relationship
criterion across all configurations. We observe that most ASes
in the Internet follow the best relationship criterion. The solid
line shows the distribution of ASes observed to follow both
best relationship and shortest path criterion (also referred to as
the Gao-Rexford model [35]). This result indicates that most
ASes in the internet follow a well-defined, known behavior.
Although predicting routes in the Internet is challenging [36],
new catchment prediction strategies may be able to use our
techniques to boost attack localization speed.

D. Study of Spoofed Traffic

Given the impossibility of attracting real spoofed traffic
using PEERING testbed resources,1 we study identification
accuracy using simulation. We perform simulations where
we choose the number of sources of spoofed traffic across
ASes according to the uniform and Pareto distributions. For
the Pareto distribution, we set the shape parameter such
that 80% of sources of spoofed traffic are concentrated in
20% of ASes. We also run simulations with a single source
of spoofed traffic placed in an AS chosen at random. We
assume the volume of spoofed traffic originated in an AS
is proportional to the number of sources in it. The first two
scenarios are challenging scenarios, although previous work
indicate that amplification attacks usually originate from a
single source [10]. For each distribution, we generate and run
simulations for 1000 placements.

For each distribution, Figure 10 shows the cumulative
fraction of spoofed traffic (y-axis), averaged over the 1000
placements, in clusters up to a given size (x-axis). We observe
that for all three distributions, most spoofed traffic originates
from ASes in small clusters, which follows from Figure 3,
where we showed that most clusters are small.

VI. OTHER APPLICATIONS

Although we designed our techniques to generate configu-
rations with the goal of tracking down the sources of spoofed
traffic, route manipulation has several other applications. In
this section we discuss how our techniques can be adapted or
extended for other work. We also discuss how our dataset,2

which we make publicly available, can be used as a start-
ing point of analysis. Although PEERING and RIPE Atlas
are publicly accessible, deploying hundreds of announcement
configurations takes weeks, and our measurements have higher
coverage than usually possible as we partnered with RIPE to
collect a larger body of traceroute measurements.

Our techniques generate configurations that systematically
explore routes and are applicable to previous work that ma-
nipulate BGP announcements to identify alternate paths [25],

1PEERING operators expressed concerns about hosting a honeypot on
PEERING, subsequent blacklisting of PEERING resources, and deterioration
of the platform’s future usability by the community. Some PEERING locations
have bandwidth limitations which complicates hosting honeypots: although
AmpPot [10] can enforce a limit on the sending rate, one cannot control the
rate at which malicious packets are received from attackers.

2https://homepages.dcc.ufmg.br/∼osvaldo.morais/dataset ifip2020/



Table II: Summary of proposals for IP traceback.

Cooperation Router Router Identification Identification
Approach Manipulates from networks updates overhead precision delay
Manual Logs/monitoring Required No No Path prefix Long
Flooding [3] Packet loss Required No High Path prefix Moderate
Marking [4]–[6] IP ID field Deployment Yes Low Closest router ≈ sampling
Out-of-band [7] — Deployment Yes High Closest router ≈ sampling
Digest-Based [8], [9] Local state at router Deployment Yes High Closest router Low
Routing (this paper) Routes No No No AS Long

[37], trigger route changes with specific properties [38], dis-
cover network links [24], and characterize interdomain routing
policies [18]. In general, our techniques and dataset can be
of use to research in these areas: our dataset contains at least
four alternate routes towards PEERING for each observed AS,
has thousands of route changes (with different properties),
and may discover new links (particularly as a result of our
poisoning experiments). More specifically, while Anwar et al.
generate announcement configurations to infer routing policies
of a single target AS [18], our techniques deterministically
force routing changes and explore routing decisions across
all ASes in the Internet; such an approach could significantly
speed up (and scale) inference of routing policies.

Research that involves prefix hijacks and defenses against
it frequently deploys BGP announcements in the Internet to
perform controlled hijacks and evaluate the effectiveness of
their approaches in realistic scenarios (e.g., [39]). A scenario
commonly studied in the literature is that of subprefix hijacks,
where the hijacker announces a more specific route. This
scenario, however, has a predictable outcome: the hijack is
guaranteed to attract all traffic as Internet routing follows
longest-prefix matching. A partial mitigation to subprefix
hijacks is to announce more specific routes. In this context, the
impact of a hijack depends on how competing announcements
of /24 IPv4 and /48 IPv6 prefixes from a given set of locations
propagate, which our announcements can be used to study. Our
technique to generate configurations varying announcement
locations generates all possible scenarios of prefix hijacking
from a predefined set of announcement locations. Consider
a configuration announcing from n locations: each location
can be considered a legitimate announcement or an attempted
hijack. Under this view, a configuration announcing from n
locations covers 2n possible hijack scenarios.

VII. RELATED WORK

a) DDoS attacks: Recent DDoS attacks have reached
peaks of 1 Tbps, significantly disrupting a wide range of Inter-
net services. Amplification reflection DDoS attacks [1], where
origins send small queries with the source IP address set to the
victim’s IP address such that large responses from responders
flood the victim, have the potential to be significantly more
disruptive and harder to mitigate. Current DDoS protection
services (e.g., [40]) only reduce the impact of attacks by
absorbing or scrubbing high volume attack traffic, without
mitigating the origins of the attack. Locating the origins of
reflection attacks, a first step toward mitigation, is challenging
as attack origins send spoofed packets.

b) Locating sources of spoofed traffic: Previous ap-
proaches to locate the sources of spoofed packets either lack
coverage or are not deployable. A study that relied on active
tests included data from volunteers at 12,500 IP addresses [41],
a small fraction of the billion client IP addresses seen by large
Internet services that are the victims of attacks.

c) IP Traceback: Over the past two decades, several
proposals for IP traceback have been put forward in an attempt
to track down the sources of unwanted traffic. Table II provides
an overview and compares with our proposal.

One way to perform IP traceback is to iteratively contact
operators of ASes along the path towards the source of
spoofed traffic and have them manually identify which links
are carrying the traffic (with assistance from monitoring tools).

Controlled flooding [3] was the first automated approach
for IP traceback, and relied on temporarily congesting links
to disrupt traffic on a link, allowing the victim to iteratively
identify links on the path towards the attacker. Although this
approach does not require upgrading routers, it is not viable
today as the ability to trigger congestion at will (e.g., using
UDP chargen) is considered a serious vulnerability.

Several packet marking approaches propose encoding infor-
mation about routers traversed by a packet on a small fraction
of packets (usually in the IP ID field) [4]–[6]. Similarly,
routers can inform destinations using out-of-band data about
a small fraction of packets they have forwarded towards each
destination [7]. Under the assumption that attackers generate
many packets towards the victim, the victim can correlate
information across multiple packets and identify routers on the
path to the attacker. Another approach is to compute a digest
(e.g., a bloom filter) of packets traversing a router, and provide
an interface for querying routers for a packet’s signature [8],
[9]. These techniques allow for fast identification, but require
upgrading routers, incur significant overhead, and require
widespread deployment across the Internet to provide accurate
identification.

VIII. CONCLUSION AND FUTURE WORK

Our control-plane traceback technique can be deployed by
any network with rich connectivity today, without changes to
routers, and does not require cooperation from other networks.
Our results using the PEERING platform indicate that our pro-
posed techniques to generate announcement configurations can
effectively manipulate routes and induce catchment changes,
allowing tracking down the sources of spoofed traffic. If
sources of amplification DDoS attacks are few, as reported by
analyzing logs from AmpPot honeypots [10], our techniques



can map sources of spoofed traffic into sets that average
1.40 ASes. Our results indicate that precision will be higher
if networks with a footprint larger than PEERING’s were to
deploy our techniques.

We envision two research fronts for future work. One is to
expand our techniques to reduce cluster sizes even more, e.g.,
designing new algorithms for choosing targets for poisoning,
and using BGP communities for controlling export policies
(and influence routing decisions) on remote networks. Another
is to expand the system to allow identification of sources
of spoofed traffic during DDoS attacks, e.g., by (i) jointly
optimizing for cluster size and traffic volume, giving higher
utility to reducing the size of clusters inferred to send more
spoofed traffic; and (ii) improving existing catchment pre-
diction techniques [13] to allow generation of announcement
configurations without prior knowledge and reducing the need
for measuring catchments in advance.
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[10] L. Krämer, J. Krupp, D. Makita, T. Nishizoe, T. Koide, K. Yoshioka, and
C. Rossow, “AmpPot: Monitoring and Defending Against Amplification
DDoS Attacks,” in Proc. Intl. Symp. on Research in Attacks, Intrusions
and Defenses (RAID), 2015.

[11] W. B. de Vries, R. de O. Schmidt, W. Hardaker, J. Heidemann, P.-
T. de Boer, and A. Pras, “Verfploeter: Broad and load-aware anycast
mapping,” in Proc. ACM IMC, 2017.

[12] F. Lichtblau, F. Streibelt, T. Krüger, P. Richter, and A. Feldmann,
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