Hatch: Self-Distributing Systems for Data Centers

Roberto Rodrigues-Filho?, Barry Porter?

¢Institute of Informatics, Federal University of Goids, Goidnia-GO, Brazil

bSchool of Computing and Communications, Lancaster University, Lancaster, UK

ARTICLE INFO ABSTRACT

Keywords:
Self-distributing Systems
Emergent Systems
Autonomic Computing

Designing and maintaining distributed systems remains highly challenging: there is a high-
dimensional design space of potential ways to distribute a system’s sub-components over a large-scale
infrastructure; and the deployment environment for a system tends to change in unforeseen ways over
time. For engineers, this is a complex prediction problem to gauge which distributed design may best
suit a given environment. We present the concept of self-distributing systems, in which any local
system built using our framework can learn, at runtime, the most appropriate distributed design given
its perceived operating conditions. Our concept abstracts distribution of a system’s sub-components
to a list of simple actions in a reward matrix of distributed design alternatives to be used by rein-
forcement learning algorithms. By doing this, we enable software to experiment, in a live production
environment, with different ways in which to distribute its software modules by placing them in dif-
ferent hosts throughout the system’s infrastructure. We implement this concept in a framework we
call Hatch, which has three major elements: (i) a transparent and generalized RPC layer that supports
seamless relocation of any local component to a remote host during execution; (ii) a set of primi-
tives, including relocation, replication and sharding, from which to create an action/reward matrix of
possible distributed designs of a system; and (iii) a decentralized reinforcement learning approach to
converge towards more optimal designs in real time. Using an example of a self-distributing web-
serving infrastructure, Hatch is able to autonomously select the most suitable distributed design from
among =700,000 alternatives in about 5 minutes.

is built from set of fine-grained building blocks such as stream
parsers and hash tables, and implements the ability to seam-
lessly and safely distribute any building block to a remote
host, while the system is running, without any of those blocks
being explicitly designed for distribution. We build a set
of distribution styles on top of this capability, including re-
location, replication for both stateless and stateful building
blocks, and sharding (where the state of a component is dis-
tributed among the component’s replicas). Hatch then uses
real-time reinforcement learning to explore potential distributed
system designs from within the resulting search space. Our
approach is generic to any modular system, and allows en-
gineers to focus only on the local design of a system, fully
delegating its distributed design to autonomous processes.
Hatch requires no training, learning everything in real-time
from the actual environment being experienced by the sys-
tem, and every transition to a new system design is seamless
in missing zero traffic. To realize this vision, our approach
comprises three major elements:

1. We implement a generalized mechanism to safely and
seamlessly self-distribute any building block while a system
is running, to transform a local system into a distributed one.
This mechanism is mainly realized by a transparent and gen-
eralized Remote Procedure Call (RPC) layer, which enables
runtime relocation of any local component to any remote
host in the data center, automatically transforming all local
interaction with the relocated component to RPC.

2. We abstract complex distributed design choices cur-
rently made by engineers at design time to a simple action/reward
matrix to be explored at runtime by reinforcement learning

1. Introduction

Designing, deploying and maintaining distributed sys-
tems remains one of the most challenging tasks in comput-
ing. This complexity leads to a well-worn path of design,
deploy, analyze, redesign to get the most out of large-scale
operations. The sources of this complexity are multi-faceted,
encompassing the size of a code base; the dynamics of the
deployment environment; complex interaction effects between
multiple sub-systems; and the constant evolution of the un-
derlying hardware on which these systems operate.

This complexity is acutely present in the software op-
erations of data centers for large-scale web infrastructures
such as those of Facebook and Google, which have well-
known challenges in both the placement and design of in-
dividual sub-systems which are hard to predict prior to real
deployment [45], and are affected on a continuous basis by
the specific mixture of shifting request traffic patterns being
experienced at any given time [3]. Today this complexity is
only understood via painstaking and largely manual analysis
feeding into manual remediation workflows, with a range of
tools that attempt to assist in this analysis [40, 50, 22]. De-
signing the right distributed architectures therefore remains
hard; analysis of those systems in their production environ-
ment is very challenging; and this analysis and remediation
actions are a constant effort as workload patterns change over
time.

We present a radically different approach to tackling dis-
tributed systems complexity, which closes both ends of the
analysis-redesign loop: Hatch takes any local system, which

ORCID(S): 0000-0002-3323-0246 (R. Rodrigues-Filho);
0000-0001-8376-736X (B. Porter)

algorithms. This allows us to automate decisions on which
building block variants to use, where to place them, and how

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 1 of 15

Self-Distributing Systems

and when to replicate them, using simple non-disruptive dis-
tribution actions to create different distributed designs, while
observing the impact of these decisions on the live system.

3. We present a distributed machine learning approach
to navigate the search space of primitive actions and locate
increasingly optimal designs of a data center web-serving
infrastructure. This learning approach fuses both local opti-
mizations on each host (such as choice of caching algorithm
or request bursting approach) with distributed optimizations
which relocate or replicate selected sub-behaviors.

Our research draws inspiration from previous notable work
in the literature and from our own past project REX[33] where
the application of machine learning techniques are central in
designing and configuring systems, both at system and ap-
plication levels such as [49], [38] and [33]. We innovate
by looking exclusively at the distribution aspect of systems
from the application level, focusing on addressing the com-
plex challenge of deciding which distributed design will bet-
ter suit different operating conditions. A key enabler of this
technique is to use small building blocks of software, similar
to [38] and extended from [33], which gives more flexibility
in how to compose the resulting system, making it more ver-
satile in how the system performs under diverse conditions.

The result of our work is self-distributing systems, in
which the placement and detailed design of each part of the
overall system emerges at runtime as a direct result of the
operating environment in which the system currently exists.
We evaluate our approach by building a web-serving infras-
tructure in Hatch and subjecting it to a range of different
workloads. We demonstrate how zero-training reinforcement
learning can rapidly locate different local and distributed de-
signs based on real-time perception and learning of how each
workload affects the system. Our work is a step towards sig-
nificantly reducing the complexity of building distributed
systems, by having the system learn for itself how to as-
semble, deploy and distribute. Our implementation, with
instructions on how to reproduce all of our experiments, is
available online'.

This paper is organized as follows: we survey related
work in Sec. 2. Sec. 3 provides background on the tech-
nology we use to build Hatch. We discuss our approach in
Sec. 4, present our evaluation results in Sec. 6, and conclude
in Sec. 8.

2. Related work

We survey related work in two main themes: general dis-
tributed computing technologies, which seek to bridge local /
distributed concepts using various approaches; and research
around automated analytics and learning in data centers. In
both areas, Hatch is unique in making complex real-time de-
sign choices on how to architect and deploy a distributed sys-
tem. We note that a range of existing research using the term
“self-distributing”, such as [48, 18, 19, 26], does not fully
implement the concept of self-distribution the same way, re-
lying heavily on developers to explicitly define distribution

! Access our project’s code at: http://projectdana.com/fgcs2021rodrigues

directives to be performed at runtime. Our approach, by
contrast, considers fully local systems built to run on a sin-
gle host, and with no information on the system’s operating
environment, infrastructure nor further development direc-
tives, is able to autonomously relocate sub-elements of the
system’s composition to remote hosts. The novelty of Hatch
lies in our complete transparent and generalized RPC layer
which enables self-distribution of local components with no
third-party software or infrastructure aid (e.g. containers,
virtual machines, cloud), and the abstraction of complex dis-
tributed designs choices to an action/reward matrix to be
used by reinforcement learning algorithms during execution
time.

2.1. Distributed computing technologies

The idea of blending local and distributed systems un-
der an object model is explored in the seminal 1994 paper
by Waldo et al [47]. The authors identify challenges that
may arise in doing this, particularly on error propagation
for partial failures where a lack of remote error codes on
APIs designed to be local creates a dilemma on how to prop-
agate those errors. This analysis lead the authors to con-
clude that all remote objects should be behind explicitly re-
mote interfaces, treated separately to local objects by the
programmer. This in turn led to the design of systems like
RMI [25], CORBA [4], and COMPSs [41], which define
coarse-grained interfaces to explicitly describe remote ser-
vices, with associated error handling being placed at the feet
of developers. The drawback of these models is that human
engineers must decide which parts of a system to distribute
and how, and to revisit this as systems evolve over time. In-
stead, we propose seamless continuity between local and dis-
tributed systems, creating a unified real-time search space for
online reinforcement learning to navigate. To support this,
we use an approach to fault-tolerance not originally consid-
ered by Waldo et al, in which we only use transparent dis-
tribution of local code if we can also silently recover from
failures.

The closest research to our own in local/distributed con-
tinuity is the recent work on disaggregated data centers at
a hardware level [16], and LegoOS as a software solution
to leverage their capabilities [38]. LegoOS divides a tradi-
tional operating system into separate ‘monitors’ for major el-
ements of the OS (processing, memory, and storage). These
monitors are then organized into a distributed system across
a data center by the LegoOS management process — which
also transparently handles inter-host communication as if it
were all local. When a process is executed it is assigned
to a specific processing monitor and all threads launched
by that process reside in the same monitor; memory allo-
cation is abstracted so that individual memory monitors can
be spawned on new hosts to give the abstraction of contin-
uous memory across hosts, with the same approach taken
for storage. Our research takes a very different direction
to local/distributed continuity, leveraging a strong compo-
nent model to gain seamless distribution of parts of a pro-
cess, rather than parts of an OS which map to hardware con-

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 2 of 15

Self-Distributing Systems

cepts. This provides a richer set of deployment options to
divide/replicate parts of a process across many hosts, includ-
ing deciding which code to colocate.

Beyond generalized approaches to distributed system build-

ing, there is an increasing set of specialized solutions avail-
able to try to bring distributed closer to local. This includes
hardware offerings such as RDMA and InfiniBand, for which
parts of a software system can be specially refactored to gain
performance (e.g., [6][13][14]); and software libraries such
as the recent eRPC protocol [23] for rapid remote procedure
calls — which offer an asynchronous, optimistic execution
paradigm and optimize deeply for the common case in mod-
ern data center hardware. The core benefit of our generalized
approach is that learning agents can freely decide on where
to place each element of a system, depending on how that
system actually performs in its current environment; how-
ever, many of these specialized approaches are complemen-
tary to our own, and could be integrated on a per-case basis
using custom proxies.

2.2. Analytics and learning in data centers

Analysis of traffic and performance for data center sys-
tems has long been a focus of systems researchers, and is
ever more prevalent with the increasing role of data centers
in modern services. There is also a renewed focus on how
machine learning advances can be used to aid in decision
making.

In systems analysis, Veeraraghavan et al. [45] present an
approach to stress-testing production systems at Facebook,
by subjecting live data centers to very high workloads and
inferring the root cause of problems from sparse monitor-
ing. Following initial data collection, however, analysis is
performed manually and then development teams are tasked
with finding solutions. Similar tool support has been devel-
oped to analyze critical paths in dataflow applications such
as Spark and TensorFlow, again to assist in offline design
refactoring [20], and in automated profiling of cause/effect
relationships in data center performance to flag issues to en-
gineers [50]. While this research addresses one side of dis-
tributed systems complexity, our research takes a key step
towards automating the end-to-end process via joined-up au-
tonomous monitoring and live redesign of a distributed sys-
tem.

In complementary work, Ardelean et al. [3] report on
the challenges of analyzing performance of the Gmail infras-
tructure, and of deploying effective strategies to enhance this
performance. The authors observe that the specific mixture
of user requests significantly affects performance in differ-
ent ways over time, making a single point-analysis of lim-
ited value; they also observe that performing offline exper-
iments of potential fixes is of limited value due to the diffi-
culty of replicating the same load characteristics at scale, and
so online approaches are needed to gain actionable insights.
These observations motivate our work in pushing design de-
cisions into the live system based on real-time observations
of system and user behavior to draw correlations between the
two.

In the application of machine learning, a range of recent
research has aimed to gain automation in data center opti-
mization, from deep learning to control cooling levels [15],
to optimizing Apache parameters using control theory [11].
Particular examples for software optimization include Pyth-
eas [21], Optimus [31], and CherryPick [2]. Pytheas uses
explore/exploit reinforcement learning mechanics in quality-
of-experience tuning for video streaming, in which CDN rout-
ing decisions are given to a learning-based process to deter-
mine which CDN each video streaming request should be
routed to. Optimus, meanwhile, uses online fitting to predict
how long deep learning tasks will take to optimize schedul-
ing decisions; and CherryPick uses a Bayesian optimization
approach to choose ideal VM configurations for cloud appli-
cations, including instance types and cluster sizes. All of this
research targets specific sub-concerns of existing systems,
however; Hatch offers far more fundamental automation in
the generalized design of a distributed system, by taking a
local system and learning how best to distribute, replicate,
or shard each element of its behavior and state across a host-
ing infrastructure.

3. Background

Our self-distributing approach targets object-oriented sys-
tems in general. The core idea is to relocate local running ob-
jects to remote hosts, with a transparent and generalized RPC
layer to support this auto-distribution. This concept could
potentially be implemented to an extent in a range of well-
known languages (C++, Java), but their design would pre-
vent a fully generalized solution — particularly as they lack
generalized code hot-swapping, explicit dependency injec-
tion, and they allow writable shared memory between ob-
jects. Due to these constraints, we instead chose the Dana
programming language [32] to implement Hatch which of-
fers the potential for a truly generalized self-distribution ap-
proach for any program.

Dana is a component-oriented programming language
with an emphasis on deep generality and safe, fast hot-swapping
of behavior in microseconds. Everything in Dana is a hot-
swappable component, from socket implementations to graph-
ical widgets (in contrast to classic application-level compo-
nent models which limit generality [7, 9, 30]). Hot-swapping
facilitates the implementation of Hatch because it allows seam-
less runtime replacement of local running objects with prox-
ies, which serves as local references of relocated objects, as-
sisting in the implementation of our transparent RPC layer.

Dana is based on strongly-encapsulated software com-
ponents, where each component must declare provided and
required interfaces. An external management system can
then decide how to wire up each required interface of one
component to a selected (compatible) provided interface of
another. This feature supports detailed dependency analysis
of a whole system which helps reason about the collection of
logic to relocate when moving a single object between hosts.

Dana implements this paradigm for full-stack systems
software, for which it features an object model layered within

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 3 of 15

Self-Distributing Systems

&

0

)
web server O D

(] v
(i) 0. (]
(] OO 0

database

00
8860000

DDQ

@

memcached

ae{_|oo-
Bl

Hatch H

(]
composition builder
v "4
distribution layer ea (]|
88e| |B8=

Figure 1: Multiple self-distributing systems running in a data
center, each accompanied by a Hatch instance 'H’ which
observes performance in the current deployment conditions.
Hatch can distribute local building blocks across hosts to learn
which design alternatives best suit the current scenario.

its component paradigm together with a separate type hi-
erarchy to represent pure data instances / arrays. Objects,
data instances and arrays in Dana can all be passed by refer-
ence, such that Hatch must transparently accommodate refer-
ence graphs across auto-distributed components while main-
taining transparent fault-tolerance in the distribution of code
which was not explicitly designed to be spread across a net-
work. A key benefit to the objectives of Hatch is that data
instances and arrays in Dana are read-only at a callee, such
that there is no shared writable memory, and object state can
only be accessed via function calls, each of which make au-
tomated distribution easier.

Finally, Dana provides soundness properties for runtime
adaptation in any program written in the language [34]. This
means that the process of replacing components locally is
completely safe and never leads the system to an inconsistent
state. Porter and Rodrigues-Filho [34] demonstrate Dana’s
adaptation soundness when component hot-swap is carried
out locally. Also, Porter [32] provides an in-depth view of
Dana component-based model and how it supports seam-
less adaptation. While Dana is therefore a particularly well-
suited platform for Hatch, its core concepts could be applied
in more constrained ways to systems written in other lan-
guages with other component-based models [7, 9, 30].

4. Approach

In our previous project we built RE* [33, 36], a frame-
work that leverages the use of lightweight-component based
technology [7, 9, 30] in tandem with multi-armed bandit al-
gorithms [5, 42] to spontaneously compose software systems
to better match (often unexpected) changes in their operating
environment. RE* is the first framework that provides full
abstraction for reinforcement learning algorithms to learn
how to best compose local software systems at runtime and
successfully shown how machine learning algorithms can

P

autonomously lead the designing process of software sys-
tems, supporting timely and accurate actions to deal with
changes in the environment.

RE* operates by composing software systems using small
components (i.e. tiny fragments of software behaviour), and
by replacing a component variant to another, RE* allows the
system to provide the same functionalities in a slightly differ-
ent manner, impacting only some non-functional aspects of
the system. The fact that each composition is functionally
equivalent would be established by applying the same test
suite to each composition at development time. Engineers
can use RE* to define goals (e.g. improve performance) and
through the provision of metrics (e.g. average response time)
collected from the running system, RE* uses multi-armed
bandit algorithms (e.g. Thompson sampling, and UCB1) to
learn which local software composition yields the maximum
satisfaction of the goal.

In this paper, we expand on RE*’s ideas to explore an
entire new and highly challenging dimension of systems’
design: distribution. Using the same philosophy we built
Hatch, a framework that abstracts distributed system’s de-
sign compositions to be used as actions for reinforcement
learning algorithms. The main idea is to autonomously ex-
plore and learn distinct distributed software design at run-
time to find the best system’s composition for the current
operating environment. Although Hatch expands on our pre-
vious work, all the complexity and challenges of abstracting
runtime system distribution is novel and only investigated in
the context of Hatch.

Hatch makes all distributed design decisions at runtime
but requires a human-made local version of the system to ex-
plore. In detail, we consider software developers to design
and develop standalone local software out of tiny software
components. When Hatch starts, it assembles a possible
composition of this pre-designed local version of the soft-
ware by connecting the small software components (this pro-
cess is named the assembly phase and will later be described
in detail). After Hatch assembles a functioning version of the
software, it can then explore any distributed software design
by relocating or replicating any of the local software con-
stituents small components to other machines which are part
of the system’s deployment infrastructure, and learn, at run-
time, which distributed design composition best suits the op-
erating conditions that the system is being subjected.

Overall, Hatch is a distribution layer, composition builder,
and learning agent, shown in Fig. 1. The composition builder
and distribution layer find a set of possible compositions of
building blocks for a target system, with local and distributed
mixtures, and pass these to our learning agent as a list of ac-
tions. Hatch also deploys probes into the target system and
its environment to observe performance and context.

The distribution layer, in turn, is composed of three sub-
layers: a transparent and generalized RPC layer, a state man-
agement layer and a failure handling layer. The transpar-
ent RPC is the part of the distribution layer that enables the
actual self-distribution, and because of that this layer is the
main focus of this paper. State management and failure han-

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 4 of 15

Self-Distributing Systems

dling are key to implement seamless distribution of any state-
ful component, but due to their complexity, their thorough
evaluation and detailed description is outside this paper’s
scope.

Hatch starts by being given an entry-point component for
a target system, which will have a ‘main’ method and a set
of required interfaces. Hatch recursively scans the required
interfaces and searches for all valid implementations of each
one (components); we generally expect multiple such imple-
mentations (component variants) to exist such as different
sorting algorithms, buffer management protocols, or cache
designs. As a result, Hatch finds a set of possible composi-
tions for the target system.

Our distribution layer examines the above list of possi-
ble compositions along with a list of available host machines;
from this it creates an extended list of compositions that in-
clude distributing each possible component of a composi-
tion to one of the available hosts. When a component is dis-
tributed, the entire sub-tree of the system below that compo-
nent (i.e., all dependencies, recursively) is also moved and
itself represents a set of local compositional choices on the
remote host.

We generate a unique identifier for each discovered com-
positional choice at a given host node (whether that compo-
sition is entirely local or includes distributed sub-elements).
A list of these unique identifiers is then presented to a re-
inforcement learning agent, which sees them as a set of ac-
tions that have (initially unknown) rewards. The learning
agent operates in an action-observation loop, where it takes
an action from this list, waits for a period of time, then col-
lects the reward for that action, before deciding the next best
action to take. Whenever a learning agent chooses a com-
position, Hatch calculates a difference between the current
composition and the selected one and performs a sequence
of adaptations on the live system to move between the two;
if the new composition includes new distribution points, rel-
evant components are loaded at the remote host and a new
local learning process is started there.

Hatch supports the distribution of any interface either
as a relocation, where an interface (and its implementing
component and dependency sub-graph) is moved to a remote
host, or by replication, where an interface is copied across
multiple hosts with any associated state replicated or sharded
across the copies. All of the machinery for relocation, repli-
cation or sharding of a component is created automatically
by Hatch, with the exception of some types of stateful in-
terfaces/components which need a bespoke state manager
plug-in before being replicated or sharded. Because most in-
terfaces and components are designed to be local, Hatch ef-
fectively creates a seamless continuity over local/distributed
systems, freeing engineers from decision making and analy-
sis of distributed design which Hatch autonomously learns.

Our deployment approach is illustrated in Fig. 1 using the
example of a web server, memcached and a database. Each
system is discovered as a local entity which is automatically
assembled from a set of available building blocks, each of
which may have variations available (such as different sort-

ing algorithms or buffer management strategies). These sys-
tems are then automatically distributed across remote hosts
using our distribution primitives such as relocation or repli-
cation.

We now present our generalized approach to seamlessly
distribute any component at runtime. We then discuss our
distribution primitives, which yield an action/reward matrix
for learning, and present details of the learning algorithm.

4.1. Generalized distribution of components

Hatch can use two different communication styles when
distributing internal system’s components. We term these
implicit and explicit communication. At a high level, both
are controlled in the same way by Hatch: we take an inter-
face and relocate or replicate its implementing component
to a remote host or hosts, whether that interface is a sorting
algorithm or an entire database engine (composed of many
components). From the abstraction point of view, these two
different styles are also seen as simple distribution actions
and are not distinguishable by the learning agent. The dif-
ference is in how the network communication is achieved,
which only has implications on how these components are
internally designed.

An implicit communication type of component takes a
regular Dana required interface, which was designed to al-
ways be local, and automatically distributes it using our lo-
cal/distributed continuity approach. This kind of distribu-
tion allows Hatch to learn which interfaces are suited to dis-
tribution, and to which hosts that distribution is appropriate
from the available set, depending on the currently perceived
deployment conditions. The cost of doing this is that Hatch
needs to provide fully automated fault-tolerance, such that
no remote error is permitted to propagate beyond our frame-
work and instead must be immediately recovered from with-
out the system ever being aware that it occurred.

An explicit communication type of component is a reg-
ular Dana required interface annotated as distributed; it is
then explicitly designed with functions that can return
remote errors. Users of this kind of interface would nat-
urally program in such a way that they handle remote er-
ror codes, avoiding the need for Hatch to offer automated
fault-tolerance for local/distributed continuity. Explicit type
of interfaces typically arise when an existing system has al-
ready been created (such as a database) and can naturally
be wrapped for remote access via a custom on-the-wire pro-
tocol, or when distributing implicit communication type of
component introduces high performance overhead to the sys-
tem.

We focus in this section on implicit communication prox-
ies, allowing any local interface (and implementing compo-
nent, along with its sub-graph of dependencies) to be seam-
lessly distributed. In the rest of this section we examine the
core challenges for automated implicit RPC proxies: (i) how
to handle references to objects that used to be local but are
now remote, including complex reference graphs formed by
passing objects as parameters; (ii) what to do with references
to data/array instances that used to be local but are now re-

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 5 of 15

Self-Distributing Systems

object reference data reference

internal Dana
component object proxy

N

object

*, 77777 IS I required
r i ’ I/ . interface
AVe B | provided
) * RequestHandler interface

v — —» wiring

I data instance
TCPSocket .
C (writable)
data instance

(read-only ref)

| interface RequestHandler {

] bool handle(TCPSocket s, HTTPMsg msg)
1

1

Figure 2: Component and object-level architecture in Dana,
showing explicit and implicit internal aspects on a single host.

mote; and (iii) how to handle state in distributed components
and failures of hosts to which we have distributed code.

4.1.1. Mechanics of self-distribution

We consider the implementation of component building
blocks used to describe the mechanics of self-distribution in
most object-oriented languages, and we describe such mech-
anisms using the terminology of object-oriented program-
ming paradigm, which are widely known. However, we high-
light the need of a generalized runtime adaptation of run-
ning objects for a full implementation of the concepts im-
plemented in Hatch, especially in implementing fully gener-
alized implicit communication distribution of any possible
component.

We consider here only the most complex scenarios; in
our experience the majority of building blocks in a given
system require far less supporting infrastructure from Hatch
and so are significantly more operationally efficient. To help
make the presentation concrete, we use the example in Fig. 2,
which shows three components all running in the same host
with an object sourced from each one. The provided inter-
face of component B is shown for context, in which we can
call functions that pass in references to other objects (such
as a connected TCP socket) or references to data instances.
We assume that component A instantiates TCPSocket objects,
for example when accepting client connections, then passes

these socket objects into the handle() function of RequestHandler.

Fig. 2 shows both the user-visible concepts in the lan-
guage, and the (hidden) sub-structure used by Dana to enable
seamless hot-swapping of components [32]. Specifically,
Dana uses hidden transparent proxies of objects: whenever
an object is instantiated from an interface, the language run-

= 1—>1 = 11—
Alegs— R B, B
X Y -
C Qc Rc
Host 1 Host 2

Figure 3: The effect of relocating component B to a different
host, which uses two Hatch proxy pairs.

time creates a proxy version of that object which has an in-
ternal reference to the real implementation object. Refer-
ences to the proxy can then be passed around to other ob-
jects, and if the implementation of the object is hot-swapped
this only affects the internal reference between the proxy and
its implementation, leaving all other references valid across
the hot-swap. The actual hot-swap of behavior is protected
by a safe adaptation procedure which guarantees data and
control flow integrity in the system so that nothing is lost.
Fig. 2 shows a snapshot in time where the interface function
handle() has been called, with a reference to a TCPSocket ob-
ject passed into it along with a reference to a data instance of
type HTTPMsg. The figure reflects the fact that proxy objects
logically reside at the required interface through which their
object was instantiated.

To relocate part of a live system to a remote host, we se-
lect a particular required interface R, of a component, which
is currently wired to a local implementation, and replace that
local implementation with a Hatch proxy that forwards func-
tion calls to a remote location. Object implementations O g
sourced from R are moved to the remote location along with
the implementing component; this is done by instantiating
the objects at the remote location and transmitting any state
from the original local objects to the remote location. Any
references to the objects in O all still point at the original
proxies of the objects at the host location they were first cre-
ated, so that any calls into those objects are then forwarded
through the Hatch proxy. Our current proxy implementation
uses TCP to carry remote calls and their return values.

The result of relocating component B in Fig. 2 to a dif-
ferent host in shown in Fig. 3. We first create a client (Rpg)
and server (Q p) Hatch proxy pair for the RequestHandler in-
terface, with the server-side on the remote host. Because
some function calls of RequestHandler accept instances of
TCPSocket, we also create a Hatch proxy pair for TCPSocket
in the reverse direction (Rc and Q). When a handle() call
is made on RequestHandler, the call arrives at Q 5 and Hatch
automatically instantiates a client proxy for the TCPSocket in-
stance passed onto the call; when any TCPSocket function is
called at B, this call is routed back through R to Q- where
it is invoked on the TCPSocket object reference at Host 1.

For any (read-only) data references held by B after re-
location, these data references are held in a lookup table at
Rp which watches for any changes made to the fields of each
data instance. When a change is detected, the updated data

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 6 of 15

Self-Distributing Systems

RB Qi

B

Rc Qc Rc
Host 1 Host 2
Qc

<1

C

Host 3

Figure 4: The effect of distributing component C to a third
host; references to C instances still transit via Host 1.

instance is sent by Rp to Q g, which updates the remote copy
of the data instance and so changes the values in the data
instance as observed by B. Data contents can therefore be
updated lazily when they occur; because the relative latency
of data updates in a local system is itself unpredictable, we
consider that this makes no change in the system model.
We next show how the system changes when we further
relocate component C to a third host, Host 3, which is il-
lustrated in Fig 4. Again we introduce a client and server
Hatch proxy pair, R and O, which forward function calls
to the remote host. As above, any references to objects of
type C held by object B at Host 2 still point at the local ob-
ject references to C on Host 1. A function call from B to
C in this case would thus travel from Host 2 to Host 1, then
from Host 1 to Host 3. While this seems inefficient, this ap-
proach is useful because it allows the implementation of C
to be changed in a runtime adaptation at a single point of
control in the global system, relative to its A—>C required
interface on Host I; re-wiring this one required interface im-
plicitly causes the new implementation to be used by all ref-
erences to it. This approach also has a secondary benefit:
because network transport pathways follow the component
graph (rather than Host 2 being able to talk directly to Host
3) we gain a property of consistent failure status as observed
from a common perspective. Because all communication to
C is routed via Host 1, it is Host 1’s perception of the failure
status of Host 3 that provides a logically consistent picture
of failures to the entire system — rather than different hosts
having different perceptions of the failure of the same object.
Next we describe the two remaining parts of the distri-
bution layer that enable self-distribution of any stateful com-
ponent. A large range of system research has addressed fail-
ure handling and state management techniques in distributed
systems in general [24, 1, 17, 46], and more specifically in
RPC contexts [35, 12, 28, 27]. While fully defining state

consistency management and failure handling are large re-
search topics in themselves, and are therefore beyond our
scope here, we aim to provide a high-level description of
how these two important elements of our distribution layer
would generally work.

4.1.2. State Management

State management is key to enable self-distribution of
stateful components. To fully support seamless relocation,
replication and sharding, state management is required to (i)
perform state extraction from local running components, and
insert state copies into relocated replicas of the original local
components; and (ii) keep the remote state copies consistent
as the system continues execution. We analyze these points
when Hatch performs relocation, replication and sharding;
and discuss the key features a programming language needs
to provide to enable state management for self-distribution.

Relocation of stateful local components is the simplest
action of stateful components’ self-distribution, considering
this only requires state to be copied and inserted into a re-
mote instance of the component. After component reloca-
tion, only one copy of the component and its state exists in
the system, thus Hatch is not required to transparently sup-
port any consistency models to maintain the system consis-
tent. To enable relocation, a programming language is re-
quired to pause incoming function calls to the target compo-
nent, and enable state to be extracted. In most programming
languages, some form of state extraction can be performed
through reflection; the Dana in particular supports full state
extraction as a standard part of its hot-swappable component
architecture.

Replication can be seen as relocation of a single local
component to multiple distinct hosts. As such, state extrac-
tion can be done just as in the context of relocation. The dif-
ference is that state is then inserted into each remote replica
as many times as there are replicas. The key challenge in
replicating stateful components is then to maintain ongo-
ing consistency across the copies of replicated state. Al-
though this is not the focus of this paper, we envision Hatch
transparently adding infrastructure implementing a consis-
tency model between the stateful replicas. Alternatively, to
support high availability rather than load-balanced perfor-
mance, the proxy component can forward all incoming re-
quests to all replicas simultaneously, transparently imple-
menting group communication.

Sharding can be seen as a special type of replication,
where the state of the original local component is split in dif-
ferent parts which are individually placed in different repli-
cas. For this, we assume the state is a collection of items
such as a list, an array and other similar data types. To en-
able sharding, Hatch must be able to split the extracted state
and place each part of it in a different replica, and for each
function called in the local proxy, that proxy must be able
to properly find the remote component which hosts the rel-
evant state item (for read operations), or in which replica to
(re)place a new item (for write operations). Transparently
implementing sharding is particularly challenging, and the

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 7 of 15

Self-Distributing Systems

current design of Hatch assumes that plug-ins are created by
developers to assist in sharding specific components’ state.

4.1.3. Failure Handling

Replication distribute computation or I/O load across mul-
tiple hosts. For stateless components this uses relocation
combined with a generic load balancer to either distribute
load or shard functions across hosts. To do this, a compo-

For implicit communication type, we assume all component- nent C that is currently running locally is simply started on
level behavior is programmed as if it is ocal, with no programmery, other hosts, with a load balancer replacing C locally.

written code to deal with network failure events during func-
tion calls. This delegates distributed design choices to real-
time learning, but means that network failures must not be
‘visible’ to the running system, as there will be no specific
error handling in place to deal with them.

To support this, Hatch only distributes a component if it
can also guarantee to be able to silently and automatically
recover from any failures that might occur as a result of this
distribution, such that we can transparently maintain the im-
pression that a failure never happened. This model implies
two different approaches for stateless versus stateful objects.

For stateless objects we simply can detect that a failure
occurred and recover the component back to the host with
the Hatch client proxy of that component. As an example
based on the above section, if component C was distributed
to Host 3, Host 1 can detect a failure to communicate with
component C on Host 3 and so can recover from this by re-
creating component C on Host 1 and re-firing any function
calls that were in-progress against the now-local copy of C.

For stateful objects, each successful function call may
change the internal state of an object. Supporting transparent
recovery is beyond our scope here, but could be approached
using state machine replication via an operation log and oc-
casional full-state backup. Considering the example in Fig. 3,
assuming that component B is stateful, we could record all
functions called on B in an operation log on Host I, and pe-
riodically save the full state of these objects by downloading
it from Host 2 to Host 1, resetting the log.

We reiterate the fact that transparent failure handling is
outside this paper scope and presents itself as an interest-
ing and important future research avenue. That is mainly
because if such transparent fault mechanisms are not pro-
vided by Hatch, any autonomous attempt to relocate compo-
nents across an infrastructure which results in failure will in-
evitably propagate to the target systems, making it inconsis-
tent and faulty. We believe that such failure handling mech-
anisms are possible, given that performance may be severely
compromised in some cases. We briefly suggested how these
mechanisms could be realized in a generalized fashion, and
we understand that further research needs to be conducted in
order to paint a full picture of the tradeoffs and edge-cases
that will impact the system the most.

4.2. Hatch composition building

‘We build on the above distribution mechanics to support
relocation and replication of components, which combine
with local behavior alternatives to offer a rich design space
for automated design of complex distributed systems.

Relocation uses exactly the mechanics described in Sec. 4.1.

This may represent a performance gain if it makes a compo-
nent closer to a data source, or provides additional compute
resource for particularly intensive components.

For stateful components, Hatch currently requires a case-
specific state manager plug-in for the particular component
being replicated. Such a state manager may choose for ex-
ample to lazily propagate state between replicas, or to en-
force a single-writer multi-reader approach. We currently
assume programmer support is needed to achieve this and
Hatch does not replicate stateful components unless it finds
a plug-in.

For all distribution styles, Hatch takes the set of origi-
nal local compositional options discovered from the pool of
building blocks, with the set of available hosts to distribute a
system over, and generates a set of distributed composition
options with relocation and replication, each one represented
as a uniquely-identified action for learning.

4.3. Real-time learning

Hatch exposes a complex distributed system design space
as a simple set of actions for online reinforcement learning.
In general, the goal of online learning is to carefully bal-
ance the amount of time spent exploring under-tested ac-
tions against exploiting actions already known to perform
well [39].

Multi-armed bandits (MAB), originally designed for clin-
ical trials [5, 42], are the best studied theory to balance this
tradeoff over time, and are a popular technique for optimiza-
tion on the web [8, 37]. In our context they are of particu-
lar interest because they use very little memory to represent
their learning model, require no training before deployment,
and use efficient computation for decision-making.

A MAB represents each one of a set of available actions
as an arm, and assigns a reward distribution to each arm.
Each time an arm is tried, the expected reward distribution
for that arm is updated and the algorithm becomes more con-
fident in this reward distribution. Over time, a MAB will
move away from actions with poor reward distribution to fo-
cus on those which are best. The exact way in which a MAB
models reward distributions, and confidence, varies between
algorithms.

In this paper we use bandit algorithm called Upper Con-
fidence Bound (UCB), which models combined confidence
over all arms as a logarithmic curve over time. UCB works
by taking an action, which in our case causes a live system to
adapt to a new composition, including potentially distribut-
ing parts of that system to remote host. It then waits a set
amount of time, which is a configurable observation win-
dow — in our case 5 seconds. After this time, the algorithm
collects the reward of the system and updates the average re-
ward for that arm along with the total number of times it has
been tried, and the total number of actions that have been
taken for the system, from which it derives its relative con-
fidence per arm.

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 8 of 15

Self-Distributing Systems

Having updated these values, the algorithm then selects
the next arm based on which one has the highest score in a
calculation of reward versus confidence as follows:

(2Inn >
r, +
N

Where # is the total number of actions taken, n; is the
number of times k action has been taken, and r; is the cumu-
lative average reward for this action. The logarithmic func-
tion part of the equation determines the confidence level the
learning agent has about a certain action. The higher this
value, the smaller level of confidence it has, whereas the
lower this value the bigger level of confidence it has. This
has the effect that low-confidence arms are tried towards the
beginning of learning, while reward levels then tend to dom-
inate action selection as confidence in them grows.

Whenever part of a system is distributed to a remote host
by Hatch (either through relocation or replication), Hatch
starts a new local learning process on that remote host with
its own set of actions relative to the compositional options
of the system fragment which has been moved to that host.
In our current implementation, these multiple learning pro-
cesses do not coordinate; instead we assume that decisions
taken at high levels of the implicit composition tree tend to
be of higher importance while those at lower levels are fine-
tuning. We find that this approach enables Hatch to quickly
navigate through massive search spaces, by effectively par-
allelizing the search process across hosts, and in our data
center example system only occasionally results in finding
a less ideal solution than a globally-coordinated approach
would locate.

We also consider special components that are inserted
into the system to collect a specific metric from the system
as it executes. In our current implementation, Hatch is able
to collect the average of response time from any executing
composition. The collected metric is used by Hatch as a re-
ward (or cost, in our use case) of the action taken. In our
current implementation, the response time metric is used as
the cost that the learning algorithm aims to reduce.

5. A self-distributing data center platform

As an example of Hatch in operation we implement a
web serving back-end. This is composed of a web server in-
cluding server-side scripting, memcached implementation,
and a database. The web server, memcached analogue, and
server-side scripting engine, are all built from scratch, com-
posed from adaptable fine-grained building blocks with a va-
riety of implementation variants — such as different cache
replacement algorithms and stream processor pipelines. For
the database element we use MySQL, which is wrapped by
an explicit communication proxy. On top of this infrastruc-
ture we have built a Wikipedia-like application on which to
test a range of different workloads. In total our system is
composed of over 50 potential building blocks; a small sub-
set of this system is illustrated in Fig. 5 showing some of its

WebServer

Main component;

opens server socket
and accepts connections |

Concurrency model; receives Req%s“ﬂ?ﬂd@? ,,,,,,,,,,,,,,,,,, :

client socket and assigns to
a thread according to policy

Stream parser; inspects HTTP
headers and builds response.
May involve script engine for :
dynamic content. I s

i ScriptEng
Script engine used to handle / Y /
dynamic content requests.

HTTPHandler

| WikiApp ..
Application logic for server- ‘
side scripting. Q Q :
D e <
7 - ~
e D N
A & A
Database (Class B) Memcached (Class B)
? o [o
| [
[
[

Figure 5: Part of our example web serving back-end, the com-
ponents of which Hatch autonomously manages to select their
local variants and transparently distribute across a set of re-
mote hosts.

main features and variation points where alternative blocks
are available.

Our hosted application running on the web server is sim-
ilar to Wikipedia, enabling users to create, edit and access
articles. Within this application we have two variations of
database access sub-systems: one which uses memcached
and one which does not. We note that our web serving plat-
form does not explicitly include a load balancer because Hatch
can automatically create this effect by replicating and load
balancing across any interface(s) in the system.

Hatch is given the main component of the web server
system, from which it recursively scans required interfaces
to discover all local compositions of building blocks which
form a working web server. We transparently inject a mea-
surement probe at the HTTPHandler interface of this system
to measure average response time to requests as our relative
reward for machine learning. Hatch then constructs a set of
distributed compositions for this system, based on the dis-
tribution styles discussed above in combination with a set of
available hosts.

Whenever an interface is distributed by Hatch to a remote
host, that remote host constructs its own set of possible com-
positions starting from that interface, and takes responsibil-
ity for learning the best composition for its delegated part of
the system — including further distributing sub-elements of
that system area to additional remote hosts.

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 9 of 15

Self-Distributing Systems

6. Evaluation

In this section we evaluate our implementation of Hatch,
our self-distributing framework on top of a generalized, trans-
parent RPC layer that enables any local system to distribute
sub-elements of itself to remote hosts. We evaluate Hatch
in two ways: (i) we examine the basic performance of our
generalized transparent RPC layer via its implicit automated
proxies, which enable our seamless local/distributed con-
tinuity; and (ii) we evaluate how Hatch enables us to au-
tonomously learn end-to-end designs of distributed systems.
All of our experiments are conducted within a real data cen-
ter, using a cluster of 10 dedicated rackmount servers which
each have Intel Xeon Quad Core 3.60 GHz CPUs and 16 GB
of RAM, running Ubuntu Server 18.04.

6.1. Auto-proxy performance

We first analyze the performance of implicit communi-
cation proxy components in isolation, to understand the re-
lationship between the cost in added latency and the benefit
from adding more compute resource. To make distribution
effective, network latency added by transparent proxies must
be lower than compute or I/O latency of the logic being dis-
tributed. This relationship also changes under parallelism,
where higher levels of concurrent requests benefit from ad-
ditional CPUs and I/O bandwidth on remote hosts.

We examine this relationship at two specific implicit com-
munication type proxies: our HTTP handler interface, and a
prime number generator interface. These two points repre-
sent the worst, and best, cases for implicit proxies in our
system.

We first examine the best case, around a component which
provides operations with prime numbers (used for example
in security handshakes). This component’s functions take
integers as parameters, and have an exponential increase in
processing time for larger integers. To test this, we use a
fixed input parameter in function calls that test for prime-
ness, giving it a constant computation time, but vary the
level of concurrent requests per second from 10 up to 100.
We experiment both with the prime component running lo-
cally, and behind a transparent Hatch implicit proxy with in-
creasing replication up to 10 servers. The results are show in
Fig. 6: as the level of concurrent requests increases, relocat-
ing and replicating the component shows increasing perfor-
mance versus the local case, demonstrating that automated
distribution has low enough latency to gain in performance
overall.

We now examine the worst case for implicit proxies in
our data center system, in which this balance can be nega-
tive. This is evident in our HTTP handler interface, in which
a handleRequest() function receives a TCPSocket instance
and begins to construct a response, using the send() function
on the TCPSocket for each part of the response. The request
handler potentially interacts with a cache component, file
system, server-side scripting component for dynamic con-
tent, and compression libraries, depending on the particular
composition of behavior in use and the type of request be-
ing handled. We specifically examine its performance under

Implicit - 3 servers
Implicit - 5 servers
—o—Implicit - 7 servers
—e—Implicit - 9 servers

—e—Local - 1 server
Implicit - 4 servers
—e—Implicit - 6 servers
—e—Implicit - 8 servers
—e—Implicit - 10 servers

2000

1000

p4 > ————0

Response Time (ms)

10 20 30 40 50 60 70 80 90 100
Number of threads

Figure 6: Implicit communication type proxy performance for
prime calculations.

—e—Local - 1 server Implicit - 3 servers
Implicit - 4 servers Implicit - 5 servers
—e—Implicit - 6 servers —e—Implicit - 7 servers

g 1500 —e—Implicit - 8 servers —e=Implicit - 9 servers
(0]

g 1000

|_

Y 500

c

8

0 0 ® —®

V

o 5 10 20

Number of threads

Figure 7: Implicit communication type proxy performance for
our HTTPHandler.

purely dynamic content requests at increasing levels of con-
currency, using implicit proxies to transparently replicate
it (and all of its associated dependencies) to an increasing
number of hosts. The results of this are shown in Fig. 7.

Here we see that distributing the request handler tends
to be worse than having it local. Examining this behavior in
detail, we observe that this is because it repeatedly uses the
send() function on the TCPSocket to incrementally send ex-
tra response data from the server-side script system. The lo-
cal implementation uses the ‘direct’ version of send() against
the operating system; in this context send() behaves opti-
mistically to the caller in that it returns the number of bytes
successfully transferred into the OS send buffer. When send()
is used over our implicit proxy, however, it behaves pes-
simistically because each invocation of send() waits until
the remote side acknowledges receipt of the data and returns
the local return value (i.e., behaving like an RPC). Because
of this conversion from optimistic to pessimistic behavior
within send(), and the number of times send() is called in
a server-side script, we therefore see degradation of perfor-
mance when transparently replicated under implicit distri-
bution. This degradation is only avoided if the server-side
script is doing very intense processing which dominates the
pessimistic send() latency.

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 10 of 15

Self-Distributing Systems

To overcome this effect, we developed a modified proxy
which uses request bursting to collect all response data and
send it in a single transmission; this removes the pessimistic
send() issue and returns the system to yielding positive dis-
tribution effects for this component.

6.2. Hatch performance

We now explore the properties of a whole system man-
aged by Hatch, using our entire data center platform against
a set of different workloads. Under each workload we first
manually execute every composition option of our data cen-
ter platform (including local composition choices and distri-
bution or replication permutations) to collect ground truth
data showing which local and distributed system design op-
tions are really best in each set of conditions.

We then run the same workload but using Hatch’s real-
time reinforcement learning, which has never seen the work-
load before, to observe the way in which it converges on the
best composition as shown by our ground truth tests, and
how quickly this convergence happens.

There is a huge array of potential workload combinations
available to test which would push Hatch to learn different
design choices. We focus here on five major characteristics
for a given workload: (i) level of concurrency (simultane-
ous requests per second); (ii) average processing time of a
dynamic content request; (iii) number of dynamic content re-
quests per second; (iv) number of static content requests per
second; and (v) content types of static content requests. Our
evaluation examines the effects of different ratios of these
characteristics.

To aid in making clear inferences between cause and ef-
fect in each experiment, we also restrict the points in our
target system for which Hatch proxies can be inserted. We
focus specifically on components that implement different
ways to process HTTP requests, enabling relocation and repli
cation of such components; besides the Hatch distribution
options, these components also have a range of local im-
plementations such as caching static content, compressing
content, caching and compressing static content, or always
accessing disk.

We begin with experiments exploring synthetic ratios of
different workload characteristics to demonstrate their ef-
fects, and finish with realistic mixtures based on a real-world
trace.

6.2.1. Ground truth

Our first experiments examine predominantly dynamic
content requests, which are handled by the web server’s server-
side scripting component, under increasing concurrency. The
results are shown in Fig. 8, which is split into two phases: in
the first the system is subjected to 5 dynamic content requests
per second, and in the second phase to 20. For both phases
we show an all-local composition of our web serving system
running on a single host, and two different distribution com-
positions which are indicative of the range of performance
characteristics available through different distributed system
designs. In the first phase of this experiment, keeping every-
thing in the web serving system on a single host (i.e., local)

10000
. —e—Local
g Distribution Option A
<= 1000 o .
o Distribution Option B
£
s
o 100
(%]
c o o—0
8- ——
2 10
Q
oc

1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Time (s)

Figure 8: Ground truth for dynamic content workloads

350
—o—Local
— 300
é’ Distribution Option A
‘q': 250 Distribution Option B
£ 200
=
o 150
(%]
S 100 R =y
Q
g 50
o
0

5 15 25 35 45 55 65 75 85 95
Time (s)

Figure 9: Ground truth for realistic static/dynamic mixtures.

is the best option. This is because the single server has suf-
ficient cores to deal with this level of concurrency without
negative side effects. In the second phase, this level of con-
currency exceeds the core count of the single server and so
computation becomes a dominant cost above the latency be-
tween two hosts in our data center. In this case it then be-
comes beneficial to replicate the request-handling part of the
server to additional machines. The exact point at which this
transition becomes useful depends on the type of processing
in server-side scripting, and specific hardware characteris-
tics — a key motivation for a learned solution.

Next we examine the effect of different ratios of static
and dynamic content. This has a key interaction with how
distributed our system becomes. We observe that if all con-
tent was static then hosting all parts of our platform on a sin-
gle server would be best. This is because Hatch effectively
converts a system to a layer-7 load balancer in this case, and
the added latency of replication is more than reading static
content from a local disk. We therefore examine the ratio
of dynamic/static content which provokes distribution to be
best.

Fig. 9 shows the result of the system in different com-
positions when subjected to two workloads. The first uses
the ratio of static to dynamic content of a public Wikipedia
trace [43], in which the vast majority of requests are reads
and have a ratio of 54% images, 31% text content, and 17%
dynamic content. Here we see that the best composition is
actually to have everything local, since enough content is
static.

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 11 of 15

Self-Distributing Systems

The second workload, on the right of in Fig. 9, shows the
same trace in which we increase the processing time of each
dynamic request, reflecting a slightly higher CPU intensity
per page or a higher proportion of write requests. Here we
see a reversal of the above result, where replicating the re-
quest handler to multiple servers becomes the ideal solution.

6.2.2. Learning

We now examine how real-time reinforcement learning
can, starting from no initial information, learn the ideal com-
position and distribution of a system. In all of these exper-
iments our systems start on a single entry-point machine to
our data center, and are then subjected to various different
workloads. In response to these workloads, Hatch begins to
explore the design space in real-time, seamlessly adapting
between the available local and distributed composition op-
tions, and spreading Hatch learning agents themselves across
multiple hosts. For each of these experiments Hatch has a to-
tal search space of 699, 044 unique possible ways to compose
the system, which are seamlessly explored in real-time.

We first use a workload consisting only of dynamic con-
tent at a constant rate of at least 20 simultaneous requests
and above, matching one of our ground truth data points.
Fig. 10 and Fig.11 show the results of this under learning,
along with the data from our ground truth tests. Both graphs
show average response time to client requests in millisec-
onds on the y-axis, and time on the x-axis, and the response
time of our data center system under Hatch learning control
together with an all-local composition and two selected dis-
tributed compositions from our ground truth experiments.
Fig. 10 shows our initial learning system at work, and high-
lights a common effect of learning over reward distributions:
although Hatch quickly eliminates the worst-performing op-
tions, it is more difficult to discriminate between more similar-
looking actions in terms of the overall reward landscape.
This is mainly caused by the large difference between two

particular distributed composition options, shown on the graph

as Option A and Option B; the very large difference in reward
here causes normalization to skew the relative impact of this
difference so that the smaller differences between higher-
performing compositions are more difficult for the learning
algorithm to focus on. To correct this we use adaptive nor-
malization which avoids poor actions that have high confi-
dence, yielding the results shown in Fig.11, in which Hatch
quickly learns to get close to the ideal solution in about 5
minutes (note that Hatch does select the same composition
as the ground truth here, though its response time appears
slightly higher due to noise).

Finally we examine performance under our Wikipedia-
like workloads, which have a more natural mixture of static

and dynamic content requests, with the results shown in Fig. 12,

again showing two selected ground truth compositions for
reference along with the all-local composition of the data
center system and our learning trace. Here we see that Hatch
converges quickly on a good solution, using a distributed
replication design for the HTTP handler component, and ac-
tually found a better composition of this design during learn-

10000
—~
]
E
m 1000
E == | earming
[—4— Local
8‘-,’ Distribution Option A
g 100 == Distribution Option B
o
(0]
[F]
o

10
SAPRPHHA P RLEE OO P IS

Learning Cycles
Figure 10: Hatch learning with dynamic content workloads.

45
40

—— Leaming

35 =& Local

30 Distribution Option A
25

20

15

10
5

Response Time (ms)

AR SRR IR - VA O N O
Learning Cycles

Figure 11: Hatch learning with adaptive normalization.

700

600 == Leaming
—a— Cache (Local)

[42]
(=]
(=]

Distribution composition A (8 servers)

Q
o

== Distribution composition B (10 servers)

Response Time (ms)
(=S B R N

Q Q

o o

Q
o

0
YYD eRERRLPPPFLEL PP
Learning Cycles

Figure 12: Hatch learning with a Wikipedia-like workload.

ing than we found in our ground truth experiments. This is
because the very high number of possible compositions is
too large for us to test during ground truth experiments, and
so we are only able to try a sub-set. The result of this exper-
iment therefore shows that Hatch is able to quickly navigate
this search space to find a better specific distributed system
design than our ground truth experiments located.

7. Discussion

In this section we discuss some of the limitations and
assumptions of our approach, and areas for future work. We
first examine the characteristics of our application domain
in this paper and reflect on which kinds of application are
likely to be suited to Hatch. We then examine a broader set of
challenges that our work in this paper does not address, and

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 12 of 15

Self-Distributing Systems

discuss how those challenges may be tackled in the future.

In this paper we evaluated Hatch in the context of data
center web-based services, in which a system processes a
stream of requests from users and the overall performance
of the system can be reasonably measured in terms of how
quickly requests are serviced. The systems that we examine
were also specifically designed only as local systems operat-
ing on a single host, and therefore benefit from the automated
distribution offered by Hatch.

The use of a stream-processing system enables Hatch to
quickly collect metrics about the system in short periods of
time (taking measurements every few seconds), and to use
these metrics to optimize the system. The use of Hatch in
batch processing systems introduces potential challenges in
the measurement of ongoing performance in order to make
rapid progress in finding an ideal solution; in some cases
incremental progress through a batch job can serve this pur-
pose (e.g. [10], but identifying effective sub-batch measure-
ment approaches can be challenging. On the specific opti-
mization metric used in this work, to date we have only ex-
perimented with response time as a metric and have only ex-
amined a single metric. The use of other measurements be-
sides response time may present their own challenges, such
as latency between action and effect during machine learn-
ing, and the use of multiple metrics is a topic of increasing
study in the wider autonomous systems community. Despite
these limitations, our use of a single metric with a stream-
processing system represents a broad class of modern sys-
tems — the majority of web-systems today fit this criteria,
but other systems such as code running on mobile phones
or desktop computers could also benefit from the ability to
selectively offloaded code to remote sites for enhanced re-
sponsiveness. In future work we intend to further exam-
ine other domains to which Hatch may be applied to learn
broader lessons on these issues.

On more specific limitations, we next examine issues
around failure handling, state management, machine learn-
ing, multiple-instances, and system evolution.

Failure recovering mechanisms are an important part of
Hatch. Although the detailed definition and evaluation of
such mechanisms is beyond the scope of this paper, we iden-
tify the general concept of how they could be implemented
via transparent recovery. Even if such a general mechanism
is implemented, we note that there is a trade-off here in how
much overhead they add relative to the performance gain of
distributed code to a remote location: the specific limits of
this trade-off are an interesting topic for future work.

On state management for replication or sharding, again
in some contexts the necessary maintenance processes for
state consistency may add prohibited overhead to the system
performance. As well as further examining which kinds of
component are likely to benefit from automated replication,
versus those that may present too high an overhead instate
maintenance, it is also worth considering that some systems
may inherently have different levels of tolerance for data stal-
eness and inconsistency. For these kind of systems, a more
flexible state consistency model could be made explicit to al-

low Hatch to relax state consistency where possible and gain
further performance improvements.

On machine learning, in this paper we demonstrate search
spaces for real-time navigation that are on the order of hun-
dreds of thousands of permutations. The speed with which
this search space is navigated is a key challenge, and higher-
order search spaces as a system scales up would further ex-
acerbate this. As Hatch takes longer to decide the most suit-
able design choice for the system, the longer Hatch experi-
ments with sub-optimal choices that affect the systems per-
formance, thus becoming an important issue to address. For-
tunately, in the literature there are some promising approaches
to tackle this issue. Ontanén [29] is a notable example and
proposes a method that divides the action space and explores
it smartly and effectively, demonstrating their approach to
scale to millions of actions. Another promising approach is
the combination of deep neural networks to reduce the search
space of actions as Donckt et al. reports in their work [44].
It is also possible that the individual contributions of each
component to the system can be isolated and transferred to
estimates for untried compositions, in a similar way to how
genetic algorithms attempt to isolate which genes contribute
positively or negatively to a solution; this may allow a large
number of possible actions to be safely ignored based on
some similarity to actions that have already been tried.

On the potential for multiple Hatch instances operating
on the same pool of resources, in this paper we have assumed
that only a single Hatch instance is active over a given re-
source pool. In practice it is likely that multiple Hatch in-
stances would operate in each data centre and may have ac-
cess to the same resources. Besides obvious approaches such
as resource containers, which limit how much resource can
be used by each process resident on a host, it may also be of
interest to examine how multiple Hatch instances could com-
municate in order to mutually move towards an equitable or
ideal usage of available shared resource.

Finally, on the issue of system evolution, in this paper
we have assumed that all components for use in the system
are available when that system first starts. While this is a
useful simplifying assumption, we would also expect new
component variants to be able to arrive later (as engineering
teams have new ideas based on how the system is behaving)
and for Hatch to be able to learn whether these new arrivals
are useful. The main challenge here is in understanding the
statistical comparisons in machine learning between actions
that have existed for a long time (and about which we have
high confidence in their respective rewards), versus newly-
available actions that are untested. Many multi-armed bandit
implementations would naturally focus on newly-available
actions heavily to understand how they behave, until equal
confidence is available in that behaviour, but further research
on this specific area would help to understand the full set of
implications of software evolution combined with real-time
learning.

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 13 of 15

Self-Distributing Systems

8. Conclusion

We have proposed the concept of self-distributing sys-
tems, in which any local system can have its constituent parts

automatically and transparently distributed or replicated through

a network. This helps to automate distributed system design
by learning what to distribute, how, and to where.

We have implemented this concept in Hatch, along with
a complete end-to-end data center back-end system as an ex-
ample of Hatch’s capabilities. Hatch discovers a set of pos-
sible ways to construct a target system, then injects potential
distributed designs into those possibilities using its transpar-
ent distribution layer; all of this potential is represented as
a simple set of actions for real-time reinforcement learning,
which explores the design space of a live system in real-time
to optimize against its actual deployment conditions.

To the best of our knowledge, Hatch is the first approach
to fully generalized and automated design of a distributed
system. Our evaluation demonstrates that there is a diverse
set of different optimal points in a given design space for
our web serving platform depending on workload, and that
Hatch can rapidly find those design points in a live produc-
tion setting.

In future work, we will apply Hatch to a range of sys-
tem types beyond data center back-ends to gain a deeper
understanding of the value of autonomous local/distributed
continuity, and will also examine how real-time reinforce-
ment learning approaches can scale up to very large deci-
sion spaces. Vast action space exploration is central to our
approach and still remains an open issue. Finally, we will
investigate in detail state management and failure handling
in implicit communication type of components and evaluate
these two dimensions in different scenarios.

Acknowledgments

This work was supported by the UK Leverhulme Trust
via the Self-Aware Datacentre project, grant RPG-2017-166.
Dr Rodrigues Filho is also funded by Sdo Paulo Research
Foundation under the grant 2020/07193-2. This re-search is
also part of the INCT of the Future Internet for Smart Cities
funded by CNPq proc.465446/2014-0, CAPES proc.88887.
136422/2017- 00, and FAPESP procs.14/50937-1 and 15/24
485-9.

References

[1] Aksoy, R.C., Kapritsos, M., 2019. Aegean: Replication beyond the
client-server model, in: Proceedings of the 27th ACM Symposium on
Operating Systems Principles, Association for Computing Machinery,
New York, NY, USA. p. 385-398. URL: https://doi.org/10.1145/
3341301.3359663, doi:10.1145/3341301.3359663.

[2] Alipourfard, O., Liu, H.H., Chen, J., Venkataraman, S., Yu, M.,
Zhang, M., 2017. Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics, in: 14th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 17),
USENIX Association, Boston, MA. pp. 469-482.

[3] Ardelean, D., Diwan, A., Erdman, C., 2018. Performance analysis of
cloud applications, in: 15th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 18), USENIX Association,
Renton, WA. pp. 405-417.

[4] Bennani, T., Blain, L., Courtes, L., Fabre, J.C., Killijjian, M.O., Mars-
den, E., Taiani, F., 2004. Implementing simple replication protocols
using corba portable interceptors and java serialization, in: Proceed-
ings of the 2004 International Conference on Dependable Systems
and Networks, IEEE Computer Society, Washington, DC, USA.

] Berry, D.A., Fristedt, B., 1985. Bandit problems: sequential alloca-
tion of experiments (Monographs on statistics and applied probabil-
ity). Springer.

Binnig, C., Crotty, A., Galakatos, A., Kraska, T., Zamanian, E., 2016.

The end of slow networks: It’s time for a redesign. Proc. VLDB En-

dow. 9, 528-539. doi:10.14778/2904483.2904485.

Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.B.,

2004. An open component model and its support in java, in:

Component-Based Software Engineering, Springer Berlin Heidel-

berg. pp. 7-22. doi:10.1007/978-3-540-24774-6_3.

Chapelle, O., Li, L., 2011. An empirical evaluation of thompson

sampling, in: Advances in neural information processing systems, pp.

2249-2257.

Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K.,

Ueyama, J., Sivaharan, T., 2008. A generic component model for

building systems software. ACM Trans. on Comp. Systems 26, 1:1—

1:42.

[10] Dean, P., Porter, B., 2021. The design space of emergent scheduling
for distributed execution frameworks, in: 2021 International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS), pp. 186—195. doi:10.1109/SEAMS51251.2021.00032.

[11] Diao, Y., Hellerstein, J.L., Parekh, S., Bigus, J.P., 2003. Managing
web server performance with autotune agents. IBM Syst. J. 42, 136—
149. doi:10.1147/57.2003.5386833.

[12] Djilali, S., Herault, T., Lodygensky, O., Morlier, T., Fedak, G., Cap-
pello, F., 2004. Rpc-v: Toward fault-tolerant rpc for internet con-
nected desktop grids with volatile nodes, in: SC *04: Proceedings of
the 2004 ACM/IEEE Conference on Supercomputing, pp. 39-39.

[13] Dragojevié, A., Narayanan, D., Castro, M., Hodson, O., 2014. Farm:
Fast remote memory, in: 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), USENIX Associa-
tion, Seattle, WA. pp. 401-414.

[14] Dragojevié, A., Narayanan, D., Nightingale, E.B., Renzelmann, M.,
Shamis, A., Badam, A., Castro, M., 2015. No compromises: Dis-
tributed transactions with consistency, availability, and performance,
in: Proceedings of the 25th Symposium on Operating Systems Prin-
ciples, ACM, New York, NY, USA. pp. 54-70. doi:10.1145/2815400.
2815425.

[15] Gao,]J., 2014. Machine learning applications for data center optimiza-
tion. Google White Paper .

[16] Gao, P.X., Narayan, A., Karandikar, S., Carreira, J., Han, S., Agar-
wal, R., Ratnasamy, S., Shenker, S., 2016. Network requirements for
resource disaggregation, in: 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), USENIX Associa-
tion, Savannah, GA. pp. 249-264.

[17] Guerraoui, R., Pavlovic, M., Seredinschi, D.A., 2016. Incremental
consistency guarantees for replicated objects, in: 12th {USENIX}
Symposium on Operating Systems Design and Implementation
({OSDI} 16), pp. 169-184.

[18] Haase, J., Eschmann, F., Klauer, B., Waldschmidt, K., 2004. The
sdvm: A self distributing virtual machine for computer clusters,
in: International Conference on Architecture of Computing Systems,
Springer. pp. 9-19.

[19] Haase, J., Hofmann, A., Waldschmidt, K., 2010. A self distributing
virtual machine for adaptive multicore environments. International
journal of parallel programming 38, 19-37.

[20] Hoffmann, M., Lattuada, A., Liagouris, J., Kalavri, V., Dimitrova,
D., Wicki, S., Chothia, Z., Roscoe, T., 2018. Snailtrail: Generaliz-
ing critical paths for online analysis of distributed dataflows, in: 15th
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 18), USENIX Association, Renton, WA. pp. 95-110.

[21] Jiang, J., Sun, S., Sekar, V., Zhang, H., 2017. Pytheas: En-
abling data-driven quality of experience optimization using group-

[6

[}

[7

—

[8

—

[9

—

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 14 of 15

https://doi.org/10.1145/3341301.3359663
https://doi.org/10.1145/3341301.3359663
http://dx.doi.org/10.1145/3341301.3359663
http://dx.doi.org/10.14778/2904483.2904485
http://dx.doi.org/10.1007/978-3-540-24774-6_3
http://dx.doi.org/10.1109/SEAMS51251.2021.00032
http://dx.doi.org/10.1147/SJ.2003.5386833
http://dx.doi.org/10.1145/2815400.2815425
http://dx.doi.org/10.1145/2815400.2815425

(22]

(23]

(24]

(25]

[26]

[27]

(28]

[29]

(30]
[31]

[32]

(33]

(34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

Self-Distributing Systems

based exploration-exploitation, in: 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), USENIX
Association, Boston, MA. pp. 393-406.

Jindal, A., Hu, Y.C., 2018. Differential energy profiling: Energy op-
timization via diffing similar apps, in: 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), USENIX
Association, Carlsbad, CA.

Kalia, A., Kaminsky, M., Andersen, D., 2019. Datacenter RPCs can
be general and fast, in: 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 19), USENIX Association,
Boston, MA. pp. 1-16.

Liu, S., Viotti, P., Cachin, C., Quéma, V., Vukoli¢, M., 2016. {XFT}:
Practical fault tolerance beyond crashes, in: 12th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI}
16), pp. 485-500.

Maassen, J., van Nieuwpoort, R., Veldema, R., Bal, H.E., Plaat, A.,
1999. An efficient implementation of java’s remote method invoca-
tion. SIGPLAN Not. 34, 173-182. doi:10.1145/329366.301120.
Moore, R., Klauer, B., Waldschmidt, K., 2000. Tailoring a self-
distributing architecture to a cluster computer environment, in: Pro-
ceedings 8th Euromicro Workshop on Parallel and Distributed Pro-
cessing, IEEE. pp. 150-157.

Narasimhan, N., Moser, L.E., 2001. Transparent Fault Tolerance for
Java Remote Method Invocation. Ph.D. thesis. AAI3016401.
Narasimhan, P., Moser, L.E., Melliar-Smith, P.M., 2002. Strongly
consistent replication and recovery of fault-tolerant corba applica-
tions. Comput. Syst. Sci. Eng. 17, 103-114.

Ontandn, S., 2017. Combinatorial multi-armed bandits for real-time
strategy games. Journal of Artificial Intelligence Research 58, 665—
702.

OSGI, Alliance:. https://www.osgi.org/.

Peng, Y., Bao, Y., Chen, Y., Wu, C., Guo, C., 2018. Optimus: An
efficient dynamic resource scheduler for deep learning clusters, in:
Proceedings of the Thirteenth EuroSys Conference, Association for
Computing Machinery, New York, NY, USA.

Porter, B., 2014. Runtime modularity in complex structures: A com-
ponent model for fine grained runtime adaptation, in: Component-
Based Software Engineering, ACM. pp. 26-32.

Porter, B., Grieves, M., Rodrigues Filho, R., Leslie, D., 2016. REX: A
development platform and online learning approach for runtime emer-
gent software systems, in: Symposium on Operating Systems Design
and Implementation, USENIX. pp. 333-348.

Porter, B., Rodrigues Filho, R., 2021. A programming language for
sound self-adaptive systems, in: 2021 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS).
Reis, D., Miranda, H., 2012. Transparently increasing rmi fault
tolerance. SIGAPP Appl. Comput. Rev. 12, 18-26. URL: https:
//doi.org/10.1145/2340416.2340418, d0i:10.1145/2340416.2340418.
Rodrigues Filho, R., Porter, B., 2017. Defining emergent software us-
ing continuous self-assembly, perception, and learning. Transactions
on Autonomous and Adaptive Systems 12, 1-25.

Scott, S.L., 2010. A modern bayesian look at the multi-armed bandit.
Applied Stochastic Models in Business and Industry 26, 639-658.
Shan, Y., Huang, Y., Chen, Y., Zhang, Y., 2018. LegoOS: A dissem-
inated, distributed OS for hardware resource disaggregation, in: 13th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), USENIX Association, Carlsbad, CA. pp. 69-87.
Sutton, R.S., Barto, A.G., 2018. Reinforcement Learning. 2nd ed.,
MIT Press, Cambridge, MA, USA.

Tammana, P., Agarwal, R., Lee, M., 2016. Simplifying datacenter
network debugging with pathdump, in: 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), USENIX
Association, Savannah, GA. pp. 233-248.

Tejedor, E., Badia, R.M., 2008. Comp superscalar: Bringing grid su-
perscalar and gem together, in: 2008 Eighth IEEE International Sym-
posium on Cluster Computing and the Grid (CCGRID), pp. 185-193.
doi:10.1109/CCGRID. 2008. 104.

Thompson, W.R., 1933. On the Likelihood that one unknown prob-

[43]

[44]

[45]

[46]
[47]
[48]

[49]

[50]

ability exceeds another in view of the evidence of two samples.
Biometrika 25, 285-294. doi:10.1093/biomet/25.3-4.285.

Urdaneta, G., Pierre, G., Van Steen, M., 2009. Wikipedia workload
analysis for decentralized hosting. Computer Networks 53, 1830-
1845.

Van Der Donckt, J., Weyns, D., Quin, F., Van Der Donckt, J.,
Michiels, S., 2020. Applying deep learning to reduce large adap-
tation spaces of self-adaptive systems with multiple types of goals,
in: Proceedings of the IEEE/ACM 15th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, pp.
20-30.

Veeraraghavan, K., Meza, J., Chou, D., Kim, W., Margulis, S.,
Michelson, S., Nishtala, R., Obenshain, D., Perelman, D., Song, Y.J.,
2016. Kraken: Leveraging live traffic tests to identify and resolve re-
source utilization bottlenecks in large scale web services., in: OSDI,
USENIX. pp. 635-651.

Vogels, W., 2009. Eventually consistent. Communications of the
ACM 52, 40-44.

Waldo, J., Wyant, G., Wollrath, A., Kendall, S., 1994. A Note on
Distributed Computing. Technical Report. Mountain View, CA, USA.
Woodfin, T.R., 2002. Self-distributing computation. Ph.D. thesis.
Massachusetts Institute of Technology.

Zhang, Y., Huang, Y., 2019. “learned”: Operating systems. SIGOPS
Operating Systems Review 53, 40-45. URL: https://doi.org/10.
1145/3352020. 3352027, doi:10.1145/3352020.3352027.

Zhao, X., Rodrigues, K., Luo, Y., Yuan, D., Stumm, M., 2016. Non-
intrusive performance profiling for entire software stacks based on
the flow reconstruction principle, in: 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), USENIX
Association, Savannah, GA. pp. 603-618.

Rodrigues Filho and Porter: Preprint submitted to Elsevier

Page 15 of 15

http://dx.doi.org/10.1145/329366.301120
https://www.osgi.org/
https://doi.org/10.1145/2340416.2340418
https://doi.org/10.1145/2340416.2340418
http://dx.doi.org/10.1145/2340416.2340418
http://dx.doi.org/10.1109/CCGRID.2008.104
http://dx.doi.org/10.1093/biomet/25.3-4.285
https://doi.org/10.1145/3352020.3352027
https://doi.org/10.1145/3352020.3352027
http://dx.doi.org/10.1145/3352020.3352027

