Image Based Information Visualization

or How to Unify Scivis and Infovis

prof. dr. Alexandru (Alex) Telea

Institute of Mathematics and Computer Science University of Groningen, the Netherlands

Introduction

Who am I?

- PhD in scientific visualization (TU Eindhoven, 2000)
- assistant professor in visualization (TU Eindhoven, 2000-2007)
- professor in multiscale visual analytics (RuG, since 2007)
- 15 PhD students, 70+ MSc students
- 200+ international publications in data visualization
- co-founder SolidSource BV

www.cs.rug.nl/~alext

Data Visualization: Principles and Practice A. K. Peters, 2008 / 2014

Outline

- 1. A bit of (Personal) History
- 2. Modeling Visualization
- 3. Image-Based Information Visualization
- 4. Lessons learned & Where to go next

A Bit of (Personal) History

Before 1980

Around 2000

<2000: Scientific Visualization

A. Telea (2000) Visualisation and Simulation with Object-Oriented Networks; PhD thesis
G. Nielson, H. Hagen, H. Müller (1997). Scientific Visualization: Overviews, Methodologies, and Techniques; IEEE
L. J. Rosenblum (ed.) (1994) Scientific Visualization: Advances and challenges; Academic Press

>2000: Information Visualization

A. Telea, A. Maccari, C. Riva (2002) An Open Toolkit for Prototyping Reverse Engineering Visualizations; EG VisSym J. Stasko, J. Domingue, M. Brown, M. Price, B. Price (eds.) (1998) Software Visualization: Programming as a Multimedia Experience S. Card, J. Mackinlay, B. Shneiderman (1999): Readings in information visualization – Using vision to think

Scivis vs Infovis

Scivis vs Infovis

None of these (fully) clarifies how/why Scivis and Infovis are different...

The Visualization Pipeline: A Technical View

Direct vs Inverse Mapping Principles

A. Telea, Data Visualization – Principles and Practice, 2nd ed., CRC Press, 2014

The Visualization Pipeline: A Perceptual View

Interpretation challenges

- low-level vision: must know how the eye sees colors, contrasts, textures, ...
- pattern recognition: must know how the **brain** assigns meaning to shapes
- high-level sensemaking: must know how the user decides based on semantics

How to design a visualization so it's interpreted the way we want?

Rules for Visual Design: Visual Variables

ground figure		osociative selective nominal ordered numerical rune automitative						
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	location	Y	Y	G	G	G		
	size	Ν	Y	G	G	G		
	shape	Y	Ν	G	Ρ	Ρ		
	orientation	Y	Y	G	м	м		
	color hue	Y	Y	G	м	м		
	color value	Ν	Y	Р	G	м		
$\bigcirc \bigcirc \bigcirc \bigcirc$	texture	Y	Y	G	м	м		
	color saturation			Р	G	м		
	arrangement			м	Ρ	Р		
	crispness			Р	G	Р		
	resolution			Р	G	Ρ		
$\oplus \oplus \oplus$	transparency			м	G	Ρ		

J. Bertin (1967|1983) Semiology of graphics: Diagrams, networks, maps. University of Wisconsin Press A. MacEachren (1995) How maps work. The Guilford Press

A New Look at Data Mapping

Much like SciVis + Infovis

SciVis vs InfoVis, revisited

What are the differences you see between the three types in terms of visualization but also displayed data?

SciVis vs InfoVis, revisited: Focus on SciVis

SciVis

- visual variables: 2D and 3D
- quantitative data (temperature, pressure, velocity, density, etc)
- data is *numerical* and *continuous*
- data is defined over a 2D or 3D spatial domain (location is given)
- every point in this domain carries a data value (data is *dense*)

SciVis vs InfoVis, revisited: Focus on InfoVis

InfoVis

- visual variables: 2D (mostly)
- any data (quantitative, text, categories, relations)
- data is not necessarily *numerical* and is usually *discontinuous* (e.g. relations)
- data has no spatial association (location is *chosen* by the visualization design)
- not every point in the visualization has a data value (data is *discrete*)

SciVis vs InfoVis, revisited: Hybrids

Hybrids

- visual variables: 2D or 2.5D
- any data (like in InfoVis)
- at least one attribute is numerical and continuous (*e.g.* space in a map, time in a stock chart) and at least one is not (*e.g.* population measured per county)
- examples: geovisualization, timeline charts

Extra complication: Big Data

Little Data

- hundreds..thousands of items
- 1..3 dimensions
- focus on details

Big Data

- (tens of) millions of items
- tens..hundreds of dimensions
- focus on the big picture

Big Data Solution: Multiscale nature of images!

SciVis vs InfoVis data

SciVis

Continuous, numerical, spatial data

bone dataset, 80K points

- mple
 - bone dataset, 20K points

bone detail, 88 polygons

bone detail, 87 polygons

- we throw away 75% of the data
- the semantics stays the same
- interpolation: simple
- resampling: Cauchy-continuous ©

InfoVis

Discrete, non-numerical, non-spatial data

- we throw away one single character
- the semantics becomes fully different!

•interpolation: often not possible

• resampling: not Cauchy continuous 😕

How to handle this challenge for Infovis data?

Solution Idea: Image-Based Visualizations

IBFV (2002)

spot noise (1991)

LIC for 3D surfaces (2004)

LIC for tensor fields (2009)

How to build image-based visualizations for Infovis big data?

Idea 1: Dense Pixel Displays

- a) every pixel shows information (little..no whitespace, output=dense field)
- b) close pixels = similar/related data items (again, related to field notion)

Voronoi treemaps (2005)

pixel-line text (2002)

Idea 2: Use Shading

- a) shading creates shapes
- b) shapes show data (patterns, groups, relations)

peer-to-peer dynamics (2004) dynamic memory allocations (2007)

execution traces (2012)

Idea 2: Use Texture

Texture encodes (multiple) attribute values

extended table lenses (2007)

importance-based antialiasing (2008)

data encoding in texture-frequency (2006)

Idea 3: Simplify Data in Image Space

If **data** is suitably mapped to a (dense) image space then we can simplify it much as we do with **images**!

graph layout (software dependencies)

node density map showing strong components

Map (Simplify (data)) = Simplify (Map (Data))

W. De Leeuw, R. van Liere (2003) GraphSplatting: visualizing graphs as continuous fields; IEEE TVCG 9(2)

Applications 1: Multivariate/Dynamic Networks

hierarchy table			node attribute table			association table				association attribute table		
edge ID	parent node ID	child node ID		node ID	attribute 1 (name)	attribute 2 (type)	attribute 3 (LOC)	edge ID	from node ID	to node ID	edge ID	attribute 1 (type)
0	0	1		0	main.cc	file	200	4	0	1	4	defines
1	0	2		1	main()	function	50	5	1	2	5	calls
2	0	3		2	run(Foo)	function	20	6	2	3	6	uses type
3	3	4		3	Foo	class	100	7	1	4	7	calls
ID: 4 ID: 0 name: main.cc ID: 0 ID: 4 ID: 0 ID: 0 ID: 4 ID: 0 ID:							edge ID 6					
ame: I DC: {	main() 50): 5 na L(ID: me: r DC: 2	UD: 6 2) (I) 2) 2) (I) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2)		ne: Foo C: 100 ne: load() C: 80		 contain calls defines uses ty 	is S	araph	of main())

- one of most complex Infovis data types
- relations, attributes, multiple data types, time-dependent data
- datasets of millions of nodes/links, tens of attributes/item

S. Diehl, A. Telea (2014) Multivariate Networks in Software Engineering; Springer T. Von Landesberger *et al.* (2011) Visual Analysis of Large Graphs: State-of-the-Art and Future Research Challenges; CGF 30(6)

Multiscale Solution: Bundling

A bit of history: (1) The early phase

1864: Flow map of French wine exports (Minard)

Figure 1: Graph of "Derives" relation for the Shar program (8 crossings).

1989: Edge concentration (Newbery)

1898: Sankey diagrams

2003: Confluent drawings (Dickerson et al.)

A bit of history: (2) The advent of bundling

2005: Flow map layouts (Phan et al.)

2006: Progressive edge clustering (Qu et al.)

2005: Improved circular layouts (Gansner et al.)

2006: Hierarchically bundled edges (Holten)

A bit of history: (3) The consolidation

2008: Bundling general graphs (Holten et al.)

2010: Image-based techniques (Ersoy et al.)

2012: Bundling dynamic graphs (Nguyen et al.)

2016: Bundling huge graphs (v/d Zwan et al.)

Many application domains...

A. Lhuillier, C. Hurter, A. Telea (2017) State-of-the-art in graph and trail bundling; CGF (STAR EuroVis)

Many methods...

Definitions

- $\boldsymbol{\delta}$: distance between two curves in drawing space
- κ : dissimilarity between two paths in data and drawing spaces

A. Lhuillier, C. Hurter, A. Telea (2017) State-of-the-art in graph and trail bundling; CGF (EuroVis STAR)

1. Static graphs - Hierarchical compound

1. Static graphs - Hierarchical compound

How to show the **simplified structure** of a bundled graph (including bundle directions)? • use image-based edge bundles (IBEB)

1. Static graphs - Hierarchical compound variations

hierarchy comparison

DAG

hierarchy comparison (image-based)

Force-directed methods: FDEB

graph drawing D(G)

edge compatibility $\boldsymbol{\kappa}$

bundling *B*(*D*(*G*))

Basic idea

- like force-directed graph layouts, but done for
 - sampling points along edges in *D*(*G*)
 - point-point interactions determined dynamically via spatial proximity (in graph layouts, forces act on nodes of G)
- works for general graphs (unlike HEB)
- basic idea is very slow ($O(N^2)$ for N edge-sampling points)

D. Holten and J. J. van Wijk (2008) Force Directed Edge Bundling for Graph Visualization; CGF/EuroVis

2. Static graphs - General undirected graphs (cont'd) Geometric/image methods: SBEB

O. Ersoy et al. (2011) Skeleton-based Edge Bundling for Graph Visualization; TVCG 17(12)

Geometric/image methods: SBEB

US migrations (~10K edges)

software calls (~5K edges)

Image-based methods: KDEEB

D. Comaniciu and P. Meer (2002) Mean shift: A robust approach towards feature space analysis; IEEE TPAMI 24(5) C. Hurter, O. Ersoy, A. Telea (2010) Graph bundling by kernel density estimation; CGF 31(2)

Image-based methods: KDEEB

Image-based methods: CUBu, FFTEB

amazon graph (1M edges)

MINGLE (2012): several **minutes** on a standard PC)

CUBu (2015): **0.15 seconds** 400x400 pixels 19M sample points FFTEB (2017): **0.09 seconds** 1000x1000 pixels 24M sample points

M. van der Zwan, V. Codreanu, A. Telea (2016) CUBu: Universal real-time bundling for large graphs; IEEE TVCG 22(12) A. Lhuillier, C. Hurter, A. Telea (2017) FFTEB: Edge bundling of huge graphs by the Fast Fourier transform (PacificVis)

2. Static graphs - Directed graphs, comparison

3. Dynamic streaming graphs

How to show changes in a network?

• use KDEEB on the dynamic graph (simple!)

World flights (June 2013) (~1M flights)

3. Dynamic streaming graphs: Eye-tracking data

How to analyze how people see scenes?

- evaluate/optimize user-interface design for highly-critical devices (e.g. aircraft, surgery)
- bundle the eye-gaze tracks (recorded by an eye tracker)

V. Peysakhovich et al. (2014) Attribute-Driven Edge Bundling for General Graphs with Applications in Trail Analysis; IEEE PacificVis

4. Dynamic sequence graphs

How to show changes between a graph and the previous/next one?

Changes of code duplication (clones) in the evolution of a software system

4. Dynamic sequence graphs: Execution traces

Given several executions of a program, how to spot differences?used for finding performance/quality problems in software

5. Simplified visualization of general graphs

Generalize image-based edge bundles (IBEB)

6. Multidimensional data

Visualize errors in multidimensional projections: Replace scatterplots by continuous fields!

R. Martins et al. (2014) Visual Analysis of Dimensionality Reduction Quality for Parameterized Projections; Computers & Graphics 41

6. Multidimensional data

Explain projections by most-relevant attributes: Replace scatterplots by continuous fields!

R. da Silva et al. (2014) Attribute-based visual explanation of multidimensional projections; EuroVA

What we have seen

Image-based information visualization

- **synergy** of graphics, data analysis, information visualization, imaging
- data filtering, mapping, rendering get **merged** in the image space
- compared to Scivis: all is the same, but Infovis data is
 - defined on *non-Euclidean* domains and potentially *not continuous* ...thus not easily *interpolable*!
- continuous, natural-like images solve the above problems
 - pack **lots** of information (every pixel shows something)
 - have a **multiscale** nature (overview & details easy to produce)
 - are intuitive to interpret (resemble familiar shapes)
 - ...and are **nice** (attract attention)

Where to from here?

Open challenges

- explore links of bundling, clustering, segmentation, skeletonization (towards an **unified image-based theory** of data simplification?)
- teaching Scivis and Infovis in an unified setting
- image-based visualization for high-dimensional data / machine learning

P. Rauber et al. (2016) Visualizing the hidden activity of artificial neural networks; IEEE TVCG 23(1)

To finish: My favorite example 😊

19-dimensional dataset (images), visualized with mix of image-based techniques

- points: 2D projection of 19-dimensional data, shaded by one attribute
- bundles: point-to-point projection errors
- cushions: clusters of similar points

Cover image for Data Visualization: Principles and Practice, CRC Press, 2014

Thank you for your interest!

Alex Telea

a.c.telea@rug.nl

www.cs.rug.nl/svcg

- examples, applications
- code
- datasets
- papers

