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Abstract—Manufacturers are creating powerful CPUs by expo-
nentially increasing the number of cores over time, as producing
faster sequential chips has become more expensive. Developers
must now employ parallel strategies and design parallel algo-
rithms if they want to use every resource available in the machine.
Still, many successful open-source projects are mostly sequential,
failing to harness the full computational power available. This
article presents approaches for performance improvements into
two large and well-known open-source projects, Git and GCC,
using parallel programming. We share the difficulties faced and
the strategies used, concluding with a set of lessons learned useful
to similar parallelization processes.

Index Terms—parallelism and concurrency, parallel systems,
compilers, version control, GCC, Git, conversion from sequential
to parallel forms

I. INTRODUCTION

Multicore computers dominate both consumer-level and
server markets nowadays. Therefore, if developers want to use
every resource available in modern machines, they will have
to design and employ parallel algorithms in their projects.
However, many successful projects still rely on sequential
code or not wholly benefit from the parallel power available.
This article reports the strategies used to improve or introduce
threading in two large open-source projects: GCC and Git.
Our main contribution is identifying the challenges faced and
discussing the lessons learned, which might help in future
parallelization processes of other open-source software.

II. GIT CASE STUDY

Git is an open-source version control system used to manage
a wide variety of projects of different magnitudes. Therefore,
high performance and scalability are some of the main prior-
ities for the development community. With this in mind, the
git-grep command was parallelized in 2010 using a producer-
consumer mechanism. This command searches lines matching
a given pattern in the files of a repository managed by Git. It
can search both in the working tree, where the current project

version is checked out, and in the internal object store, which
contains older versions of the files.

With the 2010 conversion, the multithreaded git-grep
achieved good speedups on the working tree. However, the
parallel version turned out to be slower than the sequential
one for object store grepping. Therefore threads were later
disabled for this case. In this work, we sought to understand
what caused the slowdown and improve git-grep parallelism,
to re-enable threads in the object store case with satisfactory
performance.

A. Git Objects

First, we analyzed how objects are stored and read, to
understand why git-grep could not benefit from threading,
when searching in them. Conceptually, Git’s data store can
be visualized as an in-disk key-value table. Each Git object is
stored in a compressed binary format – using the zlib imple-
mentation of the DEFLATE algorithm [1] – and referenced by
its SHA1 hash.

The three most simple types of Git objects are blob, tree,
and commit. The first stores a generic stream of bytes, and it
is commonly used to save the contents of files tracked by Git.
The second is a table, storing the entries of a directory tree.
It references blobs, for file entries, and other trees, for
subdirectories. Finally, the commit object is used to represent
versions of a project. It contains a reference to a tree object,
which describes the repository’s state at that given version.

Occasionally, Git will group objects into a packfile,
which is a very memory-efficient representation that holds
many objects in a single indexed file. In this format, besides
being zlib compressed, objects are also allowed to be deltified.
I.e., two similar objects are not stored redundantly, but instead,
a single base object is kept together with a set of instructions
on how to reconstruct the other.
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Fig. 1: Visualization of perf profile for a git-grep execution in the object store, using chromium repository as data, with
8 threads.

B. Profiling and Locating Hot Spots

Object reading can be quite a complex task. Besides the
actual disk reading operation, there are also packfile indexing,
zlib decompression, and delta reconstruction. Furthermore, the
object reading machinery wasn’t thread-safe, and thus, re-
quired serialized access among multiple threads. To verify how
object reading contributed to the grep slowness when threaded,
we profiled the code with perf (https://perf.wiki.kernel.org).
We compiled Git with -O0 -g to append the necessary
debugging information and disable compiler optimizations,
since it results in a profiling output more faithful to the actual
source files and, therefore, easier to understand. We used the
Chromium repository as data (at commit 03ae96f of 04-06-
2019), for being relatively large in both content and history.
We also used the following extended regex for being a practical
use case and producing a quite time-demanding search:

(static|extern) (int|double) \*

We performed our experiments in a desktop running Debian
10.0 on a Intel(R) Xeon(R) CPU E3-1230 V2 (4-cores with
hyper-threading), 32GB of RAM and a 7200 rpm, SATA 3.1
HDD. Figure 1 shows the results using FlameGraph [2]
for visualization. Each rectangle represents a stack frame; the
larger the rectangle, the more time the process spent on it. We
also colored the figure to highlight some sets of functions of
interest. As we can see, decompression alone accounted for
up to one-third of git-grep total execution time.

C. Improving Parallelization

Being responsible for a significant portion of the execution
time, we focused our efforts on the decompression operation.
We first moved the mutex that had been used to protect calls to
object reading functions in git-grep down to the actual object
reading functions, protecting them from the inside. Then, we
released the mutex only during decompression, to execute
it in parallel. The actual implementation, however, involved

many nuances: just by opening a single hole in this critical
section, we risked having global resources modified between
the execution of the first and the second portions, which could
produce race conditions.

We faced this problem with the delta base cache, which
optimizes delta reconstruction by holding previously decom-
pressed bases in memory. When there is a cache miss, the
code flow executes decompression and inserts the result to the
cache. However, insertion is done without re-checking if the
entry is still absent. This was not a problem for the single-
threaded execution, but the second check is required when
we allow decompression to run in parallel, to avoid inserting
duplicated entries.

There were also other difficulties, such as the previous git-
grep mutex protecting function calls in different abstraction
layers; and the exposure of unprotected lazy initializers when
moving the lock down in the stack. To solve the former, we
turned the internal object reading lock into a recursive mutex
and exposed it for external use, without the risk of relocking
errors. About the latter, we protected the more accessible
initializers and forced an eager initialization on the two more
difficult to protect. This technique should be used cautiously
as it can potentially diminish performance for the cases where
the resource is not necessary.

D. Additional Improvements

We also worked towards allowing more parallel regions
besides decompression in two places: the functions that handle
git submodules in git-grep; and a code snippet inside the
producer-consumer critical section. Regarding the latter, we
moved an already thread-safe function call out of the men-
tioned critical section. Although small, this change brought
significant time reductions, even for the working three cases
of git-grep.
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E. Validating Correctness

To evaluate correctness, we used several different tests and
tools. The major being Git’s test suite, which contained seven
test files for git-grep, totalling 424 individual tests. Together
they covered about 96% of the code lines added in this work
(117 from 121).

The test suite successfully exposed problems originated
from incorrect refactoring and initial threading errors. How-
ever, it did not always report trickier synchronization prob-
lems. These only appeared with heavier loads, which are not
very suitable for the common test base, as they significantly
increase runtime. So when the most frequent race conditions
were fixed, we started testing with larger real-word reposito-
ries, such as Linux and Chromium, together with tools like
helgrind and memcheck. This was essential to find the
problem of duplicated entries in the delta base cache.

III. GCC CASE STUDY

The GNU Compiler Collections (GCC) is widely used
due to its matureness, reliability, performance, and extensions
provided to the C/C++ languages. Although LLVM compilers
are getting more attention from academics nowadays, GCC
still supports more hardware architectures.

Compiler parallelism has already been studied before [3],
[4], but these studies are rarely applied in realistic compilers.
More commonly, parallelism is achieved through Makefile
rules that allow the compilation of multiple files simultane-
ously. Additionally, GCC Link Time Optimization (LTO) also
employs parallel processing after the Whole Program Analysis
is complete through multiple processes, but is often slower
than the classical per-file compilation [5].

The discussion about reproducible builds is also beyond our
scope, and future studies are required for this subject.

A. Compiler Optimization

Profiling reports indicated that optimization was the most
time-consuming part. To understand how optimizations per-
form, we can break the set of all optimizations into two disjoint
subsets:

• Intra Procedural Analysis (IraPA) only uses information
found within the function. Example: vectorization.

• Inter Procedural Analysis (IPA) analyses how functions
interact with each other. Example: function call inlining.

Later, profiling showed that IraPA consumed 75% of com-
pilation time with gimple-match.c, a file generated from the
compilation of “match.pd”. This file was chosen for our tests
because it’s the largest in the GCC project, with 113207 lines,
and it evidences a bottleneck issue [6]. We are focused on files
of this magnitude, as they will benefit the most of our parallel
implementation. Later, we plan to evaluate the minimum file
size for which it is worth running the parallel version and
switch to the sequential code for smaller files.

In GCC, IraPA are performed on two distinct Intermedi-
ary Representations (IR): GIMPLE and RTL. GIMPLE is a
hardware-independent IR [7]. However, RTL is a hardware-
dependent representation that is as close as possible to the

hardware; resulting in specific code for each target architecture
GCC supports.

So, our primary focus was on parallelizing GIMPLE opti-
mizations using threads. We chose GIMPLE as it is hardware-
independent, improving every target supported by GCC and
because the community showed interest in this research. Our
results about GIMPLE can also be used to estimate the
improvement when RTL is also parallelized.

B. Improving Parallelization
We placed a producer-consumer queue between IPA and

IraPA to parallelize these optimizations, as previous works
on compiler parallelization [4]. Thus, when IPA finishes an-
alyzing, the threads can pop functions from this queue and
schedule them to optimize in parallel.

GCC was initially designed to compile entirely one function
at a time, and some data structures that requires replication for
each function were represented in a singleton. This choice was
made back in early GCC development, where computers had a
minimal amount of memory. However, This lack of structure
replication is painful when inserting parallelism into legacy
code. To fix these issues, we ensure that all GIMPLE op-
timizations were applied to every function before performing
RTL optimizations, and ensured that all automatic tests passed
before continuing. This ensured that a first set of singleton
structures were replicated.

After this queue was implemented and functions were com-
piled in parallel, several race conditions showed up. However,
these issues can be fixed with time and effort because IraPA
optimizations should not interact with other functions [8].

C. Memory Management
The first issue we tackled was memory management. GCC

uses memory pools to avoid repeated calls to malloc and
free, as well as to memory alignment to speed up ac-
cesses. Instead of protecting the linked-lists implementation,
we used a distributed approach where each thread has its
private pool. This strategy does not require locks and therefore
is significantly faster, but each pool becomes private to its
thread, resulting in another problem: data required later in the
compilation were lost when threads are joined. Therefore we
implemented a feature that merge the pools right before the
thread finalizes, but only executing when necessary. Finding
the required pools to be merged was not complicated due to
GCC extensive test suite.

Another memory-related issue was garbage collecting. GCC
has an internal garbage collector that collects unreferenced
objects when called. Currently, we serialized this feature using
a single mutex and disabled collection between optimization
passes, as the Garbage Collector global states must still be
mapped.

D. Validating Correctness
Our parallelization effort in GCC is a work in progress,

so there are still concurrency issues that must be solved. We
currently have 99.8% approval rate for gcc.dg’s testsuite (22
failures from 13183 test cases).
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Fig. 2: Timing results.

More complex synchronization errors were hard to detect
with the testsuite, so we used load tests together with syn-
chronization error detectors. However, there is a trade off:
increasing the input size helps exposing unusual errors, but it
also slows down the runtime, especially under debugging tools.
Additionally, to further increase the exposure of uncommon
errors, we manually forced extreme conditions in the code, by
introducing synchronization barriers right after each pass.

Currently, self-compilation of the C frontend is working;
but race conditions prevented libstdc++ from compiling. These
results encouraged us to try another approach to the same
problem, using processes instead of threads.

IV. RESULTS

Concerning the Git case study, the code changes proposed
in our work were applied to the upstream project and released
as part of Git version 2.26.0. The individual patches can
be seen at: https://patchwork.kernel.org/project/git/list/?series=
228919.

We present the timing results in Figure 2a, which contains
the mean elapsed times of git-grep in intervals with 95% of
confidence. This plot compares the execution times of the
original code to the code after our improvements. Note that
the original code did not allow threads for object store, but
we enabled them for comparison. All tests were performed
using the methodology described in Subsection II-B, using
the chromium repository for testing data and searching the
mentioned regex for C code. However, this time each test was
repeated 30 times after two warmup executions to populate
the caches.

From the observed results, we can conclude that the pro-
posed changes successfully increased git-grep performance in
the object store case. The speedup was up to 3.14× over the
original code and 4.5× over the threaded code without our im-
provements. Additionally, we saw a time reduction of almost
28% in the working tree case. With further investigations, we

discovered that this speedup came from the thread-safe code
that was moved out of the producer-consumer critical section.

Regarding the GCC case study, our approach produced
a preliminary speedup in GIMPLE up to 3.35× with eight
threads. It produces a speedup of up to 1.88× in the entire
compilation process when projected to all IraPA passes, as
illustrated in Figure 2b. We executed our experiments in the
same machine as the Git case, using the gimple-match.c file.

V. CHALLENGES

Git and GCC are both large projects with big codebases.
So it can take a while for new contributors to get reasonably
familiar with the code and its interfaces. Furthermore, tasks
such as parallelization usually involves going through many
call chains and analyzing the effect of the operations on global
states. Good knowledge of the code is indispensable in this
context. Therefore, studying the codebase was one of the first
significant challenges.

During the process, we also encountered difficulties regard-
ing the usage of techniques that are not thread-safe. The next
two subsections describe some of these techniques used in Git,
and the third describes a technique used in both Git and GCC.

A. Lazy Initializers

Lazy initializers prepare resources on demand, avoiding the
initialization of variables that will not be needed in a particular
execution. In comparison to preinitializing variables during
program startup, a drawback of lazy initializers is that they
must be protected if they might run in threaded sections.
Otherwise, two or more threads might try to initialize the
resource simultaneously, leading to data corruption.

Since some lazy initializers in Git were not used in threaded
code before, we had to protect them. But in two cases, where
the initializers were less accessible, we decided to execute
them eagerly before spawning threads, avoiding to add more
locks in the parallel sections. As previously mentioned, such
a technique can incur additional overhead in cases where the
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resources are not needed. To avoid this problem, we (1) only
perform eager initializations in multithreaded mode and (2)
try to evaluate, when possible, if the resource will be needed
before initializing it.

B. Function-Scope Static Variables

In the C language, function variables declared as static are
not destroyed when the function returns. Instead, they persist
throughout the whole execution. For this reason, they are often
used in Git as returning data, since it excuses callers from the
responsibility of releasing memory after using it. However, as
these variables are shared among threads, two parallel calls to
the function may corrupt the result of each other.

In git-grep, most of the function-scope static variables in
threaded code were placed in lower level functions; therefore
the higher-level object reading mutex already covered their
use. Nevertheless, we had to be careful in refining this mutex,
not to accidentally remove the protection around any function
call that uses such static variables.

There are also lockless solutions to this problem. When the
function-scope static variables are used solely to return data,
not to share values with other threads, the function might have
a separate variable for each thread (e.g., using Thread Local
Storage). This allows more parallel work, at the cost of higher
memory usage. In the case study, though, this strategy would
probably not have a significant impact, as the places were we
would apply it already required a lock, for other operations.
Furthermore, the major performance bottleneck was not in
these functions, but in the decompression calls.

C. Use of Global Variables in Different Abstraction Layers

The Git and the GCC codebases use some strategical global
variables to avoid passing down the same data in many
call stacks. Two examples are the Git the_repository
variable, which holds information from the repository being
operated, and the GCC cfun, which holds information about
the current function being compiled. Nevertheless, the use
of this kind of variable in different abstraction layers can
sometimes complicate the process of evaluating thread-safety:
one might erroneously think that a function is safe for not
using global states while, in fact, it calls another function that
does. Furthermore, this unsafe call may be deeper in the call
tree, making it harder to locate.

In Git, we manually scanned the call trees with assistance
from call graph generators to find and protect code paths
that would lead to data races. We also used ctags to
easily jump between symbols, and custom scripts to filter out
known protected paths from the call graphs. This approach
can be dangerous, as it relies on manual analysis, but we
sought to reduced the risk of leaving thread-unsafe operations
behind by using assistant tools and synchronization error
detectors. Another alternative might be using GCC with
plugins (https://gcc-python-plugin.readthedocs.io/en/latest/
working-with-c.html#finding-global-variables).

In GCC, some global variables did not have to be shared
among threads, so they could be made thread-local to avoid

race conditions. However, because of the size and age of the
project, finding the sources of all race conditions on other
global variables revealed to be very difficult. Therefore we
are now exploring the possibility of using processes instead
of threads, which drastically changes the problem of finding
race conditions into mapping which resources are required to
be shared (through mmap() and FIFOs). Besides speeding up
the development process, we also believe that this approach
substantially reduces the risk of having uncaught race condi-
tions in the final code.

VI. LESSONS LEARNED

A. Community support is crucial

First of all, we highlight the importance of community
interactions. The Git and GCC communities had a crucial role
in both the planning and development phases, collaboratively
proposing ideas and elaborating strategies with us. In some
cases, developers have directly contributed with code, or pro-
totyped concepts to test the effectiveness of the proposed plans.
Additionally, the rounds of code review also significantly
improved the quality and safety of our changes.

Finally, as part of the project was developed during Google
Summer of Code, we were also paired with more experienced
developers for direct mentorship. This kind of assistance is a
great way to engage newcomers and help them progress to
faster.

B. Take time to truly understand the bottleneck

Knowing what can and should be executed in parallel
is already a big step. This statement might seem obvious,
but it can be entirely overlooked in a rush to achieve bet-
ter performance. Not all time-consuming operations can be
parallelized, and not all parallelizable tasks will result in
noticeable performance improvements. So it is essential to
engage in a preparatory period to locate and understand the
hotspots and avoid spending time on unsustainable paths.
Furthermore, profiling tools, such as perf and gprof, can
be used to assist developers in this task. This preparatory
period might also include coding activity. Once the hotspots
are located, it is advisable to implement a couple of ”quick
and dirty” prototypes, to evaluate performance and feasibility.
This approach helps evaluate ideas early, by predicting what
speedup could be achieved through specific paths.

C. Threads are not the only way

When converting a sequential program to parallel, we typ-
ically first consider the use of threads, since data sharing and
synchronization are much easier to deal using threads than
subprocesses. However, when the original code has too many
global and thread-unsafe resources, adding threads can be
cumbersome, sometimes requiring a major code refactoring
before introducing parallelism. In this case, process paral-
lelization is an alternative to be considered, as the thread-
unsafe variables are kept independently by default, and the
programmer can manually and incrementally decide what is
going to be shared. This approach is what we are currently
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attempting in GCC. One of the downsides is the higher cost
for data sharing, as it relies on inter-process communication.
However, if communication is not so frequent, which is the
case in GCC, that drawback can have an acceptable impact.

D. Refine mutex granularity just enough

Both coarse-grained and fine-grained locking strategies have
their advantages and disadvantages. We usually achieve more
parallelism with finer-grained locks, but with the cost of higher
synchronization overhead. Additionally, the development is
more error-prone, as it is easier to forget the different locking
protocols before attempting to use the resources. Certainly, the
ideal granularity depends on the problem being parallelized.
Nevertheless, it is important to highlight that even small
changes to the locking granularity can sometimes produce
huge performance changes. This avoids the need of a much
larger code refactoring to change the locking strategy com-
pletely.

This could be very clearly observed in git-grep: the code
used to have a coarse-grained lock, protecting the whole object
reading machinery. We did not refactor the code to remove this
lock in favor of fine-grained ones. Instead, we refined it just
enough to allow running decompression locklessly. Since this
was the most time-consuming operation in object reading, the
change resulted in an significant speedup.

E. Keep in mind the alternatives for synchronization

Novice parallel developers might tend to stick with the more
obvious mutual exclusion locks to perform synchronization.
Though various alternatives might be more or less suitable for
each situation. For example, conditional variables, barriers,
monitors, and the many types of locks: spinlocks, read-
write locks, recursive locks, and others. In git-grep, the
conversion from a common mutex to a recursive one allowed
the lock refinement with fewer changes, as race sections in
different abstraction levels could be protected with the same
structure. Without a recursive lock, more extensive refactoring
would be required to achieve a similar result.

F. Prefer a distributive memory approach

If possible, it is even better to avoid using synchronization
mechanisms altogether. Try to find false dependencies and,
in such cases, opt for a distributive memory approach rather
than using mutexes. That strategy was used in the GCC
case when handling very frequent operations such as memory
managing through a memory pool. A centralized solution to
race conditions, protecting the pool with mutexes, slowed

down the compilation to the point that the speed test was
failing. By removing the need for synchronization with in-
dependent memory pools for each thread we significantly
improved our parallel implementation performance.

G. Complement a large test base with synchronization error
detectors and load tests

Tests are essential for any code change, especially in a large
refactoring, which is usually required for parallelization. Nev-
ertheless, some multithreading problems appear rarely or only
under specific circumstances, thus not being detected even by a
large test base. For instance, despite the high acceptance ratio,
GCC bootstrap was not working; and the duplicated cache
insertions in Git were only found with larger repositories.
This happens because test suites typically use small data,
both to be fast and to provide a controlled environment for
testing. However, this might not generate enough workload to
expose more complex threading errors. Therefore, we advise
complementing the test suite with load tests which make
threads work longer. Additionally, developers can temporarily
tweak the code to force extreme conditions that induce the
manifestation of synchronization errors. This can be done
adding barriers, disabling caches, etc.

Finally, we advise using synchronization error detectors –
such as ThreadSanitizer, Helgrind, and DRD – and
other debugging tools, as memcheck, which is particularly
useful to identify issues where a thread releases variables
required by other threads.
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