
InterSCSimulator:
Large-Scale Traffic Simulation in Smart Cities

using Erlang

Eduardo Felipe Zambom Santana1, Nelson Lago1, Fabio Kon1,
Dejan S. Milojicic2

1Department of Computer Science — University of São Paulo
2HP Laboratories — Palo Alto

{efzambom,lago,kon}@ime.usp.br,dejan.milojicic@hpe.com

Abstract. Large cities around the world face numerous challenges to
guarantee the quality of life of its citizens. A promising approach to
cope with these problems is the concept of Smart Cities, of which the
main idea is the use of Information and Communication Technologies
to improve city services. Being able to simulate the execution of Smart
Cities scenarios would be extremely beneficial for the advancement of
the field. Such a simulator, like many others, would need to represent a
large number of various agents (e.g. cars, hospitals, and gas pipelines).
One possible approach for doing this in a computer system is to use the
actor model as a programming paradigm so that each agent corresponds
to an actor. The Erlang programming language is based on the actor
model and is the most commonly used implementation of it. In this
paper, we present the first version of InterSCSimulator, an open-source,
extensible, large-scale Traffic Simulator for Smart Cities developed in
Erlang, capable of simulating millions of agents using a real map of a
large city. Future versions will be extended to address other Smart City
domains.

Keywords: Simulation, Smart Cities, Erlang, Actor Model, Scalability

1 Introduction

The growth of cities population around the world brought numerous challenges
to their management and operation, especially in big cities. These metropolises,
such as São Paulo, Rio de Janeiro, New York, Mexico City, and Tokyo, have to
deal with many problems in different areas such as traffic, air pollution, public
transportation, health, and education. One approach to tackling these problems
is the concept of Smart Cities [1] that proposes the use of Information and Com-
munication Technologies (ICT) to find solutions to deal with the city problems.

There are already some Smart Cities experiences around the world [2–4] with
initiatives in different domains. However, deploying a complete environment to
test Smart City Applications and Platforms is still a great challenge due to
costs and political issues. Moreover, current Smart Cities experiences have been

Published at the 18th Workshop on Multi-agent-based Simulation (MABS 2017)
May, 8 - 9 , 2017



2

deployed in small to medium cities. Deploying such infrastructure in a metropolis
such as São Paulo, with 11 million inhabitants, will be much more complicated.

The use of simulators can be a good alternative to support large-scale Smart
Cities tests and experiments. These tools can simulate different scenarios with
various solutions in many city domains such as traffic, public transportation, and
resource utilization. Two main challenges arise from the use of simulators. First,
the scale: to simulate an entire city, current tools demand high computational
power and a long time to simulate large scenarios. Second, the usability of the
tools is important because simulator users are not computer scientists. Hence, a
Smart City simulator must be both scalable and user-friendly.

To tackle these two main challenges, we are developing InterSCSimulator, an
agent-based Smart City simulator which offers a simple to use scenario defini-
tion with massive scalability. To achieve scalability, we used Erlang, a language
developed to ease the implementation of large-scale parallel and distributed ap-
plications. To offer good usability, we studied different simulators with similar
purposes such as MATSim [5] and Mezzo [6]. This paper presents the first version
of InterSCSimulator which is already able to simulate large-scale traffic scenar-
ios. Our experiments show that InterSCSimulator supports more than 4 million
vehicles in a single simulation using a real map of a large city: we already tried
the simulator using the maps of São Paulo, New York, and Paris.

Our simulator uses the concept of agents. In our traffic simulations, each
vehicle in the simulated city is an agent that can have different behaviors such
as start or stop moving, move in a defined path in the city graph, or change
its path. Erlang is widely used to implement multi-agent systems [14–16]. Its
programming model, called actor model, is very well-suited for this purpose. In
Erlang, each application thread is an actor that executes independently of the
rest of the application, and the Erlang Virtual Machine can efficiently create and
manage millions of actors.

This paper is organized as follows: Section 2 presents the requirements to
develop traffic simulations in Smart Cities. Section 3 compares InterSCSimulator
to other traffic simulators. Section 4 describes the Actor Model and the Erlang
language and relates it to the development of multi-agent applications. Section
5 presents the architecture and implementation of InterSCSimulator. Section
6 shows the simulator performance and usability evaluation. Finally, Section 7
addresses our conclusions and future work.

2 Requirements

To define the functional requirements for the initial version of our simulator, we
reviewed the literature on smart cities domains [2, 3] and Smart City simulators.
We then opted to begin by using traffic scenarios, which have many implemen-
tation challenges such as scalability and usability. To implement traffic scenarios
we found four essential functional requirements:

City Road Network: A Smart City simulator has to represent the city road
network in a model easy to manipulate algorithmically. A good approach is



3

to create a digraph based on the city map, which can be acquired from many
different services such as Open Street Maps (OSM)1 or Google Maps2. The
model used must allow large scale simulations with millions of vehicles.

Trips Definition: It is necessary to define all the trips that will be performed
during the simulation. To implement this we have two alternatives: creating
a tool to generate random trips or converting an origin-destination matrix
(when available) for the city we intend to simulate.

Vehicles Simulation: All traffic simulators must use a car model to calculate
the speed of the cars. There are many models available in the literature,
from the simple free model to complex models.

Output Generation: The simulator must generate different outputs to allow
the analysis of the results of the simulation. The most common approach is
to generate a file with all the events occurred in the simulation, allowing the
development of visualization and statistical tools.

Besides the functional requirements, a Smart City simulator also must meet
the following non-functional requirements:

Scalability: To simulate Smart City scenarios, it is necessary to manage mil-
lions of actors such as cars, people, buildings, and sensors. Therefore, the
simulator scenarios have to scale from hundreds to millions of actors. To
achieve this, distributed and parallel simulations are almost mandatory.

Usability: Creating descriptions of simulated scenarios for the simulator should
be easy, enabling people with no knowledge of the internal implementation of
the simulator to develop scenarios with little effort. Thus, the programming
model has to be intuitive and independent of the internal implementation of
the simulator.

Extensibility: It is unlikely that a simulator will provide all required features
for Smart City simulations. The simulator has to be easily extensible, offering
simple mechanisms for implementing new actors and changing their behav-
ior, for implementing new metrics, and for the modification of the behavior
of the simulator itself. So, it is important not only that the simulator be
open source, but also well documented and implemented with high quality,
extensible code.

3 Related Work

In our literature and Web searches for Smart City simulators, we did not find
any simulator that is capable of simulating large-scale and complex scenarios
with multiple actors such as cars, buildings, people, and sensors. We included
in this section software that simulates individual agents, such as cars or people,
and cites the development of large-scale simulations as one of its objectives.

1 Open Street Maps — http://www.openstreetmap.org
2 Google Maps — http://maps.google.com



4

DEUS (Discrete-Event Universal Simulator) is a discrete-event gen-
eral purpose simulator, which was used to simulate a Vehicular Ad-Hoc Network
(VANET) [7]. In this Java-based, open-source simulator, it is possible to extend
the base Node and Event model to implement particular actors to simulate en-
tities such as cars, buildings, people, and sensors. Due to its architecture and
non-parallel Java implementation, however, its scalability is weak, which we ver-
ified by experiments with almost 10 thousand nodes that we carried out.

Veins is a VANET simulator that integrates [8] OMNET++3, a well-known
discrete-event network simulator, and SUMO (Simulation of Urban Mobility)4, a
microscopic traffic simulator. In Veins, it is possible to simulate traffic scenarios
such as traffic jams and accidents. In our experience with it, it was difficult for
us to understand the code and architecture and running it in parallel mode was
not trivial.

Siafu is a Java agent-based, open-source simulator [9] used to simulate
mobile events in a city. The simulator has a user interface to visualize simulation
data and can export data sets. In Siafu, the agent creation is manual, so it is
more appropriate for small, simple scenarios that can be visualized via a simple
graphical representation of the city.

MATSim is also a Java agent-based, open-source simulator [5] that provides
a large variety of tools to aid in the development of traffic simulations such as an
Open Street Maps converter, a coordinate system converter, and a map editor.
Balmer et al. [10] show that MATSim can scale to almost 200 thousand agents.
However, due to its architecture and Java implementation as well as the lack
of a distributed implementation, it does not have the necessary scalability to
simulate an entire city.

Mezzo is a mesoscopic5 traffic simulation model suited for the development
of integrated meso-micro models [6]. Mezzo’s most important feature is the out-
put format, which allows easy construction of microscopic simulations after the
execution of the mesoscopic simulation. We have not found any information
about its implementation. However, tests presented in the paper describing it
show just small simulations.

Song et al. [19] implemented a mesoscopic traffic simulator using GPUs
(Graphical Processing Unit). Their objective is to use the great computational
power of GPUs to process large-scale traffic scenarios in high speed. The re-
sults showed a speedup of two times comparing a GPU and a C implementation.
However, they found two problems: the communication between the GPU and
the CPU is a bottleneck and, normally, the memory of GPUs is small. Both are
problems in the simulation of big scenarios.

None of the aforementioned simulators can scale to an entire metropolitan
area with a map with thousands of streets and millions of vehicles moving in the

3 OMNET++ — https://omnetpp.org
4 SUMO — http://sumo.dlr.de
5 Mesoscopic Traffic Models simulate each vehicle in transit, but with fewer details
than a microscopic model. They often use a density function to determine the vehi-
cle’s speed in a street.



5

city. All the simulators are implemented in Java or C++, languages in which the
development of parallel and distributed applications is not transparent. Hence,
the use of a language better suited for the simple development of parallel and
distributed applications can enable the development of very-large-scale traffic
simulators.

4 Actor Model

The Actor Model is a powerful model for the development of highly concurrent,
distributed software. In this model, each actor is a processing unit, and they can
communicate only using asynchronous messages. Each actor has a mailbox which
stores the messages until the actor processes them. After processing a message,
an actor can change its state, send other messages, or create new actors.

This model diminishes two great problems of concurrent systems: race con-
ditions, as the actors do not share state or resources, and blocking waits, as all
the messages between actors are asynchronous. Although the actor model is not
a new idea [20], this model is gaining popularity in the last years because of
multi-core architectures.

As with the implementation of concurrent applications, the development of
distributed software is also very straightforward because there is no difference
if two actors are executing in the same or different machines. The unique re-
quirement is that the language based on the Actor Model has to implement a
communication model that allows the message exchange of actors running on dif-
ferent machines. Currently, many languages are based on the actor model such
as Erlang and Scala [18], and many others have an actor implementation such
as Ruby6, and Java7.

4.1 Erlang

Erlang is a functional programming language based on the Actor Model devel-
oped mainly for the implementation of large-scale, distributed, parallel applica-
tions. It was created by Ericsson8 for use in the development of telecommuni-
cation applications. Currently, the language is used in various domains such as
Internet communication9, database systems [13], and simulators [12, 11].

Most of Erlang characteristics, inherited from the Actor Model, are suitable
for the development of large-scale simulators:

Parallelism: The Erlang Virtual Machine allows the creation of a massive num-
ber of system threads. In the Erlang programming model, each thread is an
actor that can execute functions independently and spontaneously or when
it receives a message from another actor.

6 Celluloid - https://celluloid.io/
7 Reactors.io - http://reactors.io/
8 Ericsson — https://www.ericsson.com/
9 WhatsApp - https://goo.gl/If6k3d



6

Distribution: In the Erlang actor model, it makes no difference whether two
actors that need to exchange messages are running on the same or different
machines. Therefore, the distribution of Erlang applications is very simple
and almost transparent to programmers. The unique requirement is the cre-
ation of a text file with all the machines where Erlang actors can be deployed.

Fault Tolerance: Each actor in Erlang is independent of the others; therefore
an error in an actor does not propagate to the rest of the application.

Communication Protocol: Erlang processes communicate only through mes-
sages, which is very useful in the development of parallel applications because
that minimizes the necessity of mutual exclusion algorithms.

The Erlang language is frequently used to implement multi-agent systems.
The actor model has many similarities with the idea of agents, such as commu-
nication mechanisms, multi-thread features, and fault-tolerance [14]. Moreover,
each actor can have many different actions triggered by an event that can be the
receiving of a message or a timeout. McCabe et al. [17] present a comparison of
nine languages used to develop multi-agent systems; Erlang had the third best
results, just after OpenMP and C++, but both are low-level languages, making
it harder to implement parallel and distributed simulators.

The main Erlang disadvantage for the implementation of a simulator is thread
synchronization: because each thread is independent of each other, it is impos-
sible to know the order of the thread execution. Therefore, it is necessary to
implement a mechanism to synchronize the execution of the actors. Another
problem is the scarcity of proper tools for the development of Erlang applica-
tions, such as Integrated Development Environments and testing tools.

In the development of InterSCSimulator, we used Sim-Diasca (Simulation of
Discrete Systems of All Scales) [12], a general purpose, discrete-event simulator
developed in France by the EDF energy company10 that has the goal of enabling
very large-scale simulations. This simulator is implemented in Erlang, allowing
the implementation of massively parallel and distributed simulations. Moreover,
Sim-Diasca has a simple programming model enabling fast development of sim-
ulation scenarios. Our experiments with Sim-Diasca demonstrated that it scales
much better and is much easier to use and extend that the other simulators
mentioned in Section 3.

5 InterSCSimulator

InterSCSimulator is an Open-Source, scalable, Smart City simulator that has the
objective of simulating various, complex, and large-scale Smart City scenarios.
This section presents the implementation of the first version of the simulator
that already simulates traffic scenarios with cars and buses. The simulator is
implemented on top of Sim-Diasca and has all the advantages mentioned above
related to the use of the Erlang language.

10 EDF — https://www.edf.fr/content/sim-diasca



7

Figure 1 presents the simulator architecture. The bottom layer is the Sim-
Diasca simulator, responsible for the discrete-event simulation activities such
as Time Management, Random Number Generation, Deployment Management,
and the Base Actor Models. The middle layer is the Smart City Model, which we
developed as part of our research and implements the required actors for traffic
simulations such as cars, buses, and the streets that represent the city graph.
The top layer comprises the scenarios that can be implemented using the Smart
City model.

Sim Diasca

Deployment 
Manager

Load Balancer
Result

Manager

Time Manager
Random
Manager

Base Actor
Model

InterSCSimulator

Vehicles City Network Sensors

Smart City Scenarios

Fig. 1. InterSCSimulator architecture

5.1 InterSCSimulator Components

The InterSCSimulator has four main components: the Scenario Definition that
receives the input files and creates the city graph and first vehicles; the Simula-
tion Engine that executes the simulation algorithms and models and generates
the simulation output; the Map Visualization that receives the simulation
output and creates a visual visualization of the city map and the movement of
the vehicles; finally, the Chart Visualization that also receives the simulation
output and generates a series of charts with information about the simulated sce-
nario. Figure 2 presents the components and their interactions with their inputs
and outputs.

5.2 Inputs

InterSCSimulator uses three XML files as inputs. The first, map.xml, is the
description of the network of a city. This file can be generated from a region



8

map.xml

trips.xml
events.xml

Map
Visualization

Charts
Visualization

Input

Outputconfig.xml

Simulation
Execution

Scenario
Definition

Fig. 2. InterSCSimulator Components

in Open Street Maps (OSM) using a tool that converts the OSM format to an
oriented graph using the Erlang’s Digraph API. We tested this tool with very
large maps such as the entire São Paulo metropolitan area that has more than
80 thousand nodes and 120 thousand links. Listing 1 presents an example of a
map file with 3 nodes and 3 links.

Listing 1. XML file with the city network

<network>
<nodes>

<node id ="1"
x="−46.65805" y="−23.58162" />
<node id ="2"
x="−46.65828" y="−23.58342" />
<node id ="3"
x="−46.65228" y="−23.59341" />

</ nodes>
<l i n k s>

<l i n k i d="35985" from="1" to="2"
length="100" f r e e sp e ed="40" />
<l i n k i d="35985" from="2" to="3"
length="200" f r e e sp e ed="40" />
<l i n k i d="35985" from="3" to="1"
length="80" f r e e sp e ed="50" />

</ l i n k s>
</ network>

The file is divided into two sections. The first section describes the nodes of
the graph which are street crossings in the city map; the second section contains
all the links which represent stretches of the city streets. Note that many links
can represent a single street.



9

The second XML file has all the trips that must be simulated. Each trip has
the origin and destination nodes in the graph and the simulation time when
the trip will start. Optionally, the trip can have a fixed path, mainly to simulate
buses, or it may be up to the simulator to calculate the best path from the origin
to the destination (using algorithms of the Erlang Digraph API11). Listing 2
presents a stretch of the trip file.

Listing 2. XML file with the trips to simulate

<scs imulator_matr ix>
<t r i p o r i g i n="247951669" d e s t i n a t i on="60641382"

type=" car " start_time="28801" />
<t r i p o r i g i n="60641382" d e s t i n a t i on="247951669"

type=" car " start_time="63001" />
<t r i p o r i g i n="4511105625" d e s t i n a t i on="2109902387"

type=" car " start_time="16201" />
<t r i p o r i g i n="247951669" d e s t i n a t i on="60641382"

type=" car " start_time="54001" />
<t r i p o r i g i n="246650787" d e s t i n a t i on="247951670"

type=" car " start_time="54001" />
<t r i p o r i g i n="247951670" d e s t i n a t i on="246650787"

type=" car " start_time="66601" />
<t r i p o r i g i n="246650787" d e s t i n a t i on="60641382"

type=" car " start_time="54001" />
</ scs imulator_matr ix>

Finally, the third file contains some important parameters to the simulation
such as the total time of the simulation, the path to the map and trip files, the
output file path, and the charts that have to be generated at the end of the
simulation.

With the three files loaded (map, trips, and configuration), a Simulation
Scenario is created. This component is responsible for the creation of all Erlang
actors necessary for the simulation. Each vehicle (car or bus) is an actor, and each
vertex of the city graph is also an actor that knows all its immediate neighbors.
The vehicles are active actors that periodically send messages to some city vertex;
these, in turn, are passive actors.

5.3 Simulation execution

In this first version of InterSCSimulator, the Vehicle actor is the main agent of
the simulation. This actor can be a car or a bus moving in the city from an origin
to a destination vertex in the city graph. Currently, we do not try to check if
a single car performs more than one trip throughout the simulation nor do we
try to handle individual passengers, which might use more than one Vehicle in a
single trip. This actor has four main behaviors: it may Start Travel, when the
simulation reaches the start time for the vehicle; Move, when the simulation
11 Erlang Digraph API — http://erlang.org/doc/man/digraph.html



10

reaches the time of the next movement for the vehicle; Wait, when the vehicle
has to wait until its next move action; and Finish Travel, when the car arrives
at its destination. One agent is created to simulate each trip in the trips input
file.

Another important actor is Street, which represents each vertex of the city
graph. This actor knows its neighbor nodes and the links that connect them. At
each movement, a car asks the vertex what is the link that it has to use to follow
in its path. The street actor answers with the link and the time the car will take
to cross the link. Then the car waits until its next movement. This distributed
model of the city graph and the fact that all message exchanges are local allow
the simulator to scale very well, as there is no central actor that manages the
city graph, which would be a bottleneck.

In this first version we use a very simple free-flow model to calculate the time
that a car will spend in a link: time = link_length/vehicle_speed. Each link
stores the number of cars that are in the street at each moment. If the number
of cars in the link is equal to its capacity, then no vehicle can enter the link until
at least one car leaves the street. If this happens, then there is a traffic jam in
the simulation. We already save the number of cars in the links in each moment
to allow the future development of more complex models.

InterSCSimulator can use any map collected from OSM. Figure 3 presents
an execution of the simulation using the map of São Paulo. This map has ap-
proximately 50 thousand vertices and 120 thousand links; in this simulation,
500 thousand trips with 250 thousand actors were used in a one-day simulation.
Each actor goes to work and goes back home at random times. In this graphic
visualization, we used OTFVis12, a visualization tool developed as part of the
MATSim project.

Fig. 3. Simulation execution over the São Paulo street map

12 OTFVis — http://matsim.org/docs/extensions/otfvis



11

5.4 Outputs

The InterSCSimulator generates an XML output file with all the events that
occurred during the simulation. We used the same format as MATSim, which
allows us to use OTFVis and other MATSim tools. Listing 3 presents a segment
of the output file with the events of two cars saved in an example simulation.
The events stored in the file are the same described in listing 2.

Listing 3. Simulation events file

<events version=" 1 .0 ">
<event time="4" type=" s t a r t_t r i p "
person="2121" l i n k="5243" legMode=" car "/>
<event time="4" type=" s t a r t_t r i p "
person="2223" l i n k="1002" legMode=" car "/>
<event time="11" type="move"
person="2223" l i n k="4005" />
<event time="31" type="move"
person="2121" l i n k="4005" />
<event time="38" type="move"
person="2223" l i n k="2007" />
<event time="52" type=" f i n i s h_ t r i p "
person="2121" l i n k="4005" />
<event time="52" type=" f i n i s h_ t r i p "
person="2223" l i n k="5243" />

</ events>

Besides the file, we also created a service that runs R scripts to make statisti-
cal analyses with the data generated at the end of the simulation. These scripts
produce a series of charts such as the most used links during the simulation and
the biggest trips of the simulation. Figure 4 shows a graph produced by these
scripts showing the ten most used links during a simulation.

6 InterSCSimulator Evaluation

To evaluate the simulator we tested mainly the scalability, which is our most
important feature in comparison to other simulators. We also present some re-
marks about the usability of the simulator, which is important because people
that will use this kind of simulator may not be computer specialists, such as city
and traffic managers and traffic engineers.

6.1 Scalability

To test the simulator scalability, we created a scenario based on an Origin-
Destination (OD) matrix produced by the subway company of São Paulo13. The

13 Origin-Destination Survey — https://goo.gl/DNM8in



12

Fig. 4. Top 10 Most Used Links During the Simulation

OD matrix has 170 thousand trips of people in the city, mainly going to or
coming back from work. We extrapolated the trip data in this matrix (by simple
replication) to create four different synthetic scenarios: 1 million, 2 million, 3
million, and 4 million trips. All the scenarios simulate an entire day in the city.
Most of the trips take place during the peak hours in the morning (07:00 to 09:00
am) and in the afternoon (05:00 to 07:00 pm).

The tests showed that the simulator scales almost linearly with the number
of agents. Figure 5 shows two charts, the first with the execution time of the four
scenarios (in minutes) and the second with the total amount of memory used
(in gigabytes) in the four scenarios. All scenarios were executed on a machine
with 24 cores and 200 GB of memory. It should be possible to run the same
simulations in a distributed system using a group of machines with more modest
resources each.

0

20

40

60

80

100

1 million 2 million 3 million 4 million

Time to Execute the Simulations 
(in Minutes)

0

50

100

150

200

1 million 2 million 3 million 4 million

Used Memory to Execute the 
Simulations (in GB)

Fig. 5. Execution time and memory used in the four scenarios



13

Very large simulations usually take many hours or days to complete very large
scenarios. With InterSCSimulator, we were able to complete all the four tested
scenarios in a comparatively short time: the first scenario simulation took just 22
minutes, the second 45 minutes, the third 70 minutes, and the fourth 95 minutes.
All scenarios simulated 24 hours of city traffic and the simulation time grows
linearly with the number of simulated agents. The second chart shows that the
memory usage growth was also almost linear in the four scenarios. Comparing
with the simulators presented in section 3, only the work of [19] has comparable
execution times.

Based on the data collected in the four scenarios, we used a linear regression
algorithm to estimate the necessary resources to simulate all of the city of São
Paulo, currently with 11 million inhabitants, which is our final goal. Table 1
compares the scenarios and shows estimations to simulate the entire city.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Estimation
Agents 1 million 2 million 3 million 4 million 11 million
Map Size (Nodes) 50.000 50.000 50.000 50.000 140.000
Memory 51 GB 98 GB 142 GB 196 GB TB 515 GB
Time (Minutes) 22 m 45 m 70 m 95m 480 m
Events 70 million 140 million 210 million 280 million 910 million
Output File Size 2 GB 4.1 GB 6 GB 8.3 GB 23 GB

Table 1. Simulated Scenarios and Estimation

The table compares the following characteristics:

Agents: The number of simulated agents in each scenario and the total number
of agents to simulate the entire city.

Map Size: The number of nodes in the city graph. In this version, we used just
the map of São Paulo, but to simulate all of the city it is also necessary to
include parts of the extended metropolitan area.

Memory: The maximum amount of memory used in the simulation and the
necessary memory estimated to simulate the entire city.

Events: The number of events that occurred during the simulations and the
estimated number of events to simulate the entire city. These events are
saved in the output file.

Output File Size: The final size of the file that stores all the simulation events
and the estimated size of the file to simulate the entire city.

This data suggests that, if the simulator indeed continues to scale linearly
to bigger scenarios, it will be possible to simulate the entire city. We also made
some preliminary distributed tests with the simulator on a basic machine. We
created three containers using Docker 9 in a machine with 6 cores and 16 GB of
memory. As mentioned in subsection 4.1, distribution is one of the main Erlang
characteristics, and it is very straightforward to execute distributed Erlang ap-
plications. Figure 6 compares the same simulation running using one, two, and



14

three containers. The chart shows that, as the number of containers grow, simu-
lation time decreases. We have to investigate further why this happens and also
what is the impact of communications among the containers in the simulation.

0

100

200

300

400

500

600

15000 30000 45000Ti
m

e 
to

 E
xe

cu
te

 t
h

e 
Si

m
u

la
ti

o
n

Number of Actors

Distributed Simulations

1 container

2 containers

3 containers

Fig. 6. Execution time of the distributed simulations

6.2 Usability and Extensibility

To verify usability, it is important to analyze how to create the Smart City
scenarios. We based our model on MATSim, which requires the creation of a
map, a trip, and a configuration file to create the simulation. The map file is
based on Open Street Maps, the trip files can be created manually or parsed
from an OD matrix, and the configuration file is very simple, with just some
options as the input and output folder and the total time of the simulation.
Both InterSCSimulator and MATSim provide tools for the creation of these
files.

Veins and DEUS have a similar way of defining scenarios using XML files
that describe the initial actors and their behavior, but they do not provide any
additional tool to facilitate the development of the scenarios. Siafu has a visual
interface to define the scenarios, which is good and easy when dealing with
small simulations but makes the creation of large simulations with many actors
impractical.

Also, extensibility is necessary to allow other researchers to change and add
simulation models. InterSCSimulator and DEUS have a very similar program-
ming model. Both provide a base class (Actor in Sim-Diasca and Node in DEUS)
that developers can extend to implement the simulation actors. MATSim has
many interfaces that new models can extend changing the behavior of the sim-
ulation. The Siafu programming model is a little different, and the programmer
has to understand all the code of the simulator to use it. In Veins, adding new
components to the simulator depends on changing OMNET++ and SUMO and
its communication. Therefore, InterSCSimulator, MATSim, and DEUS seem to
be more easily extensible than Siafu and Veins.



15

7 Conclusions

This paper described the development of InterSCSimulator, a simulator that
aims to advance the state of the art in the integrated simulation of Smart Cities,
offering scalability and a straightforward programming model. In this first ver-
sion of the simulator, we implemented actors for the simulation of traffic sce-
narios. The experiments showed that the simulator is scalable, a fundamental
requirement to simulate large traffic scenarios; it is reasonable to expect similar
performance in other domains. Compared to other simulators, InterSCSimulator
is also easy to use and makes it possible to generate charts and an animated
simulation with a GUI using the results of the simulations.

We also developed tools to aid in the creation of real scenarios such as an
Open Street Maps parser and a parser to read the São Paulo OD Matrix. In our
ongoing work, we are experimenting with larger scenarios, going up to the entire
vehicle fleet of an enormous city with 11 million inhabitants. To do that, we
need to execute the simulator both in larger machines with more cores and in a
distributed environment, exploring the parallelism supported by the Actor model
of Erlang. However, we anticipate that we will need to address several challenges
and bottlenecks before we can achieve that, such as the size of the output file,
the maximum number of supported actors in an Erlang virtual machine, and the
communication costs in distributed environments.

As future work, we intend to implement other Smart City scenarios such
as disaster management and smart grids. We also plan to make large-scale dis-
tributed simulations, since we only tested the distribution model of Erlang in
small scenarios. Finally, we plan to perform a functional evaluation with city of-
ficials and public policy makers to validate the simulated scenarios and improve
the simulator usability.

Acknowledgments. This research is part of the INCT of the Future Internet
for Smart Cities funded by CNPq, proc. 465446/2014-0, CAPES proc.
88887.136422/2017-00, and FAPESP, proc. 2014/50937-1 and was partially funded
by Hewlett Packard Enterprise (HPE).

References

1. Caragliu, A., Del Bo, C., Nijkamp, P.: Smart cities in Europe. Journal of urban
technology. 18, 65–82 (2011)

2. Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., Gutierrez,
V.,Pfisterer, D.: SmartSantander: IoT experimentation over a smart city testbed.
Computer Networks. 61, 217–238. (2014)

3. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for
smart cities. IEEE Internet of Things Journal. 1, 22–32 (2014)

4. Grimaldi, D., Fernandez, V.: The alignment of University curricula with the building
of a Smart City: A case study from Barcelona. Technological Forecasting and Social
Change. (2016)



16

5. Horni, A., Nagel, K., Axhausen, K. W.: The multi-agent transport simulation MAT-
Sim. Ubiquity. 9 (2016)

6. Burghout, W., Koutsopoulos, H. N., Andreasson, I.: A discrete-event mesoscopic
traffic simulation model for hybrid traffic simulation. IEEE Intelligent Transporta-
tion Systems Conference. (2006)

7. Picone, M., Amoretti, M., Zanichelli, F.: Simulating smart cities with DEUS. Inter-
national ICST Conference on Simulation Tools and Techniques. (2012)

8. Darus, M. Y., Bakar, K. A.: Congestion control algorithm in VANETs. World Ap-
plied Sciences Journal. 21, 1057–1061 (2013)

9. Nazário, D.C., Tromel, I.V.B., Dantas, M.A.R. and Todesco, J.L., 2014, June. To-
ward assessing quality of context parameters in a ubiquitous assisted environment.
IEEE Symposium on Computers and Communication (ISCC). (2014)

10. Balmer, M., Meister, K. and Nagel, K.: Agent-based simulation of travel demand:
Structure and computational performance of MATSim-T. ETH Zürich, IVT Institut
für Verkehrsplanung und Transportsysteme. (2008)

11. Toscano, L., D’Angelo, G., Marzolla, M.: Parallel discrete event simulation with Er-
lang. ACM SIGPLANWorkshop on Functional high-performance computing. (2012)

12. Song, T., Kaleshi, D., Zhou, R., Boudeville, O., Ma, J.X., Pelletier, A. and Haddadi,
I.: Performance evaluation of integrated smart energy solutions through large-scale
simulations. Smart Grid Communications. (2011)

13. Anderson, J.C., Lehnardt, J. Slater, N.: CouchDB: the definitive guide. O’Reilly
Media, Inc.(2010)

14. Di Stefano, A., Santoro, C.: eXAT: an Experimental Tool for Programming Multi-
Agent Systems in Erlang. WOA (2003)

15. Varela, C., Abalde, C., Castro, L. Gulias, J.: On modeling agent systems with
Erlang. ACM SIGPLAN Workshop on Erlang (2004)

16. Krzywicki, D., Stypka, J., Anielski, P., Turek, W., Byrski, A. Kisiel-Dorohinicki,
M.: Generation-free agent-based evolutionary computing. Procedia Computer Sci-
ence. 29, 1068–1077. (2014)

17. McCabe, S., Brearcliffe, D., Froncek, P., Hansen, M., Kane, V., Taghawi-Nejad, D.,
Axtell, R.: A Comparison of Languages and Frameworks for the Parallelization of
a Simple Agent Model. Multi-Agent-Based Simulation (MABS) Workshop. (2016)

18. Tasharofi, S., Dinges, P. and Johnson, R.E.: Why do Scala developers mix the actor
model with other concurrency models?. In European Conference on Object-Oriented
Programming. Springer Berlin Heidelberg. (2013)

19. Song, X., Xie, Z., Xu, Y., Tan, G., Tang, W., Bi, J. and Li, X.: Supporting real-
world network-oriented mesoscopic traffic simulation on GPU. Simulation Modelling
Practice and Theory, 74, pp.46–63. (2017)

20. Agha, G.A.: Actors: A model of concurrent computation in distributed systems.
Massachusetts Institute of Technology. (1985)


