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Abstract—Although public security is still one of the major
problems in most large cities, uninterrupted overt patrolling and
rapid police intervention have been identified as effective mech-
anisms to combat street theft and crime. However, several police
departments do not have access to technologies for reliable data
communication and workforce management to be notified about
occurrences and effectively respond to them. This paper presents
the design and evaluation of NeighborhOOd Patrolling (NOOP),
an open-source Internet of Mobile Things system for notifying
public security issues and increasing police patrol coverage. This
tool is being used as an initial version for the ‘“Seguranca Presente
5.0” overt patrolling initiative in the city of Rio de Janeiro, Brazil.

Index Terms—Smart Cities, Internet of Things, Public Security,
Police Patrol Coverage

I. INTRODUCTION

As concern for public security in cities grows, the demand
for smart city initiatives to tackle this issue also rises. For this
reason, there has been a surge in the number of proposals for
applications that use the Internet of Things (IoT) to prevent
crime and increase public security [1].

In areas where safety is a predominant problem, the popula-
tion may seek to be informed in real-time about possible risk
zones; thus, it is essential to provide mechanisms for citizens
to be notified about occurrences that happen close to them or
to where they live. There is already an initiative with this goal
from the Municipal Secretariat for Urban Safety in the city
of Sao Paulo, Brazil. In 2017, they launched an application to
facilitate access to information in real-time, allowing users to
warn each other about occurrences (e.g., lack of light, falling
trees, graffiti, or any other crime) [2].

One of the postulates of routine safety activity theory states
that crimes occur when a criminal finds a suitable target at a
time and a place where there is no adequate protection [3].
As such, patrols, consisting of police officers on foot or in
vehicles, can effectively prevent crime. Therefore, increasing
the distribution of patrols to expand the patrolled area can lead
to crime prevention.

In this paper, we discuss patrolling as a way for several
police units to monitor an area by traveling around it and
responding to occurrences together. It is the responsibility of
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these patrols to respond immediately to occurrences near their
location. The faster they arrive at the event as a group, the
more effective we can consider them. As a result, redirecting
units closer to the event shortens the response time and pre-
vents patrols in unfavorable positions from moving unneces-
sarily, leading to increased patrol effectiveness. In this case,
controlling the number of patrols that respond to a particular
occurrence would also prevent an excessive number of units
from being relocated, which could hinder the distribution of
patrols in the region.

For instance, consider a scenario where N patrols are al-
located to secure a region of a city, and that these units
are concentrated in the southern part of this region. In these
circumstances, the northern areas would be unprotected and,
therefore, more susceptible to crime. In this hypothetical situ-
ation, the response time for occurrences in the north would be
longer as patrols would take more time to arrive. From that,
it follows that if some of the N patrols were allocated to the
northern areas, this would reduce that part of the region’s sus-
ceptibility to crime and average response time to occurrences.

In this situation, we can consider that the closest patrols’
response time is usually shorter than all others. Furthermore, if
all patrols were to go to each new occurrence, there would be
a large amount of unnecessary movement. Also, many areas
would be empty, given that there is a limit on the number of
patrols needed to resolve an issue. Therefore, ideally, only the
patrols closest to the occurrence should respond to it.

Considering this context, the need for a service that in-
creases patrol coverage by efficiently allocating patrols in real-
time becomes apparent, given that it could shorten response
times to occurrences and possibly lead to safer cities. With
that in mind, we propose an open-source IoT service called
NeighborhOOd Patrolling (NOOP)! for incident reporting and
patrol allocation using the ContextNet middleware [5] and the
InterSCity platform [6]. NOOP enables users to register occur-
rences, notifies citizens and patrols about nearby occurrences,
and redistributes patrols based on real-time data about their
positioning.

The main contributions of this paper are: the design and
implementation of a flexible police force dispatch service that
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aims to increase patrol coverage by relocating units based on
real-time information; the evaluation of this system with simu-
lations that help us assess the impact that relocation strategies
can have on patrol coverage and unit response time; and the
evaluation of the system with scalability tests that verify the
performance of NOOP in situations with a large influx of
occurrences.

This text is organized as follows: Section II discusses related
work, Section III introduces the models we used for the sys-
tem and the patrolled regions, Section IV presents the overall
architecture of NOOP, Section V describes implementation
details, Section VI goes over the experimental setup and test
results, and Section VII gives our conclusions and possibilities
for future work.

II. RELATED WORK

In recent years, there has been much discussion related to
the topics of IoT and public security. In this section, we con-
sider some of the investigations that are more closely related
to our proposal.

Du and Zhu [7] list the main research venues and technolo-
gies behind alert and emergency management systems related
to urban public security. Their study calls attention to several
fundamental factors for good management, such as active deci-
sion making, having technologies that ensure the operation of
nodes and the network for a long time in hostile environments,
and data protection. Moreover, they conclude that systems that
operate in real-time increase the city’s ability to withstand
emergencies and reduce the damage caused by them, thus indi-
cating the effectiveness of platforms that are similar to NOOP.

NOOP has some of the essential technologies pointed out
by Du and Zhu, given that it makes active decisions for the
allocation of patrols and notification of occurrences, as well
as guarantees the proper operation of the network in hostile
environments by using the ContextNet middleware. However,
due to the simplicity of the current implementation, it offers
no data protection. Still, this feature could be supported by
modifying NOOP to use a version of the ContextNet protocol
MR-UDP with cryptography [8], and this is a significant im-
provement to include in future work.

Hochstetler, Hochstetler, and Fu [3] propose a patrol strat-
egy for smart cities to maximize the response capacity of
patrols in a scenario with limited resources (i.e., the number
of police officers and vehicles). In the same way as NOOP,
they start from the premise that the distribution of patrols can
suppress possible crimes. However, while their investigation
aims to design an optimal patrol distribution strategy, NOOP
focuses on presenting an effective IoT architecture for imple-
menting an allocation scheme based on the real-time location
of patrols. Given that their optimal distribution approach con-
siders the historical crime data in a particular region, we note
that NOOP could be used to collect this information.

An article by Dunnet, Leigh, and Jackson [9] with support
of the Leicestershire Police, UK, states that it is crucial that
police forces operate in a cost-efficient manner and that the
most efficient resources be allocated to respond to incidents.

Their proposed framework combines mapping and routing al-
gorithms to create a decision process to facilitate optimal pa-
trol selection for incident response. They tested and validated
their tool with simulations and noted that it reduced response
times and increased response unit availability.

Their process of dispatching patrols, much like NOOP, uses
information such as quickest response time, response unit
availability, and demanded coverage. On the other hand, they
also use data that NOOP does not currently consider, such
as predicted traffic conditions and driver qualifications. Con-
sidering that their work focuses on the dispatching method
and that they intend to use real-time data to improve their
algorithm in the future, we point out that NOOP could be used
in conjunction with their approach.

ITII. MODEL

This section presents our approach to modeling the regions
of the city and their occurrences, as well as the allocation
algorithms used in the current NOOP implementation. The
analysis and proposition of an optimal patrol allocation strat-
egy are outside the scope of this paper, so there may be more
efficient approaches for the region model and the allocation
algorithms described.

A. Region Model

NOOP considers that a region of the city is divided into
areas and that each area requires only one patrol unit. While
establishing this partition is essential for adopting this system,
the criteria used to define the areas are flexible and different
strategies can be easily implemented by simply modifying a
NOOP interface called CityArealnterface.

NOOP’s default region division is a square split into smaller
squares of equal size. The location of each area is defined
by orthogonal Cartesian axes whose origin coincides with the
region’s lower-left limit. The sides of the areas measure one
unit each, and the location of an area is defined as the center
of the square that represents it. The areas are numbered for
identification from left to right and from bottom to top, and the
number of squares into which the region is divided is flexible.

B. Occurrence Model

The occurrences have location and type. The notifier in-
forms both attributes, with the location being their geograph-
ical coordinates (latitude and longitude) and the type being a
measure of the severity of the occurrence, which will indicate
the maximum number of patrols required to resolve it (either 1,
2, or 3). The UK police forces have a similar classification [9].
Each notifier may only register occurrences in the same area
where they are at the time of notification.

C. Patrol Allocation Algorithms

The patrol allocation algorithms have two main functions:
CalculateNewPatrolArea and PatrolAllocation, which both re-
ceive a parameter with the list of patrols in operation.

CalculateNewPatrolArea returns the next area to be pa-
trolled by a unit. Therefore, every time a unit is about to start



a new patrol, the allocation algorithm uses this function to
assign it to an area. The algorithm can also check if there
are patrols that need to migrate from one area to another to
achieve a better distribution. It uses PatrolAllocation to obtain
the identification of a unit and the new area to which it should
be assigned.

Like the region model, the patrol allocation algorithm is
flexible and can be re-implemented through CityArealnterface,
which has the CalculateNewPatrolArea and PatrolAllocation
methods. In this subsection, we present three allocation ap-
proaches that we used to test NOOP, called Furthest Distance
(NOOP FD), Nearest Distance (NOOP ND), and Increase
Cover (NOOP IC). The following notation is used: d(z,y) is
the Euclidean distance between areas x and y, Zf;l d(z,1) is
the sum of the Euclidean distance from an area x to all other
areas in a region of N areas, and C(z) is the set of areas
covered by a patrol in area x.

1) NOOP FD: The CalculateNewPatrolArea function of
NOOP FD returns an area A for which the sum of the distances
to the patrolled areas is maximum. This area is furthest from
the patrols, so it is the area where the response time would be
the longest. Placing a patrol in this area greatly decreases the
response time to occurrences that might happen in or around
it. In the case of NOOP FD, the sum of these distances is
calculated for all areas that do not have a patrol, and the area
with the largest sum is chosen. Figure 1 illustrates a case where
patrols are placed in areas 6, 10, and 13. We see that A = 4
was chosen because d(4,6) +d(4, 10) +d(4, 13) is maximum.

(0,0)

Fig. 1. Selecting the area that is the farthest from the patrols.

The PatrolAllocation function of NOOP FD uses Calcu-
lateNewPatrolArea to find out which area is the furthest from
the patrols, selecting it as a possible new area to be pa-
trolled. This function then pre-selects a candidate Jgatrol for
the assignment if it is in an area x such that ) . , d(z,1)
is maximum (i.e., the patrol that would take the longest to
move to other areas). It then only moves the patrol from area
x to A if Zi\il d(x,1) > Zf\]:l d(A, ). Figure 2 shows an
example where there are patrols in areas 1 and 5 and we
need to verify if either of them can be assigned to area 15.
The patrol in area 1 was pre-selected for assignment because
Zivzl d(1,7) > Zi}vd(&z) It then was moved to area 15,

as S0, d(1,9) > S d(15,4).
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Fig. 2. The patrol in area 1 is pre-selected and moves to area 15.

2) NOOP ND: NOOP ND uses the same CalculateNewPa-
trolArea function as NOOP FD to both select the next area
to be patrolled and to pre-select, in the PatrolAllocation func-
tion, the target area of the assignment (A). Nevertheless, the
PatrolAllocation of NOOP ND pre-selects the patrol closest
to A as a candidate for migration in order to reduce the time
units spend moving between areas. If this patrol is in an area
x, the function chooses to perform the migration from z to A
it SN d(x,i) > 0N d(A, ).

3) NOOP IC: NOOP IC seeks to maximize the cardinality
of the set of areas covered by patrols. Areas covered by a
given patrol are the area where the patrol is located and the
ones that are adjacent to it. For example, in Figure 3, the
patrol positioned in area 11 is neighboring areas 6, 7, 8, 10,
12, 14, 15, and 16. Thus, these areas are part of C(11),
and the cardinality of the set is |C(11)] = 9. In NOOP IC,
the CalculateNewPatrolArea function returns the area A with
the lowest index that maximizes the cardinality of the set of
covered areas (area 6 in the example of the figure).
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Fig. 3. Selecting the area A that maximizes |C'(A4)|.

The NOOP IC PatrolAllocation function uses Calculate-
NewPatrolArea to determine which area would maximize the
cardinality of the set of covered areas if it had a patrol in
it and then selects this area as a possible next assignment.
The patrol whose migration maximizes the cardinality of the
set of areas covered by all patrols is pre-selected. Figure 4
shows an example where there are patrols in areas 5 and 16,
and we need to verify if one of them should be assigned to
area 6. In Scenario 1 (patrol in area 5 migration), we have
that C(6) + C(16) = 12 and in Scenario 2 (patrol in area 16



migration), C'(5)+C(6) = 9. Therefore, the patrol in area 5 is
pre-selected for moving. The cardinality of the set of covered
areas after the migration is then calculated, and if it is greater
than the set without the migration, the migration is performed.
In the example, |C'(6) + C(16)| > |C(5) + C(16)], so the
patrol moves from area 5 to 6.
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Fig. 4. The patrol in area 5 is pre-selected and moves to area 6.

IV. NOOP ARCHITECTURE

This section presents the architecture of the NOOP system
and the main technologies we used to develop it. Figure 5
illustrates a simplified version of this architecture, which is
composed of five main entities: NOOP Resident, NOOP Patrol,
ContextNet, NOOP Monitor, and InterSCity. NOOP Resident
and NOOP Patrol are distinct types of mobile users that can
dynamically connect and disconnect from the system. NOOP
Monitor is the service responsible for the notification of inci-
dents and patrol allocation. The ContextNet middleware per-
forms the communication between the mobile elements and the
service. NOOP Monitor records all activities on the InterSCity
platform.

NOOP ContextNet

Group Group
Gateway Definer || Definer |:
Patrol ||Resident] :

NOOP |«—s!
Patrol 1

| SDDL |

i [ NooP
: Monitor

Fig. 5. NOOP architecture.

A. ContextNet

The ContextNet project [5] aims to provide context services
for large-scale pervasive applications like online monitoring
and mobile entity coordination. Figure 5 shows the commu-
nication layer of ContextNet, which is implemented using
SDDL [10], and the other services and extensions that are built
as software modules on top of it. The figure also displays the
four services used in the implementation of NOOP: Gateway,
Group Definer Patrol, Group Definer Resident, and NOOP
Monitor.

The Gateway is responsible for defining connection points
with the mobile nodes, managing various mobile node connec-
tions, and sending messages from the nodes to the services and
from the services to the nodes. The communication between
the Gateway and the mobile nodes is done via a two-way MR-
UDP connection.

ContextNet’s architecture allows unicast, groupcast, and
broadcast communication between services and mobile nodes.
The Group Definer Patrol and Group Definer Resident services
are responsible for using context information to designate in
real-time the groups to which each Patrol and Resident node
belong, respectively, and then transmitting the composition of
these groups to the Gateway. With this definition in place, the
Gateway can address groupcast messages to the mobile nodes.

B. InterSCity

The InterSCity platform [6] is an open-source project de-
signed to give technical support to the development of smart
cities. Its main objective is to provide high-level services
and APIs to facilitate the development of new city services,
bringing together key technologies such as IoT, Big Data, and
cloud computing. InterSCity adopts a microservice-based ar-
chitecture created to handle the integration of large amounts of
devices and data, thus being able to provide scalable services
for entire cities.

The platform defines a city resource as a logical concept
that encapsulates a physical entity that is part of the city, such
as cars, buses, traffic lights, and light poles. Such resources
have functional capacities and attributes (e.g., location and
description), called capabilities. Table I has a description of the
capabilities of the three NOOP InterSCity resources: Patrol,
Resident, and Occurrence.

The state diagram of Figure 6 displays the possible values
for the Position capability of the Patrol resource and the events
that lead to each of them. Before starting, the Patrol is in
the “Request Area” state. Upon receiving an area from the
Monitor, it transitions to the “To Area” state and remains there
while moving to the area to which it was assigned. If it does
not receive any notification of an occurrence while moving to
the designated area, the Patrol transitions to the “On Area”
state and starts patrolling there. Otherwise, it transitions to the

“To Occurrence” state.
Area
Monitor. Monitor.
SendOccurrence

Patrol.OccurrenceSolved SendOesumen
Monitor.OccurrenceSolved el ccurrence

On To
Occurrence Occurrence

Fig. 6. State diagram for the Position capability of the Patrol resource.
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While in the “On Area” state, the Patrol may receive a
new area from the Monitor and transition back to the “To
Area” state. It may otherwise receive a notification about an
occurrence and transition to the “To Occurrence” state.



TABLE I
NOOP’S INTERSCITY CAPABILITIES AND RESOURCES.

Capability Resource Description

ArealD Patrol, Resident, Occurrence Area designated for a patrol or a resident’s domicile
OccurrencelD Patrol Identification of the event to which a patrol is assigned
Latitude/Longitude Patrol, Resident Element’s geographical coordinates

Position Patrol State of a patrol, see Figure 6

NotifierID Occurrence Identification of the element that reported the event
Situation Occurrence Situation, resolved or not, of the occurrence

Type Occurrence Type of occurrence

A Patrol remains in the “To Occurrence” state while moving
to the occurrence. If it does not receive any return orders from
the Monitor while moving, the Patrol transitions to the “On
Occurrence” state. If it receives a return order, it transitions
back to the “Request Area” state and starts a new patrol. A
Patrol transitions from “On Occurrence” to “Request Area”
when it resolves the occurrence to which it was assigned. As
all patrols notify the Monitor at each state transition, the Mon-
itor has enough information to allocate Patrols considering the
position of all Patrols in the system.

Finally, the InterSCity platform provides the history of the
resources registered in it over time and is therefore used to
register and store all NOOP resource activities. The records of
each InterSCity resource are updated whenever any capabili-
ties, except “Latitude” and “Longitude”, change. It also allows
real-time queries to this history, enabling activity analysis at
any time at which NOOP is operating. As the platform records
the values of each capability over time, it can be used to obtain
information about events such as registration of new residents
and patrols, assignment of patrols to areas, changes in the state
of patrols, which patrols responded to an occurrence, and the
notification and resolution of occurrences.

C. NOOP Components

Figure 7 shows the main interactions between the entities
that compose NOOP. The five types of components in the
system are city residents that operate entities called Resident,
patrols that operate entities called Patrol, a service called Mon-
itor, and two Group Definer services from ContextNet (one
for Patrols and another for Residents).

Group Definer Resident Monitor Patrol Group Definer
Resident Area Patrol
Patrol
Allocation | Area
Occurrence Occurrence
Location

Occurrence
Notification

(real time/ Location
Group pre-defined) (real time) Group
—— —_—
Defining Defining
Fig. 7. Diagram for the interaction of NOOP entities.

Each component has a different function. Residents move
freely around the region and periodically send their location

to Group Definer Resident, in addition to sending the location
of their homes and new occurrences to the Monitor. Patrols
periodically send their location to Group Definer Patrol and
send new occurrences, the state of old occurrences, and area
requests to the Monitor. Moreover, they move to new areas or
patrol inside areas indicated by the Monitor, as well as moving
to occurrences and resolving them. The Monitor recalculates
the areas patrolled by each Patrol from time to time to increase
the distribution of units across the region. It sends occurrence
state notifications to groups of Residents and Patrols, responds
to area requests made by the Patrols, ensures that no more
Patrols than necessary are sent to a particular occurrence, and
records events in InterSCity.

The figure also illustrates the exchange of “Area” messages
between a Patrol and the Monitor that occurs during the alloca-
tion of the Patrol. Before Patrols start patrolling, they request
an area to the Monitor. The Monitor receives the request,
calculates which area of the region is most unprotected from
the positioning of the other patrols, returns the area that should
be patrolled next, and records the Patrol in InterSCity. Once
the Patrol receives the assignment, it begins to move towards
the area and notifies the Monitor that it is on the move. When
the migration is complete, the Patrol notifies the Monitor that
it is in the designated area and begins patrolling. The Monitor
receives the notification and updates Patrol’s InterSCity record.

As occurrences happen, Patrols are displaced to respond to
them, which leaves some areas uncovered. To minimize this,
the Monitor uses the current patrol positioning to recalculate
periodically the areas that should be patrolled, notifies the
Patrols of their new assigned areas, and updates the Patrols’
records in InterSCity.

In NOOP, each area of the region represents a group, and
Patrols and Residents belong to the group of the area where
they are currently located. Furthermore, Residents also belong
to the group of the area in which they reside. As shown in
Figure 7, the Group Definer Patrol and the Group Definer
Resident receive as context information the location of the
Patrols and Residents, respectively. From this location, the
Group Definer uses the Region Model to define which areas
and groups each of the Patrols and Residents belong to, thus
enabling the Monitor to send groupcast messages.

Also in Figure 7, it is possible to see the exchange of
“Occurrence” messages between the Monitor and a Patrol or



Resident. At any time, Patrols and Residents can notify the
Monitor about an event by sending a “Occurrence” message
containing the location and type of the occurrence. If the noti-
fier is a Patrol, they begin to resolve the occurrence soon after
the notification. When the Monitor receives an occurrence, it
records it in InterSCity, uses its location to determine which
groups of Patrols and Residents should receive a notification
about it, and then notifies them. If the notifier is a Patrol, the
Monitor records that there is already a patrol resolving the
occurrence.

If a Patrol receives an occurrence report and is not already
resolving another occurrence, it begins to move towards it and
notifies the Monitor that they are on the move. The Monitor
receives the notification and checks whether there are enough
Patrols either on the way or already on the occurrence. If
there are, the Monitor gives an order for the Patrol to return.
The Patrol receives the return order and requests a new area
to the Monitor. When a Patrol arrives at an event, it notifies
the Monitor of its arrival. The Monitor receives the Patrol’s
position and updates the Patrol’s InterSCity record.

After a Patrol resolves an occurrence, it notifies the Monitor
that the occurrence has been resolved. The Monitor receives
the notification, updates the InterSCity incident record, and
then determines which Resident groups should receive a noti-
fication about the solution and notifies them. The notifications
are sent to all Residents who reside or who are momentarily
located in the same group as the occurrence and to Patrols
located in the same group or in groups neighboring the occur-
rence (i.e., Patrols in the areas neighboring the area in which
the occurrence is located).

If the Monitor knows about an occurrence but has not re-
ceived a notification saying that Patrols are responding to it,
it will forward the occurrence notification to all the Patrols. If
all patrols are busy at the time this second notification is sent,
the occurrence will go unanswered.

V. IMPLEMENTATION

This section provides details about the implementation of
NOOP’s components using the Java language. We considered
that: the communication channels are secure, there are no fail-
ures in the nodes, there is no loss or duplication of messages,
and there is no guarantee of finite delays or ordered message
delivery. Exploring these issues is left as future work.

All NOOP components use a library called noop-data that
contains the following classes: Area, which defines the at-
tributes and methods of an area; DataType, which enumerates
the types of system messages; Location, which defines the
attributes and methods of a location; NoopJASONData, which
standardizes the message content format; CityArealnterface,
which represents the city region according to the model de-
scribed in Section III; and PatrolPosition, which enumerates
the possible Patrol states.

Resident and Patrol are mobile nodes. All communication
between them and the Gateway is carried out with the help
of ClientLib. To do this, they must implement the NodeCon-
nectionListener interface, which contains methods for notifi-

cation of connection and disconnection to the Gateway, as
well as notification of the arrival of new messages sent by
the Gateway. Mobile nodes create a MrUdpNodeConnection
and place themselves as listeners to the Gateway to establish
a connection to the Gateway and send messages.

A Resident sends SendLocationTask to be executed by a
thread pool every five seconds, which sends their location
information to the Gateway. To simulate a citizen’s behavior,
two other threads, ResidentMoveTusk and SendOccurrence-
Task, are also scheduled to run every five and ten seconds,
respectively. ResidentMoveTask simulates the movement of the
citizen through the region following the model described in
Section I and SendOccurrenceTask simulates the observa-
tions of occurrences by the Resident with a certain probability
each time it is executed.

Patrol, like Resident, sends its location with a SendLo-
cationTask thread every five seconds. To simulate a patrol’s
behavior, SendOccurrencelask is also scheduled to run every
ten seconds. It simulates Patrol observations of occurrences
with a certain probability each time it is executed. Also, for
simulation purposes, we implemented the PatrolMove class,
which is used by Patrols to simulate the migration to areas
and occurrences following the model described in Section III.

The Monitor is the most complex component of the sys-
tem. It implements the UDIDataReaderListener interface that
contains methods for notifying the arrival of new messages
sent by the Gateway. The UniversalDDSLayerFactory class
is instantiated to create the connection to the Gateway and
send messages to it. To connect to InterSCity, the Connection-
InterSCity class is instantiated and becomes responsible for
sending requests and returning their results. The MonitorData
class is responsible for the formulation of the request syntax,
which is specific to NOOP. To periodically recalculate the
areas patrolled by each Patrol, the Monitor programs a Patrol-
AllocationTask thread to be executed every thirty seconds by
a thread pool. PatrolAllocationTask is responsible for running
the reallocation algorithm described in Section III.

Group Definer Resident and Group Definer Patrol instantiate
a GroupDefiner that connects to the Gateway and receives
the context messages. It also implements the GroupSelector
interface that is responsible for the algorithm that determines
the group composition. Both Group Definers have similar im-
plementations, diverging only in the determination algorithm
and the getGroupType, a GroupSelector interface method that
returns the group type.

VI. EXPERIMENTS

This section describes the experimental setup and results of
the tests we made to assess the effectiveness and scalability
of NOOP. Hardware test setup comprised one real computer
running one ContextNet Gateway in one process; two Group
Definers, each in a different process; and mobile nodes (Pa-
trols and Residents). The mobile nodes were simulated in a
Thread Pool, where each one was allocated in a thread and
scheduled to send simulated coordinates through MR-UDP to
the Gateway periodically.



A. Effectiveness Tests

This subsection describes the tests we performed to verify
the effectiveness of adding group reporting and a patrol allo-
cation algorithm to a patrolling system. We used the following
metrics: the average time between recording an occurrence and
all patrols arriving at its location (TimeAR); the average time
between recording an occurrence and the first patrol arriving
at its location (TimeFR); and the percentage of the time of op-
eration in which a patrol is effectively patrolling (EffePatrol),
that is, the time when a patrol is not on the move or resolving
an occurrence. It is important to evaluate both TimeAR and
EffePatrol as there are occurrences that need more than one
patrol to be solved, as explained in Section III-B.

1) Experimental Setup: We used the data from a study [11]
made by the Institute of Public Safety of Rio de Janeiro, Brazil,
to estimate the frequency of occurrences in a 16 km? neighbor-
hood in the South Zone of the city of Rio de Janeiro. Following
the numbers of this study, we simulated a frequency of eight
occurrences per hour, with four patrols running on all tests.

To compare the effectiveness of NOOP in different patrol
configurations, we tested two regions of different sizes, one
simulating 16 km? divided into 16 areas and another simulating
25km? divided into 25 areas. This last simulation represents
a scenario with a greater scarcity of resources than the first,
given that the same number of units patrols a larger area.
Each patrol and resident randomly move through the territory,
changing their direction every five seconds with a probability
of 50%. In all cases, we considered that the patrols and the
residents are moving to the occurrences on foot at 9 km/h.

We designed five scenarios: the first without using any
NOOP functionalities (WN), the second using group report-
ing (GR), the third using group reporting and NOOP FD
(GR+FD), the fourth using group reporting and NOOP ND
(GR+ND), and the fifth using group reporting and NOOP IC
(GR+IC). We analyzed all scenarios for the 16-area region
and, for simplicity, only WN, GR, and GR+IC for the 25-area
regions. We used the same set of fifteen different shifts (i.e.,
work periods) to test all scenarios. Each of these shifts has a
sequence of eight randomly generated occurrences, where each
occurrence consists of the area where it is located and its type.

2) Experimental Results: Figure 8 has examples of the
effectiveness test results we obtained for the average arrival
time of all patrols. As these times were simulated, we present
them as “time units” (t.u.).
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Fig. 8. Examples of tested scenarios for TimeAR (lower is better).

We can see that there are cases, such as 16-area Scenario 2
and 25-area Scenario 1, where adding group reporting by itself
or with an allocation algorithm improves TimeAR. However,
there are also cases, such as 16-area Scenario 1 and 25-area
Scenario 2, where WN presents better results.

When considering all tested 16-area scenarios, we observed
that in 68.33% of cases, GR outperformed WN, with GR+FD,
GR+ND, and GR+IC being faster than WN in 68.33%,
70.00%, and 78.33% of cases, respectively. For 25-area tests,
we see that GR and GR+IC presented better results than WN
in 57.98% and 89.08% of cases, respectively. Furthermore, we
point out that only 5.83%, 5.00%, 5.83%, 3.33%, 8.40%, and
0.84% of cases presented results that had response times over
twice that of WR for 16-area GR, GR+FD, GR+ND, and
GR+IC and 25-area GR and GR+IC, respectively.

Figure 9 shows the average results considering all tested
scenarios (i.e., fifteen shifts with eight occurrences each). We
see that for both 16 areas and 25 areas, TimeAR is, on average,
better when using one of the NOOP strategies than with WN.
Moreover, for 16 areas, GR, GR+FD, GR+ND, and GR+IC
decrease TimeAR to less than half when compared to WN in
32.50%, 44.17%, 46.67%, and 43.33% of cases, respectively,
while GR and GR+IC do the same in 15.13% and 52.10% of
cases, respectively.
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Fig. 9. Average time of patrol arrival (lower is better).

On the other hand, when we look only at TimeFR, we see
that on average WN presents the best results. Nevertheless, we
point out that using NOOP usually does not lead to a large
increase in this metric, given that in 56.67% (GR), 60.83%
(GR+FD), 65.00% (GR+ND), and 59.17% (GR+IC) of cases
for 16 areas and in 55.83% (GR) and 71.67% (GR+IC) of
cases for 25 areas, the value of TimeFR is up to 1.1x that of
the result for WN.

Figure 10 shows that using NOOP increased the EffePatrol
metric in all tested scenarios when compared to the WN
baseline. In particular, we highlight the case of GR+IC for
16 areas, which reached 52.64% of effective patrolling time
while WN presented only 13.87%. For the 25-area region,
EffePatrol for WN was 8.7% and we see that adding simply
GR or GR+IC more than triples the percentage of time that
patrols are in operation.
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B. Scalability Tests

This section describes the tests performed to check the
responsiveness of NOOP Monitor in the cases where there is
increased occurrence frequency, a scenario that can be made
possible if NOOP is widely adopted. The time interval between
the Monitor recording the occurrence and sending the message
to the patrol groups (dispatch) was used as a metric. In a
scenario where NOOP needs to handle a large amount of data,
the point of the system that would be stressed the most would
be the Monitor; thus, this is the main component that must be
tested to evaluate the scalability of the system. We note that in
order to verify the scalability of NOOP, the tested frequencies
are far above those seen in the real world.

1) Experimental Setup: For the scalability test, we analyzed
the following frequencies: 3,600, 7,200, 36,000, 72,000, and
720,000 occurrences per hour, that is, periods of 1,000, 500,
100, 50, and 5 milliseconds between occurrences, respectively.
We ran ten simulations for all periods, five with ten occur-
rences in a row, and five with 30 occurrences in a row. The
area’s size and the number of patrols do not interfere with this
metric, so they do not interfere with the test result. We used
the second scenario of the Effectiveness Tests (GR), which
only uses notification by groups.

2) Experimental Results: Figure 11 shows the results of
the scalability tests. The vertical axis shows the average time
interval between the occurrence record and the dispatch mea-
sured in milliseconds with the error bars indicating the stan-
dard error. The horizontal axis shows the occurrence periods
from 1000 to 5 ms, first with ten and then with 30 occurrence
messages. Each point corresponds to one test. We observed
that regardless of the frequency of occurrences, the process
takes between 100 and 200 milliseconds in almost all cases
except one outlier, which could have been caused by changes
in the network condition.
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Fig. 11. Scalability tests.

VII. CONCLUSIONS AND FUTURE WORK

Public security is an increasing societal concern, and, in
this context, we see that smart cities can provide citizens
with mechanisms that make them safer. Therefore, this paper
presents NOOP, an open-source system for incident reporting
and patrol allocation.

Our tests indicated that having such a system effectively
reduces the response time of occurrences and increases the ef-
fectiveness of patrolling. The tests also showed that the reallo-
cation algorithm should be elaborated according to the region’s
characteristics and size; therefore, they should be reassessed at
each implementation. The architecture of NOOP makes it easy
to test and implement such algorithms for each specific region.
In future investigations, it is possible to test and discuss the
best patrolling strategies and the best algorithms to implement
them, as well as other ways to model regions. Implementing
a queuing mechanism for unanswered occurrences is also a
possibility.

Moreover, group notification proved to be an essential fea-
ture, as it alone reduced response time and increased the effec-
tiveness of patrolling. Future work can test different compo-
sitions for the groups, taking into account, for example, other
context information when defining them. Such context infor-
mation could be captured by sensors integrated with the patrols
and sent through the smartphones already used in the NOOP
operation. The types of instruments and vehicles available to
the patrol are possibilities for this type of information.

Finally, the scalability tests demonstrated that NOOP could
be used in situations with very frequent occurrences, thus
being robust enough to act in real-world scenarios.
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