
Mobile Networks and Applications
https://doi.org/10.1007/s11036-020-01630-3

Neighborhood-aware Mobile Hub : An Edge Gateway with Leader
Election Mechanism for Internet of Mobile Things

Marcelino Silva1 · Ariel Teles2 · Rafael Lopes1 · Francisco Silva1 ·Davi Viana1 · LucianoCoutinho1 ·NishuGupta3 ·
Markus Endler4

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Internet of Things (IoT) is the interconnection of thousands of heterogeneous addressable smart objects (i.e., devices embed-
ded with sensors and actuators) with Internet connectivity. Internet of Mobile Things (IoMT) is characterized by considering
the mobility of smart objects. For managing smart objects, it is necessary to provide a middleware. Mobile Hub (M-Hub) is an
IoT middleware that collects, processes and distributes data from a large number of smart objects on the edge of the network.
M-Hub runs on mobile devices, enabling them to be gateways. It represents an autonomous entity, able to detect a set of
objects available in the neighborhood and to monitor them independently of other M-Hubs. Hence, in some situations it may
happen that a same object is eligible to be monitored by several M-Hubs. In this context, this paper proposes Neighborhood-
aware M-Hub (NAM-Hub), a leader election mechanism integrated to the M-Hub to determine a suitable gateway for each
smart object discovered opportunistically. It considers context data gathered from the mobile device to dynamically elect
leaders (i.e., a leader and a sub-leader). The proposed solution contributes to take advantage from the resources provided for
the mobile gateway and avoids their wastage. The proposed leader election mechanism was tested and evaluated considering
its performance and the results were promising, with short detection time and recovery time in the system.

Keywords Internet of mobile things · Middleware · Leader election · Mobile smart objects

1 Introduction

Internet of Things (IoT) can be defined as the interaction
of technologies from different areas, such as ubiquitous
computing, context awareness, communication protocols
and technologies and computing devices with embedded
sensors and actuators, also known as smart objects [8]. The
interconnection of thousands of heterogeneous addressable
objects with network connectivity allows them to collect
and share data about the environment where they are
located. These objects can be used to provide services
in a variety of contexts [7, 27], such as public and

� Ariel Teles
ariel.teles@ifma.edu.br

1 Federal University of Maranhão, MA, Brazil

2 Federal Institute of Maranhão, MA, Brazil

3 Vaagdevi College of Engineering, Warangal, India

4 Pontifı́cia Universidade Católica do Rio de Janeiro, RJ, Brazil

private transportation management, power management and
consumption, healthcare, public spaces for entertainment
and social activities.

Due to memory and processing constraints, some smart
objects do not have connectivity to medium and long
range networks. They do not implement a Transfer Control
Protocol/Internet Protocol (TCP/IP) stack. As a result, they
cannot access the Internet through their own resources [15].
Additionally, IPv6 does not solve all issues present in the
IoT environments [7], because management, addressing and
routing are its major challenges. IP-based protocols are
not supported by the vast majority of smart objects and
their services are not suitable for most IoT applications.
The reason is that IP-based protocols are intrinsically
designed for intensive work cycles, large data flows and
reliability while IoT communications involve small and
frequent messages. In IoT communications, each message
individually is not much important but the corresponding
data flows carry relevant pieces of information [15].
Otherwise, smart objects are able to send their context data
to an edge gateway [28], using short-range communication
technologies such as Bluetooth and ZigBee. Upon receiving

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-020-01630-3&domain=pdf
http://orcid.org/0000-0002-0840-3870
mailto: ariel.teles@ifma.edu.br

Mobile Netw Appl

this data, the gateway is in charge of aggregating and
filtering it, performing data fusion and forwarding useful
information to the Internet, usually to the cloud side of
the application [40]. Moreover, there is a trend to push the
artificial intelligence (AI) frontier from the cloud to the
network edge. Thus, AI techniques can be embedded in the
gateway to generate knowledge [46, 48].

An IoT paradigm extension is the so-called Internet of
Mobile Things (IoMT) [31, 39], which conceive situations
where smart objects and IoT gateways can move or be
moved with greater flexibility. Wearable and portable
devices, robots and vehicles are some examples of moving
objects. In IoMT scenarios, personal smartphones and
tablets can act as mobile edge gateway, promoting discovery
and opportunistic connections with smart objects around
them.

Mobile Hub (M-Hub) [44] is a general-purpose mid-
dleware service that enables conventional mobile personal
device (i.e., Android smartphones and tablets) to become
propagator nodes (i.e., mobile edge gateways) for data pro-
duced by smart objects, either stationary or mobile (M-Obj).
These objects are usually provided only with short-range
wireless network interfaces. By considering this limitation,
M-Hub opportunistically discovers, registers and enables
communication to M-Objs.

M-Hub represents an autonomous edge gateway able
to detect the presence of a set of objects available in its
proximity and monitor them independently of other M-
Hubs in its neighborhood. However, such condition can
lead to wastage of communication, processing and energy
resources since the same set of objects might be monitored
by several M-Hubs. Hence, a M-Hub may be overwhelmed
by being responsible for a large number of objects compared
to other ones available in the environment.

To illustrate the problem addressed in this research,
we define a scenario of mobile crowdsensing [22] in a
smart city [41]. In such a scenario, individuals collectively
share data and extract information to measure and map
the phenomena of common interest [33]. Moreover, there
may be concentrations of hundreds of devices at the same
geographical area. Consequently, there might be a high
density of M-Hubs and M-Objs establishing connections
and forwarding data. For instance, people in a park with
sensors in wearable devices sharing data in a paradigm of
participatory or opportunistic sensing [32], and smartphones
of pedestrians/bikers playing the role of M-Hubs. This is
an example in which there can be more than one M-Hub
monitoring the same M-Obj and at the same time, devices
acting as M-Hub and M-Obj, both mobile.

By considering such situations, this paper proposes a
mechanism that embeds a leader election algorithm into
the M-Hub. This new version of the M-Hub is named
Neighborhood-aware M-Hub (NAM-Hub). Proposed method

enables the communication and negotiation between a group
of co-located M-Hubs (i.e., its neighborhood) to determine
the most suitable mobile edge gateways available in the
IoMT environment for each opportunistically discovered
smart object. The contribution of this paper is threefold:
(1) we propose and describe the NAM-Hub. The NAM-Hub
is an improvement of M-Hub that provides communication
between co-located M-Hubs to orchestrate their actions; (2)
we illustrate a test scenario to demonstrate the feasibility of
practical use; and (3) we show results from a performance
evaluation performed with the proposed solution regarding
detection time and recovery time.

The remainder of this paper is structured as follows.
Section 2 presents the original version of the M-Hub,
details our research problematic, and discusses related
works. In Section 3, we describe the proposed leader
election mechanism, while in Section 4 we provide a
practical demonstration in testing the NAM-Hub for IoMT
applications. Section 5 shows the results obtained from
experiments performed to evaluate the performance of the
proposed mechanism. In Section 6, we discuss the proposed
solution. At the end, Section 7 contains the conclusion and
future research.

2 Background

2.1 TheMobile Hub

The knowledge about the concepts and functioning of
the M-Hub components is fundamental to understand the
solution proposed in this work. M-Hub is a general-purpose
middleware service, executed in conventional personal
mobile devices (e.g., smartphones, tablets) as a background
application, allowing them to become IoMT edge gateways.
M-Hub can discover, register, and enable unicast, broadcast
and group-cast mode communication with many types
of M-Objs through the Scalable Data Distribution Layer
(SDDL) [16, 19] or the Context Data Distribution Layer
(CDDL) [25] middleware solutions. The main components
of the M-Hub are shown in Fig. 1, which is described next.

Short-Range Sensor, Presence and Actuation (S2PA) is
responsible for the discovery, connection and communica-
tion with M-Objs. This component defines an Application
Programming Interface (API) that provides an abstraction
for communication with M-Objs that have short-range wire-
less network interfaces. For the exchange of data with smart
objects, use of an object driver is required which is usually
provided by the manufacturer. Location Service is respon-
sible for registering the current position of the M-Hub and
attaching it to messages transmitted to the cloud or other M-
Hubs. Connection Service is implemented in two versions.
The first one using ClientLib, a library that provides direct,

Mobile Netw Appl

Fig. 1 M-Hub Architecture

group and publish-subscribe communication paradigms for
mobile nodes. It extends the Mobile Reliable UDP (MR-
UDP) protocol [16] with mobility-tolerating features such
as handover and Firewall/NAT transversal. The second one,
as a Micro Broker of the CDDL [25], a soft version of
a MQTT broker. Mobile Event Processing Agent (MEPA)
service allows continuous analysis of data flow originated
from smart objects to identify patterns of interest which can
be defined by the mobile application. MEPA uses Complex
Event Processing (CEP) [14] implemented with Esper [1]
to process event flows in real time and find patterns through
rules.

The device’s energy level (classified as low, medium,
high) influences the frequency and duration of actions
performed by all the aforementioned components. This is
set by the Energy Manager component, which collects
samples of the mobile device’s battery level and checks if it
is connected to a power source.

Regarding Wireless Personal Area Networks (WPANs),
M-Hub supports connections with smart objects via
Bluetooth Classic (2.0 and 3.0) and Bluetooth Low Energy
(BLE 4.0). Despite higher power consumption, Bluetooth
Classic is still used by a wide variety of IoT devices [43],
including healthcare such as Zephyr BioHarness 3 and

Zephyr HxM [6]. BLE is emerging as a very promising
technology because it is more energy-efficient and also
enables fast discovery of peripheral devices. In addition,
BLE supports about 2,500 concurrent connections; it is
available in a growing number of smartphone models and is
being incorporated into a growing variety of IoT [43] and
wearable devices, such as Mi Band [4].

2.2 Problem Statement

Essentially, the IoMT paradigm considers any situation in
which the relative position and speed among M-Objs and
M-Hubs are variable and can change anytime. The variation
of the device’s position in the environment allows M-
Objs to be simultaneously discovered by different M-Hubs.
Therefore, IoMT encompasses mobility scenarios in which:

1. Smart objects are intentionally deployed in a stationary
way and the M-Hub is mobile and can opportunistically
interact with them;

2. M-Objs are mobile or attached to a mobile stuff (e.g.,
wearable devices, clothes, vehicles), while the M-Hub
is purposely linked to a stationary environment;

3. M-Objs and M-Hub are both mobile.

Mobile Netw Appl

In that last scenario, a M-Obj can establish a connection
with a M-Hub by being co-localized or in co-movement for
a certain period of time. These IoMT scenarios in which
objects and edge gateways are essentially mobile, motivates
the use of portable devices as natural candidates to act as
edge gateways too.

The problem addressed in this paper involves the coordi-
nation of a group of co-located independent mobile devices
(i.e., the neighborhood) to determine the most suitable edge
gateways (i.e., a leader and a sub-leader) available in the
IoMT environment for each smart object discovered oppor-
tunistically. The approach relies on avoiding overloading
a M-Hub by monitoring various smart objects while other
ones are also available to become a mobile edge gateway in
the environment. Moreover, when using Bluetooth Classic
an object may have more than one gateway, so the pro-
posed solution avoids the redundancy of data collected from
different smart objects by the same mobile edge gateways
and, consequently, minimizing the consumption of com-
munication, processing and energy resources of the mobile
device [12].

2.3 RelatedWork

Election in distributed computing systems is a traditional
topic of research [23], including proposals for mobile
networks [45], but it is still one of the important
problems faced by those systems [24], since paradigms
(e.g., IoT and IoMT) with new requirements have been
emerging (e.g., cluster head election in WSNs [18, 35]
and MANETs [42]). Although there are several proposals
for different application scenarios, in this section we focus
on describing related works that proposed leader election
mechanisms that can be applied to IoT.

Zhang et al. [47] initially showed why some traditional
leader election methods cannot be originally used in IoT due
to dynamic nature of things. They also proposed a leader
election method to select nodes to coordinate other ones
in IoT environments. The method performs the selection
based on classification of nodes according to their features
(e.g., ability of being identified or self-coordination) and
weights attributed to these ones. Fernández-Campusano
et al. [21] introduced a leader election algorithm for
partially synchronous systems based on a punishment which
is calculated for every candidate based on failures and
disconnections.

De Masi [36] introduced a peer-to-peer load balancing
scheme to distribute tasks to be processed by the leader in
a smartphone cluster, a solution called LoadIoT. In a group
of peer mobile smart devices, LoadIoT periodically elects a
leader by using a list of input parameters such as residual
energy (i.e., percentage of remaining energy), battery status
(e.g., loading, discharging, critical), processing load, and

number of running tasks. Drãgan et al. [17] proposed
approaches to elect leaders in opportunistic networks in
which each node announces its application that is used by
interested receiver nodes to calculate a score. The node
with the highest score becomes the leader. To define the
score, the solution uses different characteristics such as
trust, centrality, contact probability, and latency.

Bounceur et al. [9, 10] proposed the BROGO algorithms
for leader election in wireless sensor and IoT networks.
The proposal works with asynchronous networks without
making any assumption on the topology and they require
a root node (i.e., an initial reference node) to create a list
of leaders. Faika et al. [20] presented a solution applied
to battery management systems in which a leader election
algorithm is proposed to select a battery module (i.e., the
leader) that is in-charge of collecting the data from all other
modules to know the overall status of the battery pack.

As turns out from the above, several parameters were
used to determine the most suitable leader in the scenarios
explored in each one of these described works. In addition,
they contribute to different types of scenarios with specific
requirements. However, despite the variety of functionalities
presented by the analyzed solutions, they were not designed
for providing capabilities that enable the election of
leaders and sub-leaders considering characteristics of IoMT
environments, as described in Section 2.2.

3 The Neighborhood-aware M-Hub

Our solution is an extension of the M-Hub, which is
named Neighborhood-aware M-Hub (NAM-Hub). It aims
at providing communication between co-located M-Hubs
to coordinate their actions to optimize the gathering and
distribution of data produced by M-Objs. NAM-Hub has
a communication and coordination mechanism that imple-
ments a leader election distributed algorithm for selecting
the most suitable leader M-Hubs based on a set of param-
eters related to their available computational resources
and the wireless network signal strength with M-Objs.

3.1 Architecture

The architecture (Fig. 2) contains the proposed components
for supporting the communication and coordination of
M-Objs. The M-Hub original version has already been
discussed in Section 2 and we detail here the new
infrastructure components of the proposed solution.

– Object Container is a repository of objects discovered
by the M-Hub. This module manages objects by
updating data of an object that is already present in
the container and inserting new ones if they are not

Mobile Netw Appl

Fig. 2 NAM-Hub Architecture

in the container. This component is also responsible
for removing those objects whose data has not been
received for a certain period of time (default time is
5 seconds) which implies that the M-Hub is no longer
in the transmission area of an object in particular. It is
important to note that new components proposed for the
M-Hub are implemented as new software layers. For
this reason, the original version of the M-Hub remains
unchanged and all communications from it to the
Object Container component are made via predefined
interface;

– Leader Election is a module composed by several
components that interact to allow the M-Hub to reach
a decision about whether or not to participate in a
leader election process and if it should start a process
based on the current state of the system. The core
of this module is the leader election algorithm. This
module is responsible for performing actions such as
requesting mobile device information from the Device
Manager component and combining it with the object
data to perform the calculation of the Score (described
in Section 3.3) and communication with other M-
Hubs via Communication Interface component using
predefined messages (described in Section 3.4). In
addition, it verifies if the Object Container has the
objects contained in the messages exchanged with other
M-Hubs;

– Device Manager provides information from the mobile
device (e.g., battery remains, CPU load) where the

M-Hub is running. The device manager aims to send
data to the Leader Election module. Such data contains
the parameters needed to calculate the Score used to
define the leader during the election process;

– Communication Interface allows a M-Hub to commu-
nicate with other ones by exchanging a set of messages.
Communication between M-Hubs is currently accom-
plished only through WiFi networks. This component is
extensible to have added other communication channels
in future developments.

3.2 Component Interactions

The interaction between architecture components is illus-
trated in the sequence diagram in Fig. 3.

Firstly, S2PA component, which belongs to the M-
Hub original version (see Section 2.1), initializes the
implemented technologies (i.e., Bluetooth technology).
Then it starts to periodically trigger the M-Objs discovery
process. It defines some basic methods and interfaces that
should implement: 1) M-Obj discovery and connection; 2)
discovery of services provided by each M-Obj; 3) reading
and writing of service attributes (e.g., sensor values, actuator
commands); and 4) notifications about disconnections of
M-Objs. When a M-Hub receives a message from a M-
Obj, S2PA extracts the information, such as the Universally
Unique Identifier (UUID) and the Received Signal Strength
Indicator (RSSI), and sends it to the Object Container
(Step 1. - method sensorData()), which adds or updates
the M-Obj information (Step 2. - method addOrUpdate())
in the container. Leader Election module periodically
analyzes the objects contained in the Object Container
(Step 3. - method analizeSensorData(listening)). Hence,
it can decide which message should be transmitted to
another M-Hub nearby (Step 4. - method checkLeader(M-
HubID)). When it is required to calculate the Score for
a new election process, Device Manager is requested
and it sends device information (e.g., battery level and
CPU load) to the Leader Election (Step 5. - method
checkDeviceStatus()). Finally, messages are transmitted and
received by the Communication Interface (Step 6. - method
sendBroadcast(M-HubID, M-ObjIDs)).

3.3 Assumptions

Some assumptions are taken into account by the proposed
solution. Fundamentally, M-Hubs must communicate by
exchanging messages with each other. Regarding time, a
partially synchronous system is assumed (i.e., there are
upper limits on processing time and delay of message
communication). Additionally, we consider the following
assumptions about the nodes and the system architecture:

Mobile Netw Appl

Fig. 3 Component interactions in the NAM-Hub

– Unique Node IDs: all nodes have unique identifiers.
They are used to identify participants (either M-Hub
nodes or smart objects) during the election process;

– Score: each node has an associated priority value: the
Score. The priority of a node indicates its attractiveness
to become a leader and considers performance-
related attributes such as battery level, computational
capacities, and wireless network signal strength;

– Heterogeneous: nodes (M-Hubs and M-Objs) can
be heterogeneous in relation to performance-related
attributes and can be stationary and mobile (that is, M-
Objs). Regarding the M-Hub, its performance-related
configurations may vary because it runs on con-
ventional personal mobile devices (e.g., smartphones,
tablets) of different manufacturers and models. Like-
wise, M-Obj specifications may vary however they
usually “may possess means to sense physical phenom-
ena (e.g., temperature, light, electromagnetic radiation
level) or to trigger actions having an effect on the
physical reality (actuators)” [38];

– Connectivity: all M-Hubs are connected to a bidirec-
tional communication link, the same wireless network,
and communicate with each other via SDDL or CDDL.
M-Objs are connected to M-Hubs using short-range
communication technologies (Bluetooth Classic and
BLE);

– Mobility: the mobility of nodes may result in arbi-
trary topologies, including partitioning and grouping.
In addition, nodes and objects may fail at any time.

Failures may be caused by: (1) communication prob-
lems (e.g., disconnection, weak or intermittent wireless
connectivity), and (2) hardware components (i.e., com-
munication antenna defects, power outages that cause
shutdown). Faults may be permanent but M-Hubs and
objects can also recover from a failure.

3.4 Description of Leader Election Process

There are three types of distributed messages used to
execute the leader election process. They are described
below.

– ELECTION: message is used for two purposes: to
inform the start (ES) of a new leader election process
and to reply (ER) an ES message. The ES message
has two parameters: MHubID, a UUID string generated
each time the M-Hub application starts; and MObjList,
a list that contains the M-Obj identifier (MObjID). ER

has an additional parameter: the M-Hub Score for each
M-Obj;

– ALIVE: message sent by the leader node at predefined
time intervals thereby detecting if the leader node has
failed or lost connection with objects. It is also used to
inform other M-Hubs who are the new leaders. It has the
following parameter: ListOfLeaders, a list containing
the identifier of the M-Objs and their respective leaders;

– PENDING: message used to request information about
the leader. It is also directed to a particular leader of

Mobile Netw Appl

a given object or set of objects to request responses
through ALIVE messages that may not have been
received.

The algorithm seeks to select the two most suitable
gateways for each object: a leader and a sub-leader. To
be considered as the two most suitable, these gateways
should be the nodes with the highest Scores in a finite
set of M-Hubs and M-Objs in an environment (i.e., the
neighborhood). The Score is determined from the RSSI and
parameters related to computational resources of the mobile
device. The usage of a sub-leader is an important strategy
to keep a second node as a candidate to become a leader. In
cases when the leader is no longer accessible, the sub-leader
becomes the new leader, avoiding a new election process.

The proposed algorithm is divided into three parts:
(i) initialization and discovery of objects, (ii) periodic
functions, and (iii) election of leaders. The first part of the
algorithm consists of initializing a set of variables to store
information about the node and discovered smart objects.
The object discovery service is provided by the M-Hub
through the S2PA component. Every time an object is
found, it is inserted into the Object Container and tagged as
“leaderless”. All objects contained in that container receive
a timer, that is, a predefined value that allows to control
the arrival time of ALIVE messages. If an expected message
from the leader of a given object is not received at the preset
time, it means that the object does not have a leader or some
failure may have occurred.

The second part of the algorithm includes three functions
that are performed periodically and handle the reception
of messages. The onAlive function deals with the sending
of ALIVE messages. Received ALIVE and PENDING
messages are processed in the receiveAliveAndPending
function. First, it is checked whether the received ALIVE
message contains any smart object discovered by the node
that received it. If so, it updates the information about the
objects. Finally, it restarts the timer associated with the
objects.

The receiveElection function handles the ES messages.
A M-Hub, after receiving this message, calculates its Score
for each object contained in the message that is within the
Object Container, and inserts it into the MObjList. The
ER message is sent back to the node which started the
process. If the node does not know any object contained in
the message, it is ignored. Leader Score for each object is
calculated using Eq. 1.

Score = (Wr ∗ V r) + (Wb ∗ V b) + (Wc ∗ V c) (1)

The notation of the elements is as follows: Wr, Wb, Wc
are weights for the RSSI, battery level, and processing level
(CPU), respectively. The weights are used to define different
degrees of importance for each parameter.

The connectivity level of a node normally varies
according to its position, since objects are geographically
distributed in the environment. For this reason, an important
feature the leader should have is easy access to disputed
objects. By taking this characteristic into account, RSSI
is used to determine the most accessible nodes. It is
represented by a negative value given in dBm: the closer
it is to zero, the more accessible it is to the node. RSSI
value of the channels between M-Hubs and M-Objs may
oscillate significantly over time. Therefore, it is necessary
to calculate the average RSSI data over time. To obtain the
RSSI value, Eq. 2 is used

MRSSI = α ∗ V RSSI + (1 − α) ∗ MRSSI (2)

where MRSSI represents the average of RSSI values, the
VRSSI value indicates the instantaneous RSSI value (i.e.,
the last RSSI value obtained), and alpha (α) is a constant
that represents a weight value (i.e., a weight that indicates
the relative importance of the instantaneous value compared
to the historical average). The default alpha value is 0.7,
since this value allows the average value to be projected
more gradually in relation to the last RSSI value obtained.
Equation 3 is used to calculate the Vr value. The default Wr
value is 5, the highest weight because we consider it as the
most important characteristic to choose a leader, since it is
desired that nodes with greater accessibility to the object are
more likely to become a leader. Hence, Vr is a value that
varies between 0 and 5.

V r = −30 ∗ Wr ∗ |MRSSI | (3)

where -30 is the RSSI value used as a reference. Vb and Vc
are technical characteristics related to the node: Vb is the
battery level, obtained from the device, and Vc is related to
the CPU load value, that is, the amount of free processing of
the device (measured in percentage values). The algorithm
uses these variables to prioritize nodes more charged and
with free processing since they can have a longer lifespan as
a leader/sub-leader. Equation 4 shows how the Vb value is
calculated.

V b = Wb ∗ LevelBattery

100
(4)

in which the Wb is 3. The Vc value is calculated in Eq. 5, in
which Wc is equal to 2:

V c = Wc ∗ CPULoad

100
(5)

M-Hub Score value is calculated for each object found
and ranges between 0 to 10. It should be noted that a
set of nodes elects a leader based on its current state and
collected information. A node is considered leader if: (1)
it is connected to the object; and (2) it has the highest
Score. Object Container manages each object by assigning
its respective leaders (i.e., main leader and sub-leader). At

Mobile Netw Appl

the end of the leader election process, the leaders of the
objects may be changed.

The third part of the algorithm deals with the process
of electing a leader and a sub-leader. Before starting the
election process, a M-Hub checks whether: (1) there is a
connection established with the wireless network so that
it is possible to exchange messages; and (2) elections are
in progress, if so, to reach consensus, it only starts the
process when all elections in progress have been finalized
and it identifies objects without leaders. The election
process summarized in Algorithm 1 contains the basic
implementation of the election mechanism. As input, the
algorithm uses the identifier of the initiator M-Hub of the
leader election process and the identifier of the M-Objs in
dispute.

The procedure checks all objects without an elected
leader and broadcasts ES messages to all connected M-Hubs
(line 4 in Algorithm 1). If a M-Hub does not know any
object contained in the message, the message is ignored.
The initiator M-Hub waits for a predefined time for other
nodes to send their ER messages (lines 5-7 in Algorithm 1).
Therefore, an ES message is used to start an election, and
ER to reply an ES message. A M-Hub, after receiving an ES

message, calculates its Score for each object contained in the
message that is within its Object Container, inserts it into
the ER message, and finally sends it back to the initiator M-
Hub. A temporary variable (TempList) is created to receive
ER messages from other M-Hubs.

The function getLeaders (line 8 in Algorithm 1) is used
to obtain the leader/sub-leader for each M-Obj based on
the Score of all M-Hubs that sent their ER message and
also the Score of the initiator M-Hub (i.e., the initiator
M-Hub calculates its Score at this time). Therefore, the
ListOfLeaders is composed by leaders and sub-leaders for
all M-Objs participating in the election process. Finally, the
message ALIVE containing the ListOfLeaders (line 10 in
Algorithm 1) is propagated to all M-Hubs to notify them
about the new leaders and sub-leaders of a set of objects.

Periodically, each leader broadcasts ALIVE messages. If
an expected ALIVE message from the leader of a given M-
Obj is not received in a predefined timer (e.g., 1200 ms),
it means that some failure might have occurred with that
leader. When this happens, the sub-leader of that given M-
Obj becomes the new leader. If the new leader also falls (i.e.,
it stops sending ALIVE messages), any M-Hub that knows
that given M-Obj can start a new election process.

4 Testing the NAM-Hub for IoMT

NAM-Hub was implemented as a new version of the M-Hub
for the Android platform. Messages are exchanged using the
JavaScript Object Notation (JSON) format, implemented
with the Google Gson library [2]. The objective of testing
the NAM-Hub was to show its feasibility of practical use
and illustrate the results regarding the message exchange.

4.1 Tests Planning and Design

Tests were conducted in the Laboratory of Intelligent
Distributed Systems (LSDi) at Federal University of
Maranhão, Brazil, as illustrated in Fig. 4. This laboratory
environment is a representative indoor site for the tests by
having different devices connected to a 802.11n network
in infrastructure mode. Moreover, devices are mobile (i.e.,
smartphones and beacons carried by people) and static (i.e.,
a beacon fixed on the wall). To perform the experiment,
we developed a test application with the NAM-Hub, which
was used in three mobile devices (Samsung Galaxy S8 with
Android 8.0) carried by three people: A, B and C in Fig. 4.
In addition, three objects (BLE Beacons) were used: 2 ones
carried by the Person D and Person E (i.e., M-Objs), and
another one fixed on the right wall (see Fig. 4).

MAC object identifiers were manually entered into the
Object Container as a way of isolating the system from
objects that were not part of the experiment. Mobile
devices running the NAM-Hub were isolated in a WiFi
network to avoid interference of external factors. Beacons
were connected to the M-Hubs through Bluetooth LE.
Table 1 shows how the beacons were configured while
conducting the experiment. The protocol used was the
iBeacon [3]. The advertising interval sets the frequency
in which the advertising packages are sent. Transmission
power is associated with the signal strength of the BLE
beacons.

The time parameter related to the sending of ALIVE
messages has been set to 600 ms. The timer that controls the
arrival time of ALIVE messages has been set to 1200 ms.
That is, if an expected message is not received in this time
interval, the leader is considered to have failed.

Mobile Netw Appl

Fig. 4 Testing environment

4.2 Conducting

We tested the NAM-Hub under two scenarios. Firstly, in
Fig. 5, M-Hub carried by the Person A was the leader of the
three objects. M-Hub with the Person B found the beacon
with the Person E and broadcast a PENDING message
(shown in Fig. 6), requiring information about its leader. M-
Hub with the Person A, when receiving the message from
M-Hub with the Person B, verified if it itself was the leader
of the object listed in the message and, after confirming, it
replied an ALIVE message (shown in Fig. 7). Hence, M-Hub
with the Person B identified M-Hub carried by the Person A
as the leader of the found M-Obj.

Secondly, in Fig. 8, the Person A leaves the laboratory,
thus causing the device to disconnect from the wireless net-
work, thereby M-Hub stops broadcasting ALIVE messages.
Any M-Hub, in detecting the failure (i.e., the disconnec-
tion), could start an election process. In this experiment,
M-Hub carried by the Person B detected and started the
election by broadcasting ES message (shown in Fig. 9) and
waited for two seconds. The M-Hub with the Person C, in
receiving the message, verified if had a connection with
the objects listed and calculated its Score for each one of
them and sent back an ER message (shown in Fig. 10).
In the end, M-Hub with the Person B selected the leaders

Table 1 Configuration parameters of the beacons.

Configuration Value

Transmission Protocol iBeacon

Advertising Interval 3 per second

Transmission Power −3 dBm

and sub-leaders for the disputed M-Objs and broadcast this
information.

5 Experimental Evaluation

This section presents results from the performance evalua-
tion performed in the same environment and configuration
described in Section 4.1. Such as the second scenario
of testing (Fig. 8), a failure was intentionally caused to
the leader M-Hub. The version evaluated in experiments
used CDDL middleware [25]. The experiment aimed at

Fig. 5 First test scenario

Mobile Netw Appl

Fig. 6 Example of PENDING
message in JSON format

Fig. 7 Example of ALIVE
message in JSON format

Fig. 8 Second test scenario

Fig. 9 Example of ES message
in JSON format

Fig. 10 Example of ER

message in JSON format

Mobile Netw Appl

Fig. 11 The leader crash
detection time (TD)

assessing the performance of the proposed algorithm in case
of crash-recovery.

5.1 Metrics

The analysis is made using the metrics detection time (TD)
proposed in [13] and recovery time (TDR) proposed in [34]
for the leader crash-recovery. That is, after causing the
failure, we measured the time taken for each node (i.e., M-
Hubs B and C) to detect the failure of the leader M-Hub
A (TD) and the elapsed time for each node to detect the
presence of a new leader (TDR), in which the elected leader
could be the node itself.

Consider tc the timestamp of a leader crash and td the
timestamp of detection of that crash, the detection time (TD)
was obtained by calculating the difference of times: TD =
td − tc. In a similar way, the recovery detection time (TDR)

was calculated considering the difference of recovery time
tr and detection time of that recovery tdr : TDR = tdr − tc.

5.2 Results

The experiment consisted of 120 repetitions of a crash-
recovery cycle, with intervals of 60 seconds between a
complete recovery and a new crash. To obtain concise
results, we excluded the highest and lowest values in each
10 repetitions [29].

Figure 11 shows the obtained TD results with each
blue point representing the average value of 8 repetitions
(discarded the highest and lowest values in each 10
repetitions). As we can see, the maximum value of 1983 ms
and the minimum of 533 ms (AVERAGE = 1541.36 ms) are
promising. Figure 12 displays TDR values with blue points
representing the average value of 8 repetitions: maximum

Fig. 12 The the leader recovery
detection time (TDR)

Mobile Netw Appl

Table 2 Summary of plot values

TD TDR

Minimum 533 58

1st Quartile 1173.5 410.75

Median 1615.5 2055.5

3rd Quartile 1720.25 2075

Maximum 1983 2297

time of 2297 ms and minimum value of 58 ms (AVERAGE
= 1499.5), which are quick enough to avoid excessive data
loss, thus proving the effectiveness of maintaining more
than one node as a candidate to become a leader, thereby
avoiding the need for a new election. Slight differences in
mean values can be explained by interference in the wireless
network signal and latency generated by the access point
used in the tests. By considering that it is an opportunistic
network scenario with mobile objects, we consider these
values adequate to promptly react to failures and to keep the
system stable. Values for descriptive statistic measures are
described in Table 2.

6 Discussion

6.1 Analysis of the Proposed Solution

The number of election processes, given an arrangement
with n M-Hubs and m M-Objs, up to m elections may be
performed concurrently and each M-Hub can start at most
one election at a time. Thus, in the worst case, the number
of elections generated is m, that is, an election for each M-
Obj. The best execution case happens when an M-Hub starts
a single election process for a set of m objects, because the
number of elections performed will be 1.

Regarding the number of messages exchanged, n −
1 messages are generated to propagate an election and
disclose which M-Hub was elected. Thus, in the worst case
scenario, the number of messages generated is e(n − 1),
where e is the number of concurrent election processes. In
the best case, the number of messages exchanged is n − 1.
Therefore, the cost of the proposed algorithm is O(n2). It
is important to emphasize that the leader election process
in IoMT scenarios is characterized by being very dynamic
and, for this reason, the cost regarding message exchange
of the algorithm has a direct relation with the environment
(i.e., the number of available devices) in a given moment.

6.2 Limitations

Our study has limitations that need to be discussed and, for
this reason, we believe our work opens opportunities in this

area for further research. Firstly, NAM-Hub cannot perform
the exchange of leaders in cases where M-Hubs move very
quickly, as there may be loss of connectivity, requiring
a more quick execution of the election process. We also
acknowledge that, although our solution considers dynamic
device variables, a load balancing mechanism [30] for the
NAM-Hub is required to avoid the excessive overhead in
specific devices.

Secondly, this paper presents the NAM-Hub and an
initial evaluation of interest to the scope of the study,
however other experiments with NAM-Hub are required.
Many experiments have been performed in the context
of ContextNet [19, 37], SDDL [16] and CDDL [25]
projects, and also with the first version of M-Hub [44].
For example, the latency in the discovery and connection
processes between M-Hub and M-Obj (i.e., by measuring
the connection time, service discover time, and enable
notification time) is measured in [44], which does not
differ from NAM-Hub. We have already evaluated the
memory and battery consumption of the M-Hub with CDDL
in [25], which is also the same for NAM-Hub in a static
scenario without leader changes. However, since mobility
will require re-elections, experiments could vary the mean
time of mutual reachability among M-Hubs (i.e., a measure
of stability), or the size of the sets of M-Hubs and M-Objs.
Therefore, we acknowledge that additional experiments and
metrics should be considered to identify the impact of the
leader election mechanism to avoid wastage in the system
and considering a greater number of nodes in the network.

Last, by considering security issues, both SDDL [26]
and CDDL [25] have means to provide authentication
and confidentiality in the exchange of messages. NAM-
Hub inherits such resources when communicating with
fog or cloud sides [37]. However, the leader election
mechanism cannot deal with aspects related to information
integrity during the leader election process. As the proposed
algorithm uses a scoring system, on the one hand, a
NAM-Hub could change values of its variables (i.e.,
memory, battery, and RSSI) to avoid becoming a leader/sub-
leader, hence reducing resource consumption. On the other
hand, a malicious NAM-Hub could alter these values to
intentionally become a leader/sub-leader in order to access
data produced by M-Objs.

7 Conclusion and FutureWork

In this paper, we have presented an edge gateway provided
with a leader election mechanism for IoMT. It is a
solution for avoiding overloading a mobile edge gateway
by monitoring several smart objects while there are
other available ones. In addition, when using Bluetooth
Classic, this solution avoids the wastage of communication,

Mobile Netw Appl

processing and energy resources caused by the redundancy
of mobile edge gateways in monitoring the same smart ob-
jects. NAM-Hub was proposed as a leader election mecha-
nism to determine the most suitable edge gateways for each
IoMT device discovered opportunistically. The proposed
mechanism was conceived and implemented to select the
two most suitable devices to become gateways: a leader and
a sub-leader. Results showed its feasibility of practical use
and reduced times to perform the whole process.

Future work initially involves considering security issues
in the proposed mechanism. In addition, we would like
to explore the use of CEP to process location and RSSI
data of M-Hubs and M-Objs to determine their movement
pattern, so enabling early detection of disconnections.
Future research also includes the development of a load
balancing mechanism for the NAM-Hub. We plan to
develop it to be transparent and with minimal impact on
system performance. Last, we would like to experiment our
proposal in WiFi NANs [5, 11].

Acknowledgements The authors would like to thank FAPEMA (State
of Maranhão Research Funding Agency) for supporting their research
projects. This research is part of the INCT of the Future Internet for
Smart Cities funded by CNPq proc. 465446/2014-0, Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) -
Finance Code 001, FAPESP proc. 14/50937-1, and FAPESP proc.
15/24485-9.

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of
interest.

References

1. Esper – EsperTech. http://www.espertech.com/esper/. Accessed
20 February 2020

2. Google Gson. https://github.com/google/gson. Accessed 20
February 2020

3. iBeacon – Apple Developer. https://developer.apple.com/ibeacon/.
Accessed 20 February 2020

4. Mi Smart Band 4 – Mi Global Home. https://www.mi.com/global/
mi-smart-band-4. Accessed 20 February 2020

5. Wi-Fi Aware – Wi-Fi Alliance. https://www.wi-fi.org/
discover-wi-fi/wi-fi-aware. Accessed 25 February 2020

6. Zephyr. https://www.zephyranywhere.com/system/components.
Accessed 20 February 2020

7. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash
M (2015) Internet of things: a survey on enabling technolo-
gies, protocols, and applications. IEEE Commun Surv Tutorial
17(4):2347–2376. https://doi.org/10.1109/COMST.2015.2444095

8. Atzori L, Iera A, Morabito G (2010) The internet of things: a sur-
vey. Comput Netw 54(15):2787–2805. https://doi.org/10.1016/j.
comnet.2010.05.010

9. Bounceur A, Bezoui M, Euler R, Kadjouh N, Lalem F (2017)
Brogo: a new low energy consumption algorithm for leader
election in wsns. In: 2017 10Th international conference on

developments in esystems engineering (deSE), pp 218–223.
https://doi.org/10.1109/DeSE.2017.11

10. Bounceur A, Bezoui M, Euler R, Lalem F, Lounis M (2017)
A revised brogo algorithm for leader election in wireless
sensor and iot networks. In: 2017 IEEE SENSORS, pp 1–3.
https://doi.org/10.1109/ICSENS.2017.8234400

11. Camps-Mur D, Garcia-Villegas E, Lopez-Aguilera E, Loureiro P,
Lambert P, Raissinia A (2015) Enabling always on service discov-
ery: Wifi neighbor awareness networking. IEEE Wirel Commun
22(2):118–125. https://doi.org/10.1109/MWC.2015.7096294

12. Capra M, Peloso R, Masera G, Ruo Roch M, Martina M
(2019) Edge computing: A survey on the hardware require-
ments in the internet of things world. Fut Internet 11(4).
https://doi.org/10.3390/fi11040100

13. Chen W, Toueg S, Aguilera MK (2002) On the quality of
service of failure detectors. IEEE Trans Comput 51(1):13–32.
https://doi.org/10.1109/12.980014

14. Cugola G, Margara A (2012) Processing flows of information:
From data stream to complex event processing. ACM Comput
Surv 44(3):15:1–15:62. https://doi.org/10.1145/2187671.2187677

15. daCosta F (2013) Rethinking the Internet of Things: A Scalable
Approach to Connecting Everything, 1st edn. Apress, Berkely

16. David L, Vasconcelos R, Alves L, André R, Endler M (2013)
A dds-based middleware for scalable tracking, communication
and collaboration of mobile nodes. Jo Internet Serv Appl 4(1).
https://doi.org/10.1186/1869-0238-4-16

17. Dragan R, Ciobanu R, Dobre C (2017) Leader election in
opportunistic networks. In: 2017 16Th international symposium
on parallel and distributed computing (ISPDC), pp 157–164.
https://doi.org/10.1109/ISPDC.2017.10

18. El-Refaay S, Azer MA, Abdelbaki N (2014) Cluster head
election in wireless sensor networks. In: 10Th international
conference on information assurance and security, pp 1–5.
https://doi.org/10.1109/ISIAS.2014.7064625

19. Endler M, e Silva FS (2018) Past, present and future of the
contextnet iomt middleware. Open J Internet Things (OJIOT)
4(1):7–23

20. Faika T, Kim T, Khan M (2018) An internet of things (iot)-based
network for dispersed and decentralized wireless battery man-
agement systems. In: 2018 IEEE Transportation electrification
conference and expo (ITEC), pp 1060–1064. https://doi.org/10.
1109/ITEC.2018.8450161

21. Fernández-Campusano C, Larrea M, Cortinas R, Raynal M
(2015) Eventual leader election despite crash-recovery and
omission failures. In: 2015 IEEE 21St pacific rim international
symposium on dependable computing (PRDC), pp 209–214.
https://doi.org/10.1109/PRDC.2015.18

22. Ganti RK, Ye F, Lei H (2011) Mobile crowdsensing: current
state and future challenges. IEEE Commun Mag 49(11):32–39.
https://doi.org/10.1109/MCOM.2011.6069707

23. Garcia-Molina H (1982) Elections in a distributed computing
system. IEEE Trans Comput 31(1):48–59. https://doi.org/10.1109/
TC.1982.1675885

24. Gharehchopogh FS, Arjang H (2014) A survey and taxonomy of
leader election algorithms in distributed systems. Ind J Sci Technol
7(6)

25. Gomes BDTP, Muniz LCM, Da Silva e Silva, FJ, Dos
Santos DV, Lopes RF, Coutinho LR, Carvalho FO, Endler M
(2017) A middleware with comprehensive quality of context
support for the internet of things applications. Sensors 17(12).
https://doi.org/10.3390/s17122853

26. Goncalves JF, Da Silva e Silva, FJ, Vasconcelos R, Baptista GLB,
Endler M (2013) A security infrastructure for massive mobile
data distribution. In: Proceedings of the 11th ACM international
symposium on Mobility management and wireless access,
pp 41–50. https://doi.org/10.1145/2508222.2508237

http://www.espertech.com/esper/
https://github.com/google/gson
https://developer.apple.com/ibeacon/
https://www.mi.com/global/mi-smart-band-4
https://www.mi.com/global/mi-smart-band-4
https://www.wi-fi.org/discover-wi-fi/wi-fi-aware
https://www.wi-fi.org/discover-wi-fi/wi-fi-aware
https://www.zephyranywhere.com/system/components
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1109/DeSE.2017.11
https://doi.org/10.1109/ICSENS.2017.8234400
https://doi.org/10.1109/MWC.2015.7096294
https://doi.org/10.3390/fi11040100
https://doi.org/10.1109/12.980014
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1186/1869-0238-4-16
https://doi.org/10.1109/ISPDC.2017.10
https://doi.org/10.1109/ISIAS.2014.7064625
https://doi.org/10.1109/ITEC.2018.8450161
https://doi.org/10.1109/ITEC.2018.8450161
https://doi.org/10.1109/PRDC.2015.18
https://doi.org/10.1109/MCOM.2011.6069707
https://doi.org/10.1109/TC.1982.1675885
https://doi.org/10.1109/TC.1982.1675885
https://doi.org/10.3390/s17122853
https://doi.org/10.1145/2508222.2508237

Mobile Netw Appl

27. Goudos SK, Dallas PI, Chatziefthymiou S, Kyriazakos S (2017) A
survey of iot key enabling and future technologies: 5g, mobile iot,
sematic web and applications. Wirel Pers Commun 97(2):1645–
1675. https://doi.org/10.1007/s11277-017-4647-8

28. Hassan N, Gillani S, Ahmed E, Yaqoob I, Imran M (2018) The
role of edge computing in internet of things. IEEE Commun Mag
56(11):110–115. https://doi.org/10.1109/MCOM.2018.1700906

29. Jain R (1991) The art of computer systems performance analysis:
Techniques for experimental design, Measurement, Simulation,
and Modeling. Wiley, New York

30. Jiang Y (2016) A survey of task allocation and load balancing in
distributed systems. IEEE Trans Parallel Distrib Syst 27(2):585–
599. https://doi.org/10.1109/TPDS.2015.2407900

31. Kamilaris A, Pitsillides A (2016) Mobile phone computing and the
internet of things: a survey. IEEE Internet Things J 3(6):885–898.
https://doi.org/10.1109/JIOT.2016.2600569

32. Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell
AT (2010) A survey of mobile phone sensing. IEEE Commun Mag
48(9):140–150. https://doi.org/10.1109/MCOM.2010.5560598

33. Liu J, Shen H, Narman HS, Chung W, Lin Z (2018) A survey
of mobile crowdsensing techniques: a critical component for
the internet of things. ACM Trans Cyber-Phys Syst 2(3):1–26.
https://doi.org/10.1145/3185504

34. Ma T, Hillston J, Anderson S (2010) On the quality of service of
crash-recovery failure detectors. IEEE Trans Depend Sec Comput
7(3):271–283. https://doi.org/10.1109/TDSC.2009.35

35. Mao S, Zhao C, Zhou Z, Ye Y (2013) An improved fuzzy unequal
clustering algorithm for wireless sensor network. Mob Netw Appl
18(2):206–214. https://doi.org/10.1007/s11036-012-0356-4

36. Masi AD (2015) Load balancing in p2p smartphone based
distributed iot systems. Master’s thesis, Luleȧ University of
Technology

37. Meslin A, Rodriguez N, Endler M (2020) Scalable mobile sensing
for smart cities: The musanet experience. IEEE Internet of Things
Journal. https://doi.org/10.1109/JIOT.2020.2977298

38. Miorandi D, Sicari S, De Pellegrini F, Chlamtac I (2012)
Internet of things: vision, applications and research challenges. Ad
hoc Netw 10(7):1497–1516. https://doi.org/10.1016/j.adhoc.2012.
02.016

39. Nahrstedt K, Li H, Nguyen P, Chang S, Vu L (2016)
Internet of mobile things: Mobility-driven challenges, designs and
implementations. In: 2016 IEEE First international conference on

internet-of-things design and implementation (ioTDI), pp 25–36.
https://doi.org/10.1109/IoTDI.2015.41

40. Salman O, Elhajj I, Chehab A, Kayssi A (2018) Iot survey: an
sdn and fog computing perspective. Comput Netw 143:221–246.
https://doi.org/10.1016/j.comnet.2018.07.020

41. Santana EFZ, Chaves AP, Gerosa MA, Kon F, Milojicic
DS (2017) Software platforms for smart cities: concepts,
requirements, challenges, and a unified reference architecture.
ACM Comput Sureys 50(6):78:1–78:37. https://doi.org/10.1145/
3124391

42. Sindhanaiselvan K, Mannan JM, Aruna SK (2019) Design-
ing a dynamic topology (dht) for cluster head selection in
mobile adhoc network. Mobile Networks and Applications.
https://doi.org/10.1007/s11036-019-01283-x

43. Singh KJ, Kapoor DS (2017) Create your own internet of things: a
survey of iot platforms. IEEE Consum Electron Mag 6(2):57–68.
https://doi.org/10.1109/MCE.2016.2640718

44. Talavera LE, Endler M, Vasconcelos I, Vasconcelos R, Cunha
M, Da Silva e Silva, FJ (2015) The mobile hub concept:
Enabling applications for the internet of mobile things. In:
2015 IEEE International conference on pervasive computing and
communication workshops (percom workshops), pp 123–128.
https://doi.org/10.1109/PERCOMW.2015.7134005

45. Vasudevan S, Kurose J, Towsley D (2004) Design and analysis of a
leader election algorithm for mobile ad hoc networks. In: Proceed-
ings of the 12th IEEE International Conference on Network Pro-
tocols, pp 350–360. https://doi.org/10.1109/ICNP.2004.1348124

46. Véstias M. P., Duarte RP, de Sousa JT, Neto HC (2020) Moving
deep learning to the edge Algorithms 13(5). https://doi.org/10.
3390/a13050125

47. Zhang B, Liu G, Hu B (2010) The coordination of nodes
in the internet of things. In: 2010 International conference
on information, networking and automation (ICINA), vol 2,
pp v2–299–v2–302. https://doi.org/10.1109/ICINA.2010.5636506

48. Zhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J (2019)
Edge intelligence: Paving the last mile of artificial intelli-
gence with edge computing. Proc IEEE 107(8):1738–1762.
https://doi.org/10.1109/JPROC.2019.2918951

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s11277-017-4647-8
https://doi.org/10.1109/MCOM.2018.1700906
https://doi.org/10.1109/TPDS.2015.2407900
https://doi.org/10.1109/JIOT.2016.2600569
https://doi.org/10.1109/MCOM.2010.5560598
https://doi.org/10.1145/3185504
https://doi.org/10.1109/TDSC.2009.35
https://doi.org/10.1007/s11036-012-0356-4
https://doi.org/10.1109/JIOT.2020.2977298
https://doi.org/10.1016/j.adhoc.2012.02.016
https://doi.org/10.1016/j.adhoc.2012.02.016
https://doi.org/10.1109/IoTDI.2015.41
https://doi.org/10.1016/j.comnet.2018.07.020
https://doi.org/10.1145/3124391
https://doi.org/10.1145/3124391
https://doi.org/10.1007/s11036-019-01283-x
https://doi.org/10.1109/MCE.2016.2640718
https://doi.org/10.1109/PERCOMW.2015.7134005
https://doi.org/10.1109/ICNP.2004.1348124
https://doi.org/10.3390/a13050125
https://doi.org/10.3390/a13050125
https://doi.org/10.1109/ICINA.2010.5636506
https://doi.org/10.1109/JPROC.2019.2918951

	Neighborhood-aware Mobile Hub: An Edge Gateway with Leader Election Mechanism for Internet of Mobile Things
	Abstract
	Introduction
	Background
	The Mobile Hub
	Problem Statement
	Related Work

	The Neighborhood-aware M-Hub
	Architecture
	Component Interactions
	Assumptions
	Description of Leader Election Process

	Testing the NAM-Hub for IoMT
	Tests Planning and Design
	Conducting

	Experimental Evaluation
	Metrics
	Results

	Discussion
	Analysis of the Proposed Solution
	Limitations

	Conclusion and Future Work
	References

