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ABSTRACT The increasing number of Internet-of-Things (IoT) devices will generate unprecedented data in
the upcoming years. Fog computing may prevent the saturation of the network infrastructure by processing
data at the edge or within these devices. Consequently, the machine intelligence built almost exclusively
on the cloud can be scattered to the edge devices. While deep learning techniques can adequately process
IoT-massive data volumes, their high resource-demanding nature poses a trade-off for execution on resource-
constrained devices. This paper proposes and evaluates the performance of the PArtitioning Networks for
COnstrained DEvices (PANCODE), a novel algorithm that employs a multilevel approach to partition
large convolutional neural networks for distributed execution on constrained IoT devices. Experimental
results with the LeNet and AlexNet models show that our algorithm can produce partitionings that achieve
up to 2173.53 times more inferences per second than the Best Fit algorithm and up to 1.37 times less
communication than the second-best approach.We also show that theMETIS state-of-the-art framework only
produces invalid partitionings in more constrained setups. The results indicate that our algorithm achieves
higher inference rates and low communication costs in convolutional neural networks distributed among
constrained and exceptionally very constrained devices.

INDEX TERMS Convolutional neural networks, distributed systems, fog computing, graph partitioning
algorithms, Internet of Things, performance evaluation.

I. INTRODUCTION
The expected significant increase in the number of devices
connected to the Internet in the next few years will change
how we execute applications [1], [2], [3]. The common
practice is processing data generated by IoT devices in the
cloud. However, the increasing number of devices may hinder
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this paradigm due to network saturation, increased delays,
or both: application requirements may not be satisfied, and
the overall quality of service may decay [4]. A possible
solution is Fog Computing which processes data closer to the
devices that produce them, i.e., routers, gateways, or on the
devices themselves [5].

Some IoT device types produce multimedia data [6], [7],
which can be adequately processed with deep learning tech-
niques [8]. Convolutional Neural Networks (CNNs) are
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FIGURE 1. Example of distributing a DNN to execute its inference on multiple devices.

among the most popular deep learning techniques to process
multimedia data due to their high-quality results, at the cost
of increased demand for computational resources such as
memory andCPU [9], [10], [11]. On the other hand, many IoT
devices will be low cost and resource-constrained to achieve
the expected billions of devices connected to the Internet [12].

There are two solutions to overcome the problem of exe-
cuting CNNs on constrained IoT devices: reducing the CNN
model [13] or partitioning the model for distributed execu-
tion on multiple devices [14]. The first solution might not be
effective because the reduced CNN model may still require
more resources than available in specific constrained devices.
Therefore, in this paper, we partition the CNNmodel to fit the
memory of constrained IoT devices for distributed process-
ing. Fig. 1 illustrates the distribution of a DNN into multiple
devices, where cameras in a smart city collect images to be
processed and perform part of a DNN inference with their
extra resources. After this step, the cameras send the data
to nearby devices to distribute the DNN inference. These
devices also perform their primary tasks, which may be the
inference of other neural networks.

Existing frameworks that distribute a CNN on IoT devices
limit the partitioning into layers [13], [15], [16]. However,
this approach might lead to suboptimal results or memory-
invalid partitionings, in which at least one partition needs
more memory than the devices provide [14], [17]. General-
purpose partitioning algorithms do not limit the partitioning
into layers and can distribute the CNN execution automati-
cally. However, we have also shown that they may produce
suboptimal results and memory-invalid partitionings [14].

Recently, we proposed the Deep Neural Networks Par-
titioning for Constrained IoT Devices (DN2PCIoT) algo-
rithm for CNN partitioning into constrained IoT devices [14].
However, the effectiveness of the partitioning process comes

with the price of a high execution time. To overcome the lower
efficiency of DN2PCIoT, this paper proposes the PANCODE
algorithm to partition large general-purpose graphs faster,
leveraging two DN2PCIoT characteristics. DN2PCIoT pro-
vides valid partitionings for very constrained setups and par-
titionings with larger inference rates or smaller amounts of
communication than the state of the art. PANCODE primarily
uses a multilevel approach, reducing the graph size gradually
by grouping vertices, executing a partitioning algorithm in
the smallest graph, before returning to the original graph
gradually and refining the partitioning at each subgraph [18].

We partition the LeNet [19] and AlexNet [20] CNN mod-
els and compare PANCODE to the METIS state-of-the-art
framework [18] and Best Fit [21]. Although these models are
the first successful CNNs, they require fewer resources com-
pared to more recent ones [22], making them more suitable
for constrained devices. Our results show that PANCODE
can improve up to 2173.53 times the inference rate or
1.37 times the communication messages. Also, METIS can-
not provide memory-valid partitioning for very constrained
devices. The source code of the algorithm implementa-
tion, the graphs for the CNNs, and the setups are available
online [23].

The main contributions of our paper are:
• Anovelmultilevel algorithm to partition general-purpose
dataflow graphs;

• A more flexible vertex grouping limitation, depending
on the number of vertices in the dataflow graph and the
number of devices in the setup;

• Amore significant reduction in the number of edges and
communication when grouping vertices;

• An always-valid partitioning for the smallest graph,
which satisfies memory constraints since the algorithm
beginning;
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• A more flexible partitioning algorithm, which exe-
cutes 1) one DN2PCIoT epoch or 2) all DN2PCIoT
epochs, according to the number of subgraphs vertices
and the number of devices; and

• A case study to validate PANCODE and experiment
with two CNNs and several resource-constrained setups
for inference rate maximization and communication
minimization.

This paper is organized as follows: Section II presents
the background in CNNs and their partitioning, while
Section III discusses the related work. Section IV explains
the PANCODE algorithm, while Section V details the
CNN models, setups, and algorithms used in the experi-
ments. Section VI discusses the experimental results, and
Section VII points out future research directions. Finally,
Section VIII summarizes our conclusions and future work.

II. BACKGROUND
This section comprises the background in CNNs, their rep-
resentation and partitioning as a dataflow graph, and the
problem definition.

A. CONVOLUTIONAL NEURAL NETWORKS
The idea behind CNNs comes from how the human brain
processes vision [24], with some areas for recognizing the
details of the scene captured by the eyes and others for rec-
ognizing the global scene. In CNNs, the convolution layers
recognize the scene details, so that we can view every convo-
lution layer neuron as the output of a brain neuron connected
to only a tiny input region. Besides convolution layers, CNNs
are also composed of pooling and fully connected layers. The
pooling layersmake the representations, e.g., edges, shadows,
and faces, invariant to translations and reduce their dimen-
sionality. Finally, the fully connected layers recognize and
classify the global scene. Essentially, CNNs learn increas-
ingly complex representations at coarser resolutions along the
layers.

We base the architecture of a CNN on specific character-
istics of images, organizing the CNN layers in three dimen-
sions: width, height, and depth. Fig. 2 shows an example of
a CNN architecture with four layers. The first layer is the
input, which usually has a depth of three for color images; the
second layer is a convolution layer; the third layer represents
a pooling layer; and the last one is a fully connected layer,
corresponding to the CNN output. The output dimensions are
1 wide x 1 high, and the depth corresponds to the possible
output classes. The first CNN layers are usually convolution
and pooling. The former often requires more computation,
especially the first layers, while the latter reduces the number
of computations and parameters and, consequently, the mem-
ory for the subsequent layers. The fully connected layers are
usually the layers that require more memory in a CNN.

Using a CNN is a two-phase process consisting of training
and inference. The CNN generalizes input data during train-
ing tuning the parameters of the model. During the inference

FIGURE 2. A CNN architecture with four layers: an input layer with a
depth of three, a convolution layer, a pooling layer, and the fully
connected output layer with a size of 1 wide x 1 high and the depth
corresponding to the number of output classes (adapted from [24]).

phase, the CNN predicts information on a new input based on
the trained model and how well it can generalize data.

B. PARTITIONING A CNN AS A DATAFLOW GRAPH
We can represent CNNs as directed acyclic dataflow graphs,
which model the computation of a program through its data
flow [25]. Vertices model the computations, and edges rep-
resent the data flow. Input edges represent data transfers to
compute the corresponding vertex, whose results represent
the output edges.

In our approach, a vertex may represent one or more CNN
neurons and requires an amount of memory to store their
results and parameters. The edges in the dataflow graph
have an associated weight, which models the amount of data
transferred to the vertices. Our dataflow graph representing a
neural network shows the specification of the following per-
layer data: the number of vertices in height, width, and depth,
the layer type, and the amount of transferred data in bytes per
inference required by each edge in each layer.

Fig. 3a shows a fully connected neural network represented
as a dataflow graph, in which each vertex represents one
neuron [14]. This network comprises three layers: an input
layer with two vertices, a hidden layer with three vertices, and
an output layer with one vertex. Each vertex of the input layer
requires 4 bytes (B) to store the neuron input value, while
each vertex of the hidden layer requires 12 B (4 B for the
intermediate result and 8 B for the neuron parameters), and
the vertex in the output layer requires 16 B (4 B for the final
result and 12 B for the parameters). In this example, we do not
use biases, inputs equal to 1 that improve model convergence.
Each layer may have one bias unit.

Each vertex in the hidden layer performs 4 floating-point
operations (FLOP) per inference, which correspond to mul-
tiplying the input values by the parameters, summing both
values, and applying a function to this result. The vertex in the
output layer performs 6 FLOP per inference, corresponding
to three multiplications of parameters by input values, two
sums, and the application of a function. Each edge transfers
4 B between each layer, corresponding to the intermediate
values stored in each neuron.

Fig. 3b shows the same dataflow graph partitioned
for distributed execution on two devices: device A
(18 FLOP/second (FLOP/s) and 20 B of memory) and device

2060 VOLUME 11, 2023



F. M. C. D. Oliveira et al.: PANCODE: Multilevel Partitioning of Neural Networks for Constrained IoT Devices

FIGURE 3. Examples of: (a) a fully connected neural network represented
as a dataflow graph; and (b) how to partition it for execution on two
devices [14].

B (18 FLOP/s and 52 B of memory). The link between
them transfers 4 B/s, and the data transferred per inference
is 8 B, which is the input data, although there are more than
two edges in the dataflow graph. These additional edges are
redundant, representing the transfer of the same data to the
same partition, which often happens in partitioned CNNs.

When partitioning a CNN, we can optimize it for some
objective function. If the objective function is the inference
rate maximization, i.e., the CNN throughput maximization,
we calculate it as the minimum inference rate among all
the devices and links, considering that they work in parallel.
The inference rate of each device or link is, respectively, the
computational or communication performance divided by the
computational or communication load of each device or link.
Thus, the CNN inference rate is:

iR = min
{
min

[(
compP
compL

)
d

]
,min

[(
commP
commL

)
dq

]}
,

∀ d, q ∈ 1, . . . , p (1)

in which compP is the computational performance, compL
is the computational load, commP is the communication per-
formance, commL is the communication load, p is the number
of devices, and dq is the link between devices d and q.
In the partitioning of Fig. 3b, device A does not perform

any computation and, thus, does not limit the inference rate.
Applying Equation 1, device A performs 18/0 = ∞ infer-
ences/s, device B performs 18/18 = 1 inference/s, and the

link between them supports 4/8 = 0.5 inference/s. As the
device or link with the lowest inferences per second limits
the inference rate, the partitioning of Fig. 3b allows 0.5 infer-
ence/s. This partitioning is valid because each device fits the
memory requirement of its respective partition, although it
is possible to have an invalid partitioning when at least one
device does not fit the memory requirement of its partition.
In this paper, PANCODE attempts to find a valid partitioning
that maximizes Equation 1.
A framework for task scheduling should synchronize data

transfers among partitions to ensure correctness, thus guar-
anteeing input data completeness for all vertices. However,
it may require extra time and reduce inference performance.
Techniques such as retiming [26] can be applied to the
partitionings to enforce synchronization. However, such a
technique may increase the memory required to execute the
CNN in a distributed form. If we maintain the memory pro-
vided by the devices, we may need to use more devices, and
the amount of transferred data may increase. This increased
data transfer may impact the inference rate if it becomes
the execution bottleneck. Although this is an essential issue
for deploying distributed CNNs on constrained IoT devices,
here we compare our algorithm to state-of-the-art algorithms,
which do not include the synchronization overhead.

C. PROBLEM DEFINITION
This section formally defines the partitioning problem as
an objective-function optimization problem subject to con-
straints [14]. First, we define a function that returns 1 if an
element e, which can be a neuron or a layer, is assigned to
partition or device p and 0 otherwise:

partition(p, e) =

{
1, if e is assigned to p;
0, otherwise.

We define the partitioning problem as an optimization
problem with an objective function subject to memory
constraints:

optimize cost

subject to
N∑
n=1

mn × partition(p, n)

+

L∑
l=1

msbpl × partition(p, l) ≤ mp,

∀ p ∈ [1 . . .P]

in which cost is the objective function (detailed below),
N represents the DNN number of neurons, mn equals the
memory required by neuron n, L is the number of layers of
the DNN,msbpl represents the memory required by the shared
parameters and biases of layer l, mp equals the memory that
partition p can provide, and P is the number of partitions in
the system. It is worth noting that partition(p, l) returns 1 if
any neuron of layer l is assigned to partition or device p.
To minimize communication, we define a function that

returns 1 if two elements are assigned to different partitions
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or devices and 0 otherwise:

diff(e, h) =


1, if e and h are assigned to different

partitions or devices;
0, otherwise.

Then, we define the communication cost, expressed in
bytes per inference, as

communicationCost =
N∑
n=1

adj(n)∑
z=1

edgeWeightnz × diff(n, z)

in which adj(n) is the number of adjacent neurons of neuron n
and edgeWeightnz is the weight of the edge between neurons
n and z, also expressed in bytes per inference.
To formally define the optimization problem, we rewrite

the computational load of device d of Equation (1) as

compLd =
N∑
n=1

compLn × partition(d, n)

and the communication load between devices d and q of
Equation (1) as

commLdq =
N∑
n=1

adj(n)∑
z=1

edgeWeightnz × diff(n, z)×

partition(d, n)× partition(q, z).

Here we model the CNN as a dataflow graph and par-
tition it for distributed execution considering device mem-
ory and computational performance and the communication
performance of the links between devices. We partition the
CNN for inference execution to minimize the communication
between devices or maximize the inference rate. As this
problem is NP-complete [18], heuristic-based optimization
is more appropriate to find partitionings with reduced com-
munication or increased inference rate. PANCODE employs
DN2PCIoT [14], a heuristic-based algorithm that optimizes
partitioning by swapping vertices between partitions or mov-
ing vertices among partitions.

III. RELATED WORK
This section discusses the related work in machine learning
frameworks and partitioning algorithms and their relation to
our proposal.

A. MACHINE LEARNING FRAMEWORKS
Some frameworks for executing neural networks distributed
into several IoT devices have been proposed [13], [15],
[27], [28], [29], [30]. Sze et al. [22] reviewed methods
for efficiently executing DNNs, focusing on the inference
phase, hardware platforms, and architecture for supporting
DNNs. They discussed how to reduce the computational cost
of DNNs by hardware design changes, algorithm changes,
or both, providing metrics and design considerations when
analyzing new DNN hardware and algorithmic designs. They
also summarized the trade-offs between several hardware
architectures and platforms.

FlexFlow [28] is a deep learning engine that automatically
finds an optimized parallelization strategy using Sample-
Operator-Attribute-Parameter (SOAP), which is a search
space of parallelization strategies for DNNs that generalizes
and overcomes previous approaches. FlexFlow comprises
an incremental execution simulator that assesses different
partitionings and a Markov Chain Monte Carlo search algo-
rithm that explores the search space using the simulator
information. The authors estimated the performance of some
partitioning using a task graph that models both the DNN
architecture and the cluster network topology. Nevertheless,
FlexFlow does not consider memory constraints and opti-
mizes only the execution time.

DeepThings [27] is a framework for inference distribu-
tion to constrained IoT devices that dynamically distributes
and balances workload for the convolution layers, reduces
execution latency and memory without accuracy loss, and
increases inference rate. The partitioning occurs along the
neural network data flow, repeating some computations in
more than one device. The authors used few devices and
a large amount of memory, which is unrealistic for very
constrained devices. DeeperThings [13] is an evolution of
this framework that fully distributes CNN inference, jointly
optimizing memory, computation, and communication via
Integer Linear Programming designs.

Kilcioglu et al. [30] proposed an algorithm to partition
DNNs into constrained devices in the scenario of wireless
Fog Computing aiming to reduce energy consumption. They
partitioned the DNNs into layers or horizontally along the
layers, optimizing communication and computation parame-
ters and device workload. However, this algorithm replicates
some computation at superior and inferior lines in the hor-
izontal partitioning, which may impact the performance of
constrained devices.

The Multi-fidelity DNNs [6] technique builds several neu-
ral networks with an increasing number of parameters. The
size of each neural network is designed to match IoT devices
with different computational resources and satisfy the het-
erogeneity in the IoT. However, there is some accuracy loss
in every new neural network, which may not be acceptable
under some conditions, such as fault detection in critical
structures of Industry 4.0 [31].

DeepIoT [15] compresses CNNs, fully connected neu-
ral networks, and Recurrent Neural Networks by extract-
ing redundant neurons. This compression can significantly
reduce the DNN size, execution time, and energy consump-
tion without loss of accuracy. However, this approach may
not be sufficient because the DNN requirements may still
be larger than the resources provided by a single constrained
device.

The framework proposed by Li et al. [8] and the Heuristic
Offloading Method (HOM) [29] offload some parts of the
neural network code onto the cloud. While the framework of
Li et al. [8] can offload layers, limiting the partitioning to this
type, HOM [29] can only offload a complete inference task,
not performing any partitioning.

2062 VOLUME 11, 2023



F. M. C. D. Oliveira et al.: PANCODE: Multilevel Partitioning of Neural Networks for Constrained IoT Devices

TABLE 1. Main characteristics of machine learning approaches.

The Automatic and Intelligent Data Collector and Clas-
sifier (AIDCC) [32] is a framework that integrates IoT
and deep learning, provides interpretability, offers transfer
learning features, automatically collects data, visualizes
extracted features, and detects diseases in pearl millet farm-
lands. AIDCC sends the collected data to a cloud server and
IoT device. The authors developed the Custom-Net model
that runs on the Cloud or IoT devices and predicts blast
and rust diseases. They compared the Custom-Net results of
transfer learning to the ones on state-of-the-art models such
as Inception ResNet-V2 and VGG-19. Their model does not
prune the neural network, does not present a loss of accuracy,
and is comparable to state-of-the-art models. Custom-Net
significantly reduces training time, aiding process automation
and providing a low-cost framework. However, AIDCC does
not partition the neural network and, thus, does not account
for the memory required by the shared parameters and biases
of CNNs.

iFaaSBus [33] is a lightweight framework that provides
security and privacy to execute machine learning using
IoT based on function as a service or serverless comput-
ing. iFaaSBus receives users’ health data from IoT devices,
sends the data to the cloud, and offloads the execution of
machine learning models onto the cloud. The authors tested
iFaaSBus to diagnose COVID-19 and the framework scala-
bility, outperforming nonserverless computing. Additionally,
they compared the accuracy, precision, recall, and F1-score
of five machine learning models in COVID-19 diagnosis.
As iFaaSBus does not prune the machine learning model,
it does not present any loss in the machine learning metrics,
including accuracy. Nevertheless, iFaaSBus does not respect
memory constraints and, thus, does not account for the mem-
ory of shared parameters and biases when executing CNNs.

DistrEdge [34] is a method to distribute CNN inference
execution to multiple IoT edge devices automatically. It con-
siders device heterogeneity, network conditions, and speci-
ficities of CNNs in a deep reinforcement learning algorithm

to partition the CNN into layers and the height of each layer
and distribute the CNN inference execution. The authors
tested offloading onto heterogeneous embedded Artificial
Intelligence computing devices, such as NVIDIA Jetson,
speeding up computations related to state-of-the-art methods,
such as DeepThings and DeeperThings. DistrEdge does not
prune the CNN; therefore, there is no loss of accuracy. How-
ever, as it does not consider memory constraints, DistrEdge
does not account for the memory of shared parameters and
biases in the CNN execution.

Table 1 summarizes the related work in machine learning
approaches. We identified six main characteristics of these
frameworks related to our algorithm. First, the approaches
that prune the DNN may still require significant computa-
tional resources after pruning. This pruning may impact the
DNN result accuracy, which is the second characteristic in
Table 1. PANCODE does not prune the DNN; therefore,
it does not impact the result accuracy. The third character-
istic is execution offloading to the cloud. In our scenario,
the devices may not always have an Internet connection.
Thus, we need to execute the DNN only in the IoT devices.
The partitioning type shows how the approach distributes
the DNN if there is distributed execution, which is the
fourth characteristic. It may be in the Operator (O), Attribute
(A), Operator-Attribute (OA), Operator-Attribute-Parameter
(OAP), and SOAP. PANCODE partitions DNNs using the
OAP strategy, which allows partitionings into the layers,
height, width, and depth of each layer, i.e., the DNN neurons.
In the fifth characteristic, the approaches may partition or
compress the DNN automatically or manually, requiring the
user to choose where to execute each DNN portion or how to
reduce the DNN, respectively. PANCODE automatically par-
titions dataflow graphs, not demanding users with knowledge
of computational systems and machine learning. Finally, the
sixth characteristic is the adequate account of shared parame-
ters and biases of CNNs, which may improve the partitioning
result and enable partitioning into very constrained devices.
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This characteristic enables the algorithms to calculate a
precise amount of memory for each partition, thus allowing
us to employ devices with a smaller amount of memory.

B. PARTITIONING ALGORITHMS
As the computation distribution may affect the inference
performance and most IoT frameworks for neural net-
works constrain the partitioning, we can use general-purpose
partitioning algorithms to achieve profitable partitionings.
SCOTCH [35] is a framework that performs graph partition-
ing and static mapping based on the Dual Recursive Bipar-
titioning and the Fiduccia-Mattheyses algorithms, balancing
the computational load and reducing communication. This
framework does not handle memory constraints and, thus,
may produce invalid partitionings. SCOTCH also does not
factor redundant edges out of the cost computation.

Kernighan and Lin’s algorithm (KL) [36] partitions graphs
aiming to reduce communication and maintain partition bal-
ance by exchanging vertices between partitions. It can pro-
duce valid partitionings if the initial partitioning is valid.
However, it cannot factor redundant edges out either.

METIS [18] is a framework that partitions large graphs
and meshes and computes the orderings of sparse matrices.
It uses the multilevel approach, which gradually groups the
graph vertices to obtain smaller graphs, applies a partitioning
algorithm to the smallest graph, and gradually returns to the
original graph, refining the partitioning in each subgraph.
METIS reduces communication and attempts to balance all
the constraints, such as memory and computational load.
However, METIS does not consider memory constraints nor
factor redundant edges out of the cost computation.

Previously, we proposed Kernighan-and-Lin-based Parti-
tioning (KLP) [17], an algorithm to partition CNNs into con-
strained IoT devices aiming for communication minimization
and memory-valid partitionings. We showed that KLP pro-
vides partitionings with up to 4.5 times less communication
than those provided by TensorFlow [37] and per-layer parti-
tioning approaches. KLP factors redundant edges out of the
cost computation and allows the movement of one vertex and
the exchange of vertices between partitions. These character-
istics are responsible for the improvement in communication.

We also recently proposed DN2PCIoT [14], an algorithm
that partitions CNNs into constrained IoT devices aiming
for inference rate maximization or communication reduction.
Besides the KLP characteristics, DN2PCIoT accounts ade-
quately for the memory required by the shared parameters
and biases of CNNs and can start from partitionings obtained
by other approaches. The former feature enables partition-
ing into very constrained devices. We showed that popular
machine learning frameworks, such as TensorFlow, offer per-
layer partitionings, which may lead to suboptimal or invalid
results, which also happens in METIS.

Krylov and Friedman [38] proposed a methodology to
balance bias current by automatically partitioning rapid sin-
gle flux quantum (RSFQ) electronic circuits into blocks
while minimizing the number of connections between blocks.

They modified the Fiduccia-Mattheyses algorithm with the
characteristics of RSFQ circuits and proposed a simulated-
annealing partitioning, reducing the overall bias current. They
used the quadratic placement algorithm, a geometric parti-
tioning that performs a coarse placement, dividing the circuit
into multiple blocks based on the coordinates of each vertex.
However, the algorithm does not respect memory constraints
nor factors redundant edges out of the cost computation.

Mt-KaHyPar [39] is a multilevel partitioning algorithm
with a parallel implementation of all multilevel phases.
The coarsening phase uses parallel community detection,
the initial partitioning employs the recursive bipartition-
ing with work stealing, and the uncoarsening phase uses
a scalable label propagation refinement. Mt-KaHyPar pro-
poses the first fully-parallel direct k-way formulation of the
Fiduccia-Matheyses algorithm as the partitioning algorithm
in the initial partitioning and uncoarsening phases. Neverthe-
less, Mt-KaHyPar also does not consider memory constraints
nor factors redundant edges out of the cost computation.

Blocking-Aware-Based Partitioning (BABP) [40] is an
algorithm that partitions real-time dependent tasks into a
homogeneous multi-core platform to reduce overall energy
consumption and avoid deadline violations. BABP presents
lower energy consumption and higher schedulability than
popular bin-packing algorithms, such as Worst Fit Decreas-
ing, Best Fit Decreasing, and Similarity-Based Partitioning.
As a result, BABP leverages the available parallelism, assign-
ing tasks to run in parallel on different cores and balancing
the workload. Again, BABP does not produce partitions that
respect memory constraints nor factors redundant edges out
of the cost computation.

These general-purpose partitioning algorithms perform
edge-cut partitionings, dividing the graph vertices into dis-
joint subsets. Another strategy is vertex-cut partitioning,
which partitions the graph edges [41], [42]. However, it may
replicate the vertices among partitions, which require more
computation. Thus, considering the low computational per-
formance of constrained IoT devices, this approach may not
be adequate due to inference performance degradation.

JA-BE-JA-VC [41] is a vertex-cut partitioning algorithm
that attempts to balance the partitioning while considering
memory constraints. This approach needs vertex replicas,
i.e., computation replicas, and synchronization, which may
involve more communication. For constrained IoT devices,
these characteristics may decrease the inference rate of neural
networks to a value lower than the application requirements.
Additionally, JA-BE-JA-VC does not factor redundant edges
out of the cost computation.

LeBeane et al. [42] modeled heterogeneity in the pro-
cessing nodes of modern data centers to modify five online
data ingress strategies. They aimed to optimize the execution
time in heterogeneous data centers, improving the runtime of
popular machine learning and data mining applications. They
also considered partitioning algorithms that perform edge
cuts and vertex cuts. When an application needs to have bar-
riers for synchronization between different nodes, the authors
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TABLE 2. Main characteristics of general-purpose partitioning approaches.

provide data proportionally to the computational performance
of the nodes so that they have similar execution times when
processing them. They also use proportions to define the
amount of memory each partition requires, which does not
impose a strict limit on the amount of memory of the parti-
tions and may lead to invalid partitionings. Nevertheless, they
do not factor redundant edges out of the cost computation.

Table 2 summarizes the main characteristics of the
general-purpose partitioning approaches related to our algo-
rithm. Memory treatment is vital in constrained IoT devices
because they usually provide a small amount of memory.
Thus, the algorithms need to consider memory constraints.
PANCODE treats memory constraints, unlike most partition-
ing algorithms in the related work, which may lead to invalid
partitionings. Partition balance attempts to equally partition
the DNNs into similar sizes, usually resulting in good perfor-
mance through load balancing. However, PANCODE allows
unbalanced partitionings, widening the search space. KLP,
DN2PCIoT, and PANCODE are the only algorithms that can
factor redundant edges out of the cost computation during the
algorithm execution, which may reduce the final amount of
communication by considering only the edges that represent
the transfer of different data. The objective functions can
be communicationminimization, partition balance, execution
time minimization, inference rate maximization, energy con-
sumption minimization, or deadline violation avoidance. The
inference rate maximization allows PANCODE to optimize
throughput directly.

C. DISCUSSION
Our previous works [14], [17] investigated manual groupings
of the LeNet neurons in each layer. These groupings allowed
us to reduce the dataflow graph size and performmore experi-
ments in a shorter time frame since the input was smaller than
LeNet without any grouping. However, manually grouping
vertices is time-consuming and prone to errors.

Here we propose a novel algorithm that uses the multilevel
approach [18] to partition large neural networks directly into
neurons, resulting in higher inference rates or less commu-
nication and maintaining the inference result related to a
nonpartitioned execution. For convolution and pooling layers,
we replicate the trained parameters when necessary, and for
fully connected layers, we partition the parameter set together
with the corresponding neurons. Our algorithm also provides
memory-valid partitionings, which work for very constrained
devices, and factors redundant edges out when grouping ver-
tices, which can lead to partitionings with higher inference
rates or less communication. Our setups providemore devices
than the cited papers, and our algorithm does not increase the
original number of computations.

IV. PANCODE
This section presents PANCODE, an algorithm that applies
the multilevel approach to partition dataflow graphs into con-
strained IoT devices. We show an overview of PANCODE,
our proposals for each phase of the multilevel approach, and
the PANCODE algorithm.

Fig. 4 presents the three phases of the multilevel approach:
coarsening, initial partitioning, and uncoarsening. The coars-
ening phase reduces the graph size by grouping the ver-
tices into hypervertices according to the edges with the most
significant values of communication. This process occurs
gradually, generating subgraphs until only a few vertices
remain. The initial partitioning phase partitions the coars-
est graph produced in the previous step using, in our case,
Best Fit as initial partitioning and our recently proposed
DN2PCIoT to improve it. Finally, the uncoarsening phase
gradually ungroups the vertices, using DN2PCIoT to refine
the partitioning at each subgraph produced in the coars-
ening phase. Algorithm 1 depicts the PANCODE phases.
We detail our contributions to each phase in the following
subsections.
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Algorithm 1 PANCODE Algorithm Overview
1: function PANCODE(sourceG, nSubG)
2: /* Coarsening phase */
3: Build increasingly coarser nSubG graphs starting from the sourceG graph;
4: /* Initial partitioning phase */
5: Partition the coarsest subgraph produced in the previous step using the Best Fit algorithm;
6: Improve the partitioning obtained in the previous step using DN2PCIoT;
7: /* Uncoarsening phase */
8: for each subgraph produced in the coarsening phase starting from the last but one coarsest graph do
9: Map the partitioning obtained in the immediately coarser subgraph to the next and finer subgraph;

10: Improve the partitioning obtained in the previous step using DN2PCIoT;
11: end for
12: return The best partitioning obtained by the algorithm;
13: end function

FIGURE 4. The three phases of the multilevel approach: coarsening,
initial partitioning, and uncoarsening. G0 is the source graph, G1 to G3
are increasingly coarser graphs, and G4 is the coarsest graph. Adapted
from the METIS manual [43].

A. COARSENING
In the coarsening phase, the multilevel approach gradually
reduces the graph size, grouping vertices into hypervertices
and creating subgraphs. We apply to PANCODE a modified
METIS Heavy-Edge Matching (HEM) technique. For all
ungrouped vertices, choose the edge with the largest weight
and group the two vertices connected to it. Fig. 5a shows an
example of HEM, which groups vertices a and c and vertices
b and d according to the edge with the heaviest weight in
each ungrouped vertex. We visit the vertices by their degree
order so that every vertex can be grouped, like METIS. After
HEM, if there are ungrouped vertices, we perform a two-hop
matching in the graph to group two vertices if they were not
grouped before in this subgraph and if they both have an
edge that connects a vertex in common. Fig. 5b shows an
example of a two-hop matching that groups vertices a and
b and vertices c and d .
Unlike METIS, we build deterministic subgraphs, which

require only one execution. Our subgraphs maintain some

FIGURE 5. An example of (a) a heavy-edge matching and (b) a two-hop
matching including our technique that factors redundant edges out of
vertex grouping. We do not sum the edge weights to form only one edge
between the grouped vertices Sab and Scd . Our proposal includes data
about the source vertices so that when the algorithm groups vertices c
and d , it removes the edges with repeated weights and sources. This
process of factoring redundant edges out also happens in the heavy-edge
matching.

original edges to factor redundant edges out of the cost
computation and vertex grouping. When METIS groups two
vertices, if they have an edge to a vertex in common, METIS
sums their weights and builds a subgraph with only one
edge. On the other hand, we maintain these edges since they
have different sources. The source of an edge is the vertex
from which the edge leaves in a directed graph. If we group
two vertices with edges with the same source and weight,
we discard one edge because it is redundant. This process
can significantly reduce the number of edges at a larger rate
than METIS while factoring redundant edges out of the cost
computation.

The two-hop matching example of Fig. 5b shows how we
factor redundant edges out. Our algorithm groups vertices a
and b into the grouped vertex Sab and vertices c and d into
the grouped vertex Scd . We do not sum all the edge weights
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between the grouped vertices Sab and Scd to form only one
edge. Instead, our proposal includes data about the source
vertices so that the algorithm removes edges with repeated
weights and sources. We have two edges from the grouped
vertex Sab to the grouped vertex Scd with the sameweight (30)
and same source (vertex a), representing the transfer of the
same data. Thus, we use only one of these edges to form the
next subgraph composed of the grouped vertices Sab and Scd .
The exact process happens with the edge with weight 30 and
source b, while the edge with weight 400 remains unchanged.
This process of factoring redundant edges out also happens in
HEM.

When we group vertices, we limit the vertex size so that
the grouped vertices do not affect the balance among the
vertices in the subgraphs, which may lead to memory-invalid
partitionings, low inference rates, or high communication.
METIS does not allow grouped vertices whose size is larger
than a percentage of the sum of the size of all vertices.
If there is only one constraint, METIS sets this percentage
to 1.5%, and if there is more than one constraint, it is 7.5%.
For CNNs, the sum of the size of all vertices is equivalent
to the total memory required by the vertices, excluding the
shared parameters and biases. We use this value to constrain
the size of grouped vertices in the setups with 32 or more
devices because they have devices with minimal memory. For
the other setups, we limit the grouping by a percentage of the
smallest amount of memory. This percentage depends on the
number of source graph vertices and the number of devices.
We adopt a percentage of 3.125% for graphs smaller than
700 vertices and setups between 4 and 11 devices and 25%
in the other cases, based on several tests with different values
for the LeNet and AlexNet models.

Next, METIS generates a fixed number of subgraphs,
while PANCODE can receive the number of subgraphs as a
parameter defined by the user for larger graphs. For smaller
graphs, PANCODE also defines a fixed number of subgraphs.
Changing the number of subgraphs influences the amount of
time required by the algorithm and the partitioning result.

B. INITIAL PARTITIONING
In this phase, we partition the coarsest graph produced in
the previous phase, applying an initial partitioning and a
partitioning algorithm to refine it. METIS uses the graph-
growing approach, which does not guarantee memory-valid
partitionings. We use the Best Fit algorithm [21] to generate
the initial partitioning and respect memory constraints. This
algorithm assigns each vertex to the partition that fits it and
contains the smallest amount of available memory after the
vertex assignment. It assigns as many vertices as possible to
the same partition, filling it before using another partition.
Best Fit produces partitionings with less communication than
the graph-growing approach for homogeneous setups.

METIS applies the Kernighan and Lin’s algorithm based
on the modification of Fiduccia and Mattheyses [44] to
improve the partitioning produced by the graph-growing
approach but stops if the Kernighan and Lin’s algorithm

produces the same result after 50moves. PANCODE executes
a modified version of DN2PCIoT to improve the Best Fit
partitioning. For each vertex v, search for the best vertex u
that produces the most significant improvement in the cost
function when swapping v for u. If the cost function remains
unchanged after a defined number of vertices, stop the search
and select the current best vertex u. This value, called swap
stabilization, is an input parameter to PANCODE for larger
graphs. Furthermore, for each vertex v, search for the best
operation (swap or move).When searching for the best opera-
tion and best vertex or vertices that perform it, if the cost func-
tion produces the same result after another defined number of
vertices, stop the search and choose the current best vertex
v and its respective best operation. This value, called step
stabilization, is an input parameter to PANCODE. With these
modifications, DN2PCIoT executes faster in PANCODE than
the original version [14].

The approaches used by METIS, graph growing and
Kernighan and Lin’s algorithm, partition the source graph
into all available devices. Our algorithm PANCODE applies
Best Fit, which partitions the source graph into only the nec-
essary devices according to their memory. Then, PANCODE
executes DN2PCIoT, which can discard more devices if the
obtained partitioning results in a more significant inference
rate or less communication. Thus, PANCODEmaximizes the
inference rate or minimizes communication and reduces the
number of devices when possible.

C. UNCOARSENING
In the uncoarsening phase, the algorithm maps the partition-
ing obtained for the smallest subgraph to the subgraph of the
next level, making its way back to the original graph. The
algorithm refines the partitioning at each subgraph, which
is possible because we have finer granularity in the larger
subgraphs of higher levels. Thus, the algorithm can now
assign vertices grouped before to different partitions.

Like METIS, we only consider vertices that present com-
munication to vertices at a different partition during the
refinements. METIS applies another version of Kernighan
and Lin’s algorithm in the uncoarsening phase. In this version,
the algorithm executes only one epoch for each subgraph,
so the partitioning algorithm executes faster. We perform a
similar approach. However, to obtain a solution that executes
faster but leverages DN2PCIoT and based on validation tests,
we execute all epochs if the number of devices is smaller than
12 or if the number of devices is smaller than 50 and the
subgraph size is smaller than 700 vertices. This phase reuses
the modifications of the initial partitioning, decreases the
number of epochs, and only considers vertices that execute
inter-partition communication. Thus, the algorithm executes
faster.

D. PANCODE ALGORITHM
Algorithm 2 lists the pseudocode for PANCODE with the
three phases explained in this section. First, we allocate a
list of subgraphs and copy the original CNN graph into the
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first position (Lines 2 and 3). Next, in the coarsening phase,
a loop builds the coarser subgraphs, each one based on the
previous subgraph (Lines 5–7). After that, in the initial parti-
tioning phase, PANCODE applies Best Fit to the coarsest sub-
graph and saves the resultant partitioning to bestP (Line 9),
which maps each graph vertex to one of the partitions. Then,
PANCODE executes DN2PCIoT to improve the Best Fit par-
titioning, saving the result to bestP (Line 10). The last phase is
the uncoarsening, in which a loop runs through the other sub-
graphs until the original graph, executing DN2PCIoT in each
subgraph to improve the partitioning (Lines 12–14). Finally,
PANCODE returns the best partitioning found (Line 15).

Algorithm 2 PANCODE Algorithm
1: function PANCODE(sourceG, nSubG)
2: subG[nSubG+ 1];
3: subG[0]← sourceG;
4: /* Coarsening phase */
5: for n← 1 to nSubG do
6: subG[n]← Coarsen(subG[n− 1]);
7: end for
8: /* Initial partitioning phase */
9: bestP← BestFit(subG[nSubG]);

10: bestP←DN2PCIoT(bestP, subG[nSubG]);
11: /* Uncoarsening phase */
12: for n← nSubG− 1 to 0 do
13: bestP←DN2PCIoT(bestP, subG[n]);
14: end for
15: return bestP;
16: end function

V. METHODOLOGY
This section shows the CNN models, the setups for each
model, the algorithms we execute to validate PANCODE, and
how it compares to two literature algorithms.

A. CONVOLUTIONAL NEURAL NETWORK MODELS
We use two CNN models for the PANCODE validation:
LeNet and AlexNet [19], [20]. While LeNet is a more
lightweight model suitable for very constrained devices with
61 thousand parameters and 238 kB, AlexNet is a more robust
model that requires more resources: 61 million parameters
and 233 MB [45]. For both models, we group some neurons
into one vertex to reduce the number of vertices in each
dataflow graph, and we explain each grouping next.

For LeNet, we employ the versions LeNet 2:1 and LeNet
1:1 with different groupings [14], as shown in Fig. 6. The
cubes represent the LeNet neurons, while the circles and
ellipses represent the dataflow graph vertices. For LeNet 2:1
(Fig. 6a), we group the depth neurons in the same height
and width into one vertex in each input, convolution, and
pooling layer. We also group two neurons in width and two
in height into one vertex, with each vertex in these layers
containing four neurons of these dimensions plus the neurons
in the respective depth. An exception is the last pooling layer,

in which we group only the neurons in depth. In the fully
connected layers, as the width and height have size one,
we group every four neurons in the depth dimension into one
vertex. The LeNet 2:1 model has 604 vertices, resulting in
around four times fewer vertices than LeNet 1:1.

For LeNet 1:1 in Fig. 6b, we group only the depth neu-
rons in the same height and width into one vertex in each
input, convolution, and pooling layer. We model the fully
connected layer neurons as one vertex each, resulting in a
neural network with 2343 vertices. Table 3 shows the number
of shared parameters and biases per layer and the memory
and computation required by each vertex per layer, inference,
and LeNet version. Here, the pooling layers present biases
and trainable coefficients. Additionally, the fully connected
layers require the most amount of memory, and the convo-
lution layers require the most computation for both versions,
including total and per-vertex amounts. In this table and here-
after, we represent the convolution layers by C, the pooling
layers by P, and the fully connected layers by FC. While
LeNet 2:1 groups more neurons, leading to faster partitioning
since the graph size is smaller than LeNet 1:1, it constrains
partitioning as it assigns the grouped neurons to the same
partition. On the other hand, LeNet 1:1 allows more flexible
partitionings as the algorithm assigns these neurons to differ-
ent partitions. Partitioning two LeNet versions aim to verify
if an expert-designed pregrouping leads to better results than
a fully automatic grouping.

Fig. 7 presents the dataflow graph for AlexNet with 65,916
vertices, which is four layers deeper and has 28 times more
vertices than LeNet 1:1. For each input, convolution, and
pooling layer, we group the depth neurons in the same height
and width into one vertex, as for LeNet. We model the
fully connected layer neurons as one vertex each, similar
to the LeNet 1:1 grouping. Table 4 shows the number of
shared parameters and biases for each layer and the mem-
ory and computation required by each vertex in each layer
per inference. Again, the fully connected layers require the
most amount of memory, and the convolution layers require
the most amount of computation, both total and per-vertex
amounts.

B. DEVICE CHARACTERISTICS
LeNet uses five setups with four device models that gradually
constrain memory, computation, and communication. They
belong to the most constrained microcontroller big class of
the Terminology for Constrained-Node Networks, between
classes 0 and 4 (from 10 KiB to 1000 KiB of RAM) [50].
Table 5 shows the maximum number of devices allowed in
each experiment, the device model name inspiring the exper-
iments, the device memory, the device estimated computa-
tional performance, and the communication capacity between
devices. The memory comes from the datasheets [46], [47],
[48], [49] and we estimate the computational performance
by their clock speed and the number of cores. Finally, com-
munication employs a shared wireless medium with connec-
tions of up to 300 Mbits/s. We estimate the communication
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FIGURE 6. LeNet dataflow graph and vertex granularity used in our experiments. Each cube stands for a CNN neuron, while each circle is a vertex in the
source dataflow graph. (a) LeNet 2:1: the LeNet model with 604 vertices, in which the width and height of each input, convolution, and pooling layer are
divided by two, except for the last pooling layer, and the depth of the fully connected layers is divided by four. (b) LeNet 1:1: the LeNet model with
2343 vertices [14] (modified).

TABLE 3. Per-layer and per-vertex characteristics of each LeNet model used in this paper [14] (modified).

FIGURE 7. AlexNet dataflow graph.

performance depending on the maximum number of devices
and assume that the communication links have a constant
performance during the whole partitioning algorithm. Thus,
the communication between devices for LeNet ranges from
low (80 kbps) to reasonable (50 Mbps).

Table 6 shows nine setups for AlexNet with hypo-
thetical devices belonging to classes 10 and 15 (from
4 MiB to 1024 MiB of RAM) of the least constrained

general-purpose big class [50]. These setups offer less mem-
ory than standard embedded devices because, in many cases,
these devices perform other tasks, and only a fraction of
their memory is available for the CNN application. We grad-
ually constrain the setups in memory and computational
performance but use a high communication performance
of 300 Mbits/s for all the setups. The communication links
between devices present the same, constant performance
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TABLE 4. Per-layer and per-vertex characteristics of the AlexNet model used in this paper.

TABLE 5. Setups for the LeNet experiments [14] (modified).

TABLE 6. Setups for the AlexNet experiments.

for each experiment. AlexNet uses more powerful devices
and communication, considering the future advancements in
communication technology, such as 6G. Also, in the future,
even constrained devices will provide more resources than
current ones [50].

C. ALGORITHMS
We employ three algorithms for all the models, starting with
Best Fit [21]. Also, we use the gpmetis from METIS [18],
varying the number of partitions according to the setups, the
number of partitionings to compute, the number of iterations
for the refinement algorithms at each stage of the uncoarsen-
ing process, the maximum allowed load imbalance among the
partitions, and the objective function of the algorithm. The
latter can be edge-cut minimization or total communication
volume minimization. Finally, we employ PANCODE, with
different numbers of subgraphs, and choose the number that

leads to the best cost after the Best Fit application in the initial
partitioning phase. This best cost may be the highest inference
rate when the algorithm objective is inference rate maxi-
mization or the smallest amount of communication when the
algorithm objective is communication minimization. Then,
we execute PANCODE entirely with the chosen number of
subgraphs.

VI. EXPERIMENTAL RESULTS
This section discusses the results of the LeNet and AlexNet
experiments for inference rate maximization and commu-
nication minimization and the coarsening phase results for
AlexNet.

A. INFERENCE RATE MAXIMIZATION
The primary objective to partition a neural network when
there is a data stream is usually the inference rate maximiza-
tion, i.e., throughput maximization. Fig. 8 shows the results
in logarithmic scale for LeNet 2:1 and LeNet 1:1 when the
objective function is inference rate maximization. We depict
the cases in which METIS cannot produce valid partitionings
as a red ‘‘x’’.

PANCODE achieves the highest results in 70% of the
experiments, between 1.28 and 2.68 times higher than the
second-best algorithm. Although the results of METIS are
between 1.53 and 1.66 times higher than PANCODE in 30%
of the experiments, it cannot produce valid partitionings
for the most constrained setups. METIS does not limit the
amount of memory required by each partition and does not
account for the memory required by the shared parameters
and biases of CNNs. On the other hand, PANCODE and Best
Fit produce valid partitionings for all setups.

The Best Fit results for the 53- and 63-device setups are
similar because they employ the same device model, main-
taining the memory and computational performance. Also,
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FIGURE 8. Inference rate maximization results for the LeNet models
(higher is better).

the 63-device setup has a reduced communication perfor-
mance, which limits its performance since Best Fit fills one
device before the next. PANCODE has the same influence
since it uses Best Fit as initial partitioning in the coarsest
graph.

For LeNet 2:1 and the 2-, 4-, and 11-device setups for
LeNet 1:1, the inference rate of the initial partitioning in
PANCODE is between 1.00 (equal) and 3.15 times smaller
compared to Best Fit. Despite the initial partitioning value,
PANCODE can lead to better results than Best Fit for all
setups and achieve the best results in 75% of the experiments,
suggesting that either the coarsening phase or the Best Fit
initial partitioning limit its performance.

PANCODE achieves the highest results in 60% of the
experiments with LeNet 1:1, between 1.08 and 2.02 times
above LeNet 2:1. For the other 40%, the inference rate
of LeNet 2:1 is between 1.03 and 1.31 times higher than
LeNet 1:1. Therefore, the results suggest that we do not
need expert-designed pregrouping such as LeNet 2:1 and can
use the fully automatic grouping of PANCODE to achieve
partitionings with high inference rates.

Fig. 9 shows the results in logarithmic scale for AlexNet
when the objective function is inference rate maximization.
Again, we normalize the inference rate, include the best
inference rate achieved in each setup, and depict the METIS
invalid partitionings as a red ‘‘x’’. Additionally, as LeNet
1:1 leads to higher inference rates in more setups than

FIGURE 9. Inference rate maximization results for AlexNet (higher is
better).

LeNet 2:1, we only use one AlexNet model, equivalent to
LeNet 1:1.

PANCODE achieves higher or similar results in 88.9% of
the experiments, between 1.00 and 2173.53 times higher than
the second-best results, which come from Best Fit. For the
least constrained setups with up to 16 devices, we expect the
results to be similar because we use the same communication
performance, and, as we double the number of devices in
the experiments, we use half of the computational perfor-
mance for each device, maintaining the total computational
performance. However, for the setup with up to 32 devices,
even maintaining the total computational performance, only
METIS produces a result similar to the least constrained
setups, while the result of Best Fit and PANCODE drops to
0.10 and 0.46 times the METIS result, respectively. For the
most constrained setups with up to 40, 47, 54, and 63 devices,
METIS again cannot produce any valid partitionings, unlike
PANCODE and Best Fit. In this case, PANCODE achieves
results between 2.24 and 2173.53 times higher than Best Fit.

B. COMMUNICATION MINIMIZATION
Even when there is a data stream, another objective to par-
tition a dataflow graph is communication minimization so
that the application does not overload the communication
network. Fig. 10 shows the results in logarithmic scale for
LeNet 2:1 and LeNet 1:1 when the objective function is
communication minimization. We depict the cases in which
METIS cannot produce valid partitionings as a red ‘‘x’’.

PANCODE achieves the lowest results in 90% of the exper-
iments, between 1.02 and 1.37 times lower than the second-
best algorithm. For LeNet 1:1 and the 4-device setup in
Fig. 10b, Best Fit is 1.11 times lower than PANCODE. In this
experiment, the initial partitioning communication produced
by Best Fit in PANCODE is 1.26 times higher than the
Best Fit communication, suggesting that either the coarsening
phase or Best Fit limit PANCODE. For the most constrained
setups, METIS cannot produce any valid partitionings again
for the reasons described in the inference rate maximization
results. Again, PANCODE and Best Fit produce valid par-
titionings for all setups. The Best Fit performance for the
setups up to 53 and 63 devices is similar due to the similarity
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FIGURE 10. Results of communication minimization for the LeNet
models (lower is better).

between these setups and the Best Fit approach of filling
one device before the next. The PANCODE results for the
identical setups are also similar due to Best Fit as PANCODE
initial partitioning.

PANCODE leads to the lowest result in 60% of the exper-
iments with LeNet 1:1, between 1.01 and 1.11 times below
LeNet 2:1. For the other 40%, LeNet 2:1 is between 1.13 and
1.40 times lower than LeNet 1:1. Although the LeNet 2:1
improvement is more significant than the LeNet 1:1 improve-
ment, LeNet 1:1 achieves the lowest results in more setups
than LeNet 2:1. Additionally, LeNet 2:1 is a more aggressive
manual grouping of the LeNet model, time-consuming, and
prone to errors. Therefore, the results for the proposed setups
suggest that we can employ LeNet 1:1 for partitionings with
low communication costs and limited impact on the results.

Fig. 11 shows the results for AlexNet when the objective
function is communication minimization. Like the LeNet
investigation, we also depict the METIS invalid partitionings
as a red ‘‘x’’.

Unlike LeNet, Best Fit achieves the lowest results in
77.8% of the experiments, between 1.07 and 2.54 times
below PANCODE, the second-best algorithm. Between 2 and
32 devices, METIS does not scale well as the difference
between its results and the results of the other algorithms
increase, reaching six times more communication activity
than Best Fit in the setup with up to 32 devices. PANCODE
is between 1.05 and 3.18 times lower than METIS for these

FIGURE 11. Results of communication minimization for AlexNet (lower is
better).

setups, with the difference between them increasing as the
number of devices in the setups increases, which shows that
PANCODE scales better than METIS.

For the two most constrained setups, PANCODE achieves
the lowest results, 1.02 or 1.10 times lower than Best Fit.
Again, METIS cannot produce valid partitionings under the
most constrained setups with up to 40 or more devices, unlike
PANCODE and Best Fit. Although PANCODE only achieves
the best results in some setups, it is better than Best Fit in half
of the most constrained setups and 0.07 or 0.14 times higher
in the other half. The results for the most constrained setups
are similar due to the characteristics of the employed devices:
the amount of memory per device drops 1.45 times between
the setups up to 40 and 63 devices, and the computational
performance drops 1.6 times. All theAlexNet communication
minimization results also suggest that PANCODE is con-
strained by the coarsening phase or the use of Best Fit as
initial partitioning, except the result for the most constrained
setup. This suggestion is due to the communication of the
initial partitioning produced by Best Fit in PANCODE in
these setups, between 1.09 and 11.7 times higher than the
communication of Best Fit.

C. COARSENING PHASE RESULTS
This section analyzes the coarsening phase of METIS and
PANCODE due to the results in the previous subsections,
which indicate this phase as one of the potential bottlenecks
for PANCODE. Here the metrics are the number of sub-
graphs generated in the coarsening phase and the number of
vertices and edges produced in the last subgraph, i.e., the
smallest, coarsest subgraph. Fig. 12 shows the number of
subgraphs produced by METIS, PANCODE using the same
number of subgraphs asMETIS (called PANCODE-METIS),
and PANCODE for inference rate maximization of AlexNet.
While the results for METIS and PANCODE-METIS are
the same, we define the number of subgraphs generated by
PANCODE according to the subgraph that leads to the best
initial cost (largest inference rate or lowest amount of com-
munication), as explained in Subsection V-C. METIS creates
seven to nine subgraphs, while PANCODE creates more sub-
graphs than METIS in 77.8% of the setups, between 6 and
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FIGURE 12. Number of subgraphs produced in the coarsening phase in
METIS and PANCODE for AlexNet and inference rate maximization.
PANCODE-METIS represents the results for PANCODE using the same
number of subgraphs as METIS.

FIGURE 13. Number of vertices produced in the coarsening phase in
METIS and PANCODE for AlexNet and inference rate maximization.
PANCODE-METIS represents the results for PANCODE using the same
number of subgraphs as METIS.

15 subgraphs. When PANCODE generates more subgraphs,
there is a trend for the last subgraph to present fewer vertices
and edges as METIS inspires the PANCODE approach to
coarsen graphs.

Fig. 13 shows the number of vertices in the last subgraph
produced by METIS, PANCODE-METIS, and PANCODE
for inference rate maximization of AlexNet. PANCODE-
METIS and PANCODE reduce the number of vertices related
to METIS for all the setups, between 1.06 and 7.80 times and
1.18 and 31.13 times, respectively. PANCODE also reduces
the number of vertices related to PANCODE-METIS, except
in the 8- and 16-device setups, in which PANCODE generates
fewer subgraphs than PANCODE-METIS and, thus, tends to
show smaller reductions in the graph size.

Fig. 14 shows the number of edges in the last subgraph
produced by METIS, PANCODE-METIS, and PANCODE
for inference rate maximization of AlexNet. PANCODE-
METIS reduces the number of edges between 1.44 and
12.34 times related to METIS in 55.5% of the setups, and
PANCODE reduces it between 1.13 and 28.52 times related
to METIS in 44.4% of the setups. In the setups in which
PANCODE produces more edges than METIS, PANCODE
creates fewer subgraphs than METIS only for the setup with
up to 16 devices. In this setup, we expect PANCODE to

FIGURE 14. Number of edges produced in the coarsening phase in METIS
and PANCODE for AlexNet and inference rate maximization.
PANCODE-METIS represents the results for PANCODE using the same
number of subgraphs as METIS.

have more edges in the last subgraph. The more significant
number of edges in the last subgraph may explain the only
poor result of PANCODE related to METIS in the setup
with up to 32 devices in inference rate maximization in
Subsection VI-A. We cannot compare the number of edges
for the setups with up to 40 or more devices because METIS
cannot produce valid partitionings for these setups. Addi-
tionally, in these setups, the large number of edges indicates
that PANCODE cannot match many edges, find a significant
number of redundant edges, or both.

For AlexNet with communication minimization, we have
a similar pattern, with PANCODE producing up to 11 sub-
graphs and fewer subgraphs (six) thanMETIS (eight) only for
the setup with up to four devices. PANCODE produces parti-
tionings with less communication than METIS in this exper-
iment for all setups. For LeNet, the same pattern appears:
PANCODE generates more subgraphs for the setups with
up to 11 or more devices and the same number or fewer
subgraphs for the other setups. The number of vertices and
edges in the last subgraphs produced by PANCODE is always
smaller than the ones produced byMETIS when using LeNet.
These results show the effectiveness of the PANCODE coars-
ening phase in reducing the number of vertices and edges
of the input graphs. Additionally, they indicate that we can
improve the coarsening phase by reducing the number of
edges in the generated subgraphs.

D. DISCUSSION
PANCODE generates partitionings with the highest inference
rates for both LeNet and AlexNet in 78.9% of the exper-
iments, up to 2173.53 times higher than the second-best
algorithm (METIS or Best Fit). For smaller CNNs such as
LeNet and the constrained devices of our setups, PANCODE
provides a significant inference rate, which should meet the
requirements of most applications, for instance, real-time
surveillance. On the other hand, with AlexNet and con-
strained devices, PANCODE achieves inference rates that
may not meet the requirements of some applications. In our
scenarios, we envision a future in which the cities contain
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billions of tiny, resource-constrained devices [12]. These
devices perform simple tasks, and part of their resources can
be used for other applications, for instance, CNN inference.
Even though the most constrained setups achieve low infer-
ence rates, when we gather several setups with the same
configuration and consider a large number of devices within
a city, we may have appropriate resources to meet the appli-
cations inference rate requirement. Therefore, we maximize
the inference rate by distributing its execution, and our results
suggest that PANCODE is a proper algorithm to partition
CNNs among constrained and exceptionally very constrained
devices for inference rate maximization.

Communication minimization may not be an application
requirement considering the same scenarios as inference
rate maximization and data streams. However, an applica-
tion is advantageous if it does not overload the commu-
nication network. Our results show that the partitionings
generated with PANCODE achieve the lowest communica-
tion cost for small neural networks and larger CNNs with
constrained devices. For larger CNNs and less constrained
devices, PANCODE does not increase the communication
cost substantially related to the best approach, which is Best
Fit. These results indicate that PANCODE does not overload
the communication network for exceptionally constrained
setups. Thus, PANCODE is appropriate for partitioning small
neural networks or distributing execution to exceptionally
constrained setups in IoT and Fog Computing scenarios when
the objective function is communication minimization.

When we partition LeNet for communication minimiza-
tion, we have between 3.3 KiB and 132.6 KiB of total
communication per inference among all the devices. For
AlexNet, the total communication ranges from 54.1 KiB to
2.2 MiB per inference. For the real-time surveillance appli-
cation, in which we need at least 24 frames per second, the
data rate would be between 652.8 kbps and 1Mbps for LeNet
and 443.2 kbps and 18.5 Mbps for AlexNet. The LeNet setup
devices comprise ARM processors, which support transfer
rates up to 12 Mbit/s, and the AlexNet setups contain devices
that support Wi-Fi 5 and 6. Thus, although the setups contain
constrained devices, they can communicate at a sufficient
data rate in our experiments.

We evaluate our previous manual grouping approach by
comparing LeNet 2:1 to LeNet 1:1, a less aggressive group-
ing. We show that the automatic grouping performed by
PANCODE leads to the highest inference rates or lowest
amounts of communication for LeNet 1:1 in most setups.
Thus, the LeNet results suggest that the PANCODE auto-
matic grouping leads to more profitable results requiring less
time and being error-free related to manual groupings.

Finally, we show data about the coarsening phase of the
AlexNet inference rate maximization to analyze the advan-
tages of our automatic grouping approach and point out
how we can improve it. As explained in Subsection IV-A,
PANCODE tends to create subgraphs with fewer edges than
METIS due to its higher-degree matching and the factoring
of redundant edges out of the cost computation. For most

experiments, PANCODE can create smaller subgraphs than
METIS. However, PANCODE cannot match many edges,
find a significant number of redundant edges, or both for the
setups with up to 32, 47, 54, and 63 devices. The last subgraph
of PANCODE contains fewer vertices than the last subgraph
created by METIS for all the experiments. Therefore, the
automatic grouping of PANCODE effectively creates smaller
subgraphs than METIS with less communication and a sim-
ilar inference rate in the partitionings. To conclude our anal-
ysis, we can use PANCODE to partition dataflow graphs of
different domains into any device, not only neural networks
and constrained devices.

VII. FUTURE RESEARCH DIRECTIONS
We identify four main research lines to continue this study.
First, we can perform more experiments to evaluate which
phase of the multilevel approach should be improved (coars-
ening, initial partitioning, or uncoarsening). The coarsening
phase tends to show the most significant impact on the par-
titioning result since coarsening too many vertices or ver-
tices that present too many computations may constrain the
possible configurations for partitions. In coarsening, we can
adjust the number of subgraphs produced in this phase to
avoid constraining the partitioning too much. The execu-
tion order of the matching techniques can be changed, per-
forming two-hop matching before the heavy-edge matching.
We can also propose other techniques to group vertices, for
instance, based on constraining the vertex grouping accord-
ing to the result of the initial partitioning applied to the
source graph, i.e., performing an initial partitioning before
coarsening.

We can use other algorithms to perform the initial partition-
ing, such as Worst Fit, First Fit, and Greedy [14]. In uncoars-
ening, we can change the conditions so that DN2PCIoT
executes more or all epochs at each subgraph refinement.

Besides the classical models tested in this paper, we can
also perform experiments with different CNN models, such
as specific models for constrained devices and recent mod-
els requiring more resources for execution. Although CNNs
specially designed for constrained devices require fewer
resources than regular CNNs, they still may require more
resources than a very constrained device provides. Thus,
partitioning CNNs designed for constrained devices is also
necessary. Examples of specific models for constrained
devices are SqueezeNet [51], MobileNet [52], and Shuf-
fleNet [53]. More recent models comprise Channel Boosted
CNN [54], [55], Convolution Block Attention Module [56],
and Squeeze-and-Excitation Net [57].

We can test these CNNs with heterogeneous and more
constrained setups, mixing devices from the most constrained
microcontroller and least constrained general-purpose
classes [50]. Finally, we can build a framework for task
scheduling, fault tolerance – including rescheduling, online
partitioning, and repartitioning –, and the inference aggrega-
tion of several setups. Thus, we can increase the application
inference rate.
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VIII. CONCLUSION
This paper proposes PANCODE, a multilevel algorithm that
enhances our recently proposed DN2PCIoT algorithm [14],
improving its performance and enabling the partitioning of
large graphs. We also propose modifications to DN2PCIoT
that runs within PANCODE.

We perform experiments using the LeNet and AlexNet
CNN models for five and nine different setups, respectively,
for inference rate maximization and communication min-
imization in PANCODE and compare them to the state-
of-the-art METIS and the Best Fit algorithms. The results
for inference rate maximization show that PANCODE leads
to the highest inference rates for both neural networks in
78.9% of the experiments, up to 2173.53 times higher than
the second-best algorithm. The results for communication
minimization show that PANCODE achieves the lowest com-
munication costs for small neural networks or very con-
strained setups and does not increase the communication
cost substantially related to Best Fit for large neural net-
works. METIS cannot provide valid partitionings for both
neural networks in the most constrained setups. Thus, our
results suggest that PANCODE is an appropriate algorithm
to partition CNNs among constrained and exceptionally very
constrained devices.

For future work, we can perform experiments to evaluate
which phase of the multilevel approach should be improved
and start the improvement from it. We can also test differ-
ent CNN models and heterogeneous and more constrained
setups. Finally, we can build a framework for task schedul-
ing, fault tolerance, and the inference aggregation of several
setups to increase the application inference rate.
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