
Data Resilience System for Fog Computing
Franklin Magalhães Ribeiro Juniora,b, Carlos Alberto Kamienskia
aFederal University of ABC (UFABC), SP, Brazil
bFederal Institute of Maranhão (IFMA), MA, Brazil

ART ICLE INFO
Keywords:
Data reduction
Fog computing
Internet of Things
Resilience
Trustworthiness

ABSTRACT
Fog computing improves IoT systems by analyzing and storing data locally at the network edge. How-
ever, it is challenging to design a fog-based IoT system data flow as data transmissions must be agile
and resistant to network failures and disconnections. Data collected by sensors must persist in the fog,
even during a long disconnection period. When the connection is available again, the fog needs to
send the data immediately to the cloud. This paper proposes and evaluates the Fog-DaRe system for
supporting data flow resilience between fog and cloud during network availability and unavailability
situations. Fog-DaRe allows data persistence in the fog and uses different compression techniques to
reduce the data volume. We evaluate 10 data flow configurations in experiments with 5,000 simulated
sensors, computing hardware, and network metrics. The Fog-DaRe strategy yields different tradeoffs
for scenarios with network unavailability, lossy compression techniques, and data encryption. For ex-
ample, our results reveal a reduction of at least 77.7% for fog-to-cloud batch transfer time and 81.5%
for fog storage usage when the network is unavailable. When the network between fog and cloud
is available, delay increases by 10% due to data buffering in the fog, but storage requirement drops
73.6%. Lossy data filtering yields a reduction of 83.3% in batch transfer time and 50% in storage.
Also, the compression of encrypted data increases storage usage and batch transfer time by 125%,
compared to plain data.

1. Introduction
The Internet of Things (IoT) collects, transmits, stores,

and analyzes data generated by physical devices connected
to a network [1]. An IoT system uses sensors that monitor
the environment context by collecting data and performs ac-
tions through actuators. IoT systems are usually based on
robust centralized cloud computing infrastructures to store
and process data and rely on distributed fog computing re-
sources.

A fog-based IoT system can analyze and store data lo-
cally at the network edge, regardless of the availability of
an Internet connection to the cloud [2]. As the fog is at the
edge of an inherently distributed IoT system, it can process
sensor data locally and provide a faster response to actua-
tors to change system behavior accordingly. Actions taken
by actuators may be, for example, turning on or off an irri-
gation system or increasing and decreasing the intensity of a
street lighting system [3]. Nevertheless, as the fog depends
on a centralized view of the system located at the cloud, a
current challenge is dealing with disconnections or network
failures for ensuring a resilient data flow from sensors up to
the cloud [4].

Resilient solutions for a fog data flow must deal with
data from thousands of sensors and consider memory, stor-
age, and processing constraints of its computing nodes [5]
[6]. In the event of a network disconnection between fog
and cloud, the fog needs to store the data temporarily and
transmit it to the cloud when the connection returns. The

∗Corresponding author:
E-mail addresses: franklin.ribeirojunior@ifma.edu.br (F.M. Ribeiro

Junior); carlos.kamienski@ufabc.edu.br (C.A. Kamienski)
ORCID(s): 0000-0002-2988-7878 (F.M. Ribeiro); 0000-0002-3087-9234

(C.A. Kamienski)

longer the disconnection period, the larger the data volume
stored in the fog. Therefore, the fogmust deal with large data
volumes to avoid storage overflow and long network delays
when the connection returns. We designed the Trustworthi-
ness for IoT Framework (TW-IoT) [7] that considers vari-
ous data resilience possibilities for a fog-based IoT system
data flow. However, TW-IoT focuses on general concepts
and does not propose and evaluate specific mechanisms.

This paper proposes the Fog-DaRe (Fog-based IoT Data
Resilience) system to provide data filtering and persistence
mechanisms preliminarily introduced by the TW-IoT frame-
work. Fog-DaRe maintains the data flow continuity in the
communication between fog and cloud even under network
disconnections. Fog-DaRe guarantees fog computing resilience,
which is a vital trustworthiness requirement for computer
systems[8]. It also supports the data flow in the fog stage,
offering data resilience and filtering mechanisms when the
network is available or not. A disconnection-aware store
and forward mechanism can guarantee data resilience. On
the other hand, we can deploy multiple data filtering mecha-
nisms in the Fog-DaRe system. Currently, we implemented
six filtering techniques: a) run-length-encoding (RLE) [9,
10, 11]; b) Zstandard [11, 12]; c) Symbolic Aggregate ap-
proXimation (SAX) [13, 14, 15, 16]; d) Piecewise Aggre-
gate Approximation (PAA) [13, 16]; e) standard deviation
based on the Chauvenet outlier removal technique [17, 18],
and; f) a naïve filter based on the arithmetic mean.

We conducted a performance analysis study of Fog-DaRe
using a smart farming context [19], for 5,000 simulated sen-
sors, with ten data flow configurations, using the six filter-
ing techniques, as well as a baseline case with no filtering.
We evaluate these configurations in two network availability
scenarios, including experiments with stable and unstable
network connections. For the latter, we generate an inter-

F. M. Ribeiro Junior and C.A. Kamienski: Preprint submitted to Elsevier Page 1 of 13

mailto:franklin.ribeirojunior@ifma.edu.br
mailto:carlos.kamienski@ufabc.edu.br


Data Resilience System for Fog Computing

ruption followed by a reconnection. In both scenarios, we
measure the network delay and throughput and the usage of
CPU, RAM, and storage. We also measure the batch trans-
fer time after the connection returns for the scenario with a
disconnection period.

Our results reveal that the Fog-DaRe has a low impact
on CPU and RAM usage. For the connection availability
scenario, data filtering techniques have advantages for stor-
age usage, imposing 10% more delay than applying no fil-
tering method in the fog. On the other hand, we observe
substantial benefits for the batch transfer time for the discon-
nection scenario. In the worst case, the Fog-DaRe causes a
reduction of 77.7% in batch transfer time and 81.5% in stor-
age usage, but it reduces the batch transfer time by 99% and
storage in the best case% usage by 98.8%. Our analysis un-
veils that each filtering configuration exposes particular ad-
vantages and disadvantages according to different metrics.
For example, using lossy or lossless compression techniques
directly impacts the data reduction and batch transfer time.
Compressing the received encrypted packets from mist de-
mands less CPU and RAM usage.

To the best of our knowledge, this is the first study to ad-
dress fog resilience, focusing on resource constraints, trans-
mission delay, and fog-to-cloud batch transmission time, eval-
uating distinct compression techniques combined with data
persistencemechanisms, using thousands of sensors in a smart
farm scenario. Therefore, the main contributions of this pa-
per are (i) to propose a fog data persistency solution that
combines filtering to reduce the massive data volume gen-
erated by IoT applications, (ii) to evaluate the impact of data
filtering on fog-to-cloud batch transfer time after a discon-
nection event (iii) to clarify the tradeoffs between storage
and transmission delay for different filtering mechanisms in
a resilient fog system, and (iv) to discuss the tradeoffs re-
lated to fog filtering mechanisms and their implications to
fog computational resources.

We organize the rest of the work as follows: Section 2
presents the background, Section 3 describes the Related
Work, and Section 4 introduces the Fog-DaRe system. Sec-
tion 5 explains our researchmethodology for the performance
analysis, where Section 6 presents the results. Section 7 dis-
cusses the results and lessons learned, and finally, Section 8
draws some conclusions and lines for future work.

2. Background
This section presents the stages of a distributed IoT sys-

tem, resilience in IoT, and data filtering.
2.1. Stages of a Distributed IoT System

We consider a fog-based IoT system data flow passing
through a 4- stage distributed infrastructure comprised of
thing, mist, fog, and cloud [20]. Each stage corresponds to
a set of devices, equipment, and software components with
similar characteristics and roles (Fig. 1).

The thing stage contains sensors and actuators that col-
lect data and act in an environment [4]. The mist stage is

Figure 1: IoT Stages.

directly connected to the thing stage, providing communi-
cation to sensors and actuators. Mist computing represents
another stage of a distributed IoT system between sensors
and actuators and the fog computing infrastructure [21, 22].
Although it can be considered another level of a hierarchi-
cal fog solution, the mist usually plays the role of a field-
installed radio gateway to provide communication to the con-
nected devices [20]. Mist nodes can also process and store
data in a limited way [22]. The fog stage deals with massive
data and can analyze and store data locally at the network
edge, independently of an active Internet connection. How-
ever, given the high number of fog nodes, they have resource
constraints absent in the cloud [4]. The cloud stage provides
virtualized hardware resources with high computing capac-
ity to store and analyze large data volumes [23].
2.2. Data Flow Resilience

Resilience refers to the system’s ability to prevent, mit-
igate, and resist failures [24]. Therefore, system resilience
is part of the definition of trustworthiness [8], which deals
with vulnerabilities. In an IoT system, resilience means sup-
porting and recovering the communication, even with device
malfunction or network interruptions [25]. However, enforc-
ing resilience demands additional computing resources, and
therefore an IoT system must be concerned about the typ-
ical resource constraints in the network edge, such as net-
work bandwidth, battery, storage, RAM, and CPU) [26]. In
other words, there is a trade-off between achieving higher
resilience levels and using scarce computing resources for a
non-functional requirement.

Under network disconnections, the fog-based IoT system
can cope with this failure by maintaining service continuity
at the data level. For example, the system can use a fog-based
data persistence mechanism during a disconnection with the
cloud. However, assuming that long disconnection periods
may occur between IoT stages, the stored data can cause fog
memory overflow and long data transmission delays. For
that reason, the fog can use a data filtering mechanism to
solve this problem. The same reasoning is valid for data dis-
connections between the mist and the fog.

F. M. Ribeiro Junior and C.A. Kamienski: Preprint submitted to Elsevier Page 2 of 13



Data Resilience System for Fog Computing

2.3. Data Filtering
Data reduction (filtering, aggregation, and compression)

mechanisms optimize and yield positive impacts in data flow
between IoT stages [27, 28, 29, 30, 31, 32]. In an IoT health-
care system scenario, a fog node can use wavelet transforms
to extract ECG features, reducing the data size [27, 28]. Data
reduction mechanisms prevent the fog from transmitting a
large amount of unnecessary or redundant data to the cloud
[30]. The fog can use data filtering to aggregate data by cate-
gories, thus reducing the data size and data transmission rate
[29, 32]. Additionally, compressing IoT data reduces the de-
vice’s energy consumption because it reduces the transmis-
sion rate [28].

We refer to data reduction mechanisms (filtering, aggre-
gation, and compression) as data filtering throughout this pa-
per. Different techniques exist for data filtering, with differ-
ing performances and implications. Some techniques lose
data (called lossy techniques), where other techniques (called
lossless) preserve the whole dataset. For example, a naïve
filtering method based on the arithmetic mean loses data be-
cause after computing this technique, the mean value rep-
resents the dataset, and the original data is lost. On the
other hand, typical compression algorithms recover the en-
tire dataset when uncompressed.

Computing the standard deviation can work as a lossy
filtering technique, within a range c of standard deviations.
The c constant delimits the records to be filtered, using the
Chauvenet technique to remove outliers [17, 18]. Instead
of eliminating outliers, it deletes the data outside the range
c. Run-length-encoding (RLE) is a compression technique
that aggregates data with repeated values [9, 10, 11]. We
can also modify the RLE technique to classify and join the
repeated data values in the same categories, preserving the
data values’ order in a data time series. The Symbolic Ag-
gregate approXimation (SAX) technique has many variants,
and it reduces the data size by aggregating similar data val-
ues in symbols, like a dictionary algorithm [13, 14, 15, 16].
Therefore, the SAX algorithm replaces numerical data, such
as temperature and moisture, with a symbol. The Piece-
wise Aggregate Approximation (PAA) method minimizes
the number of values in a data time series by aggregating
values using a calculation, which results in a few values rep-
resenting the original time series [13, 16]. Zstandard is a
lossless compression algorithm to compress data files, and
it keeps original data when uncompressing [11, 12]. The
Zstandard compresses the data into a file, requiring decom-
pression to access the original data file.

3. Related Work
There are studies on communication resilience for fog

and edge computing systems [33, 34, 35, 36]. Some studies
focus on replicating data from one fog node to others, which
demands more computing resources from the IoT system as
a whole [33, 34]. Jeong et al. consider self-healing mech-
anisms in case of fog failure by allocating a new fog node
and using data redundancy or data migration [35]. Also, Al-

Khafajiy et al. propose a load balancing mechanism between
fog nodes to deal with a large amount of data received from
end-node devices [36]. However, unlike our Fog-DaRe sys-
tem, these investigations do not introduce mechanisms for
detecting and recovering faults in the event of network dis-
connections between fog and cloud.

Delay (or Disruption) Tolerant Networks (DTN) can store
data by a particular time during disconnection and send them
through the network when the link is available [37]. Some
studies relate DTN to fog-based IoT systems [38, 39, 40],
but they only deal with delay or packet loss metrics, neglect
fog resource constraints, and only cover particular scenar-
ios. Luzuriaga et al. propose IBR-DTN, an architecture
for MQTT with DTN to evaluate the communication be-
tween a Raspberry Pi gateway and sensor boards [38]. They
vary the communication channel error by 0%, 25%, 50%, and
75% in three disconnection scenarios, no disconnection, 6-
minute disconnection, and 12-minute disconnection. How-
ever, they only consider seven sensor boards in the experi-
ment and mention that IBR-DTN has no persistent storage,
using RAM for storing data.

Some studies use DTN in smart farming scenarios with
mobile nodes, where nodes transmit data, whenever they en-
counter each other [39, 40]. Kulatunga et al. evaluate a real
scenario by monitoring cows, where each cow carries data
(generating 100kB every 5 minutes) and transfer the data to
the farmer wearables or a gateway station. In this study, the
authors verify the relation between the distance, network de-
lay, and devices’ energy consumption [39]. Castellano et al.
evaluate an architecture using DTNwithmobile nodes, men-
tioning that the fog can use filtering and aggregation for data
cleaning, even though they do not apply these mechanisms
[40]. They use simulation to evaluate the delivery time and
delivery rate of bundles (packets), varying the connection
probability between devices in 10%, 25%, and 40%. They
also evaluate the same metrics during 1, 2, 4, and 6 seconds
of connection time. They realized that this architecture repli-
cates packets, which causes a higher usage of RAM.

Moura andHutchisonmention that edge network devices
can "aggregate and synthesize useful information from the
received raw data" to reduce the high data volume in IoT
[41]. Some evaluate compression techniques to reduce the
data in the IoT systems studies [9, 11, 12, 42, 43], even though
they do not assess a scenario with the disconnection between
the IoT stages. Spiegel et al. propose the RLBE algorithm, a
modification in the RLE technique, to an IoT scenario, com-
paring RLBE against other lossless compression algorithms
and identifying that RLBE saves 60% of the energy required
the data to arrive in the end-nodes (thing stage) [9]. How-
ever, the research does not consider any resilience impact.

Routray et al. conceptually compare different compres-
sion algorithms in IoT [11]. They mention that it is a chal-
lenge to improve the network performance in low bandwidth
scenarios. A way to aim this goal is by reducing the irrele-
vant information transmitted. They mention the Zstandard,
LZ4, and LZO as algorithms which demand low bandwidth,
and they report the edge computing should compress the data

F. M. Ribeiro Junior and C.A. Kamienski: Preprint submitted to Elsevier Page 3 of 13



Data Resilience System for Fog Computing

because the thing nodes have no computing power to deal
with a large amount of data.

Gia et al. evaluate lossless compression algorithms (LZ4,
LZW, Huffman, and Zstandard) in edge/fog computing with
different devices (Raspberry Pi 3B, Intel UP, Intel i5, and
UP gateway) [12]. The authors perceived that the Zstandard
algorithm shown a better compression rate. However, they
only evaluate the compression rate and compression speed,
not the compression impact for IoT resilience.

Chandak et al. and Blalock et al. propose algorithms
to compress multivariate data time series, using prediction
models to reconstruct the data (based on previous data sam-
ples) [42, 43]. They use datasets from IoT scenarios to eval-
uate their algorithms against other compression techniques,
obtaining a compression and decompression ratio and speed.
Besides, neither Chandak et al. nor Blalock et al. proposed
the data compression for a resilient IoT data flow.

Fu et al. [44] proposed F2MC, a solution for managing
data between fog and multi-clouds that deals with data fault
tolerance and data reduction. However, their solution only
uses a unique data reduction mechanism, and the authors
do not evaluate F2NC in a scalable scenario with thousands
of sensors sending data in real-time nor consider network
device constraints like LPWAN. Sinaeepourfard et al. [45]
present a data management framework (F2C) to collect and
reduce data received by thousands of sensors. Their study
shows that the data volume can be reduced in IoT systems by
eliminating redundant data with a well-known ZIP compres-
sion algorithm. However, they do not consider other aspects
of resilience in their evaluation, including the impact of dif-
ferent data reduction methods in transmission speed after a
cloud disconnection and fog computational resources.

4. The Fog-DaRe System
This section presents the Fog-DaRe system that focuses

on data communication resilience and fog constraints to im-
prove the communication between fog and cloud, as a proof
of concept for the data persistence and filtering of the TW-
IoT framework [7].
4.1. Fog-DaRe Requirements

The Fog-DaRe system specifies and implements data per-
sistence and filtering mechanisms of TW-IoT [7], thus sat-
isfying data recoverability requirements and reducing data
volumes transmitted throughout the IoT stages. The system
implements the following requirements:
(i) Recoverability: Fog-DaRe guarantees recoverability (sur-

vivability) by avoiding data loss between fog and cloud,
even under disconnections. In the event of a connec-
tion failure between fog and cloud, the fog stores data
in a queue and continually checks the connection’s avail-
ability. When the link returns, the fog sends the stored
data to the cloud.

(ii) Data filtering: Fog-DaRe reduces the data volume us-
ing filtering techniques in the fog. For this reason, it
reduces the time to send to the cloud all data stored in
the fog after a reconnection event.

(iii) Resource constraints: Fog-DaRe uses as few comput-
ing resources as possible because our system does not
use additional computing resources to replicate or mi-
grate data or fog nodes.

4.2. Fog-DaRe Data Flow
Fog-DaRe guarantees a reliable data flow in amulti-stage

IoT system by ensuring data flow continuity by providing
persistent data storage in the fog. To this end, two mech-
anisms are available: a) data filtering for reducing the data
volume transmitted through the IoT system stages and: b)
data persistence for storing data locally in the fog during net-
work disconnections (Fig. 2).

The data flow passes through the four IoT stages, namely,
(i) thing nodes, (ii) mist nodes, (iii) fog nodes, and (iv) cloud.
The Fog-DaRe data path works as follows: (i) thing nodes
collect and send data to the mist; (ii) mist nodes forward the
data to the fog; (iii) fog nodes receive the data via different
protocols, such as MQTT or LoRaWAN, (iv) fog workers
store the original data in the Raw Data Queue, even under a
cloud network disconnection event, (v) fog worker filter the
data and insert it in the Filtered Data Queue and if the cloud
connection is available, (vi) fog nodes send the filtered data
to the cloud (Fig. 2).

A fog node can have multiple fog workers, and one fog
worker exclusively stores and filters data from onemist node.
Besides, each fog worker has different data flow configura-
tions. Individually, each fog worker can implement none,
one, or two techniques for data filtering. As shown in Fig.
2, fog worker 1 receives data directly from mist node 1, then
stores, filters, and sends the data to the cloud. For example,
fog worker 2 receives data from the respective mist nodes
via a LoRaWAN server [46].

The benefit of data filtering is to reduce the packet trans-
mission delay after returning the fog connection. When the
link returns after a long disconnection period, a fog worker
without any data filtering techniques takes longer to send all
data to the cloud. Delays in data transmission can cause
delays in IoT system decisions, and consequently, the IoT
system makes erroneous decisions. Therefore, transmission
speed impacts the system’s trustworthiness.

However, filtering data can also pose some difficulties
to specific IoT applications when the total data volume is
not preserved. For example, healthcare applications usu-
ally need the original data not to cause erroneous decisions.
Therefore, a filtering method should not use lossy compres-
sion algorithms (as SAX or PAA) as they do not keep the
original data [29]. One should only use lossless compres-
sion algorithms to recover the original data (like Zstandard)
whenever needed by the application.
4.3. Fog-DaRe Data Filtering Methods

The Fog-DaRe currently provides six data filtering tech-
niques (Section 2.3), the RLE, Zstandard, SAX, PAA, fil-
tering by calculating the standard deviation (based on the
Chauvenet outlier removal technique) and filtering by calcu-
lating the arithmetic mean. Our system starts the data filter-
ing upon reaching the queue threshold, i.e., when the Raw

F. M. Ribeiro Junior and C.A. Kamienski: Preprint submitted to Elsevier Page 4 of 13



Data Resilience System for Fog Computing

Figure 2: Fog-DaRe Data Flow.

Data queue has a minimum number of packets for starting
the filtering process. We use the same queue threshold for
every filteringmethod, except for Zstandard during a discon-
nection event, which compresses the whole data volume.

Wemodified RLE to classify numeric data as categories,
where the first digits of the data values present each category.
For example, if the value is 14.96423, we consider that the
filter uses five digits (14.96) as a category to classify the data
using the RLE algorithm. Our modified RLE only stores the
category digits (14.96) and their number of occurrences in
the dataset instead of keeping the whole number. Therefore,
in our experiment, we treat RLE as a lossy compression al-
gorithm.
4.4. Fog Worker Implementation

We implemented our fog workers using two threads (Fig.
3), where the first thread runs the Accumulator Component
and executes the Mosquitto MQTT broker [47] to receive
data from the mist. On receiving data from the mist, a fog
worker stores it in the Raw Data Queue, using the pqueue li-
brary [48]. The second thread corresponds to the Flow Com-
ponent, which uses the data filtering methods and checks the
connection status to send the stored data to the cloud.

The Flow Component contains the modules named Con-
nection Verifier, Data Filterer, and the Data Sender. The
Connection Verifier uses the RTT calculation to check the
availability of the connection to the cloud frequently. In a
network disconnection, the Accumulator Component contin-
ues to store the data in a queue persistently. Then, when the
link returns, the cloud receives the data from the fog worker
through the Data Sender. The Data Filterer is responsible
for filtering the stored data, and it is indifferent to a discon-
nection event. There are four operation modes for data fil-
tering:

• Single Connected Filtering: a single filtering technique

under regular system conditions, represented by the
filtering method A (Fig. 3);

• Single Disconnected Filtering: a single filtering tech-
nique only when the fog disconnects from the cloud,
represented by the filtering method B (Fig. 3);

• Double filtering: a filtering technique used for regu-
lar operation and another for network disconnection
(using both filtering methods, A and B);

• No filtering: our baseline option.
Assuming that the connection with the cloud communi-

cation is available, the fog worker checks whether it filters
the data or not (Fig. 3). Assuming a No filtering configu-
ration, the fog worker reads the Raw Data Queue and sends
data to the cloud via the Data Sender (Fig. 3). When the
data flow configuration uses data filtering, the fog worker
waits for the queue threshold to perform the filtering (Sec-
tion 4.3). If so, it reads the Raw Data Queue, filters the data
using one of the filtering techniques (by filtering method A),
and finally stores it in the Filtered Data Queue. After that,
the fog worker searches for filtered data stored in the Filtered
Data Queue and sends it to the cloud via the Data Sender.

For the scenario where fog and cloud are disconnected,
the fog worker may filter the data or not (Fig. 3). For a
No Filtering configuration, the fog worker waits for the con-
nection to return. For a configuration with data filtering and
when theRawData Queue reaches the queue threshold (Sec-
tion 4.3), the fog worker reads the data from the Raw Data
Queue, filters it (using filtering method B), and stores it in the
FilteredDataQueue. Thus, when the connection returns, the
fog worker sends the filtered data to the cloud by the Data
Sender.

F. M. Ribeiro Junior and C.A. Kamienski: Preprint submitted to Elsevier Page 5 of 13



Data Resilience System for Fog Computing

Figure 3: Fog Worker Data Flow.

5. Research Methodology
Our experimental environment emulates a fog-based IoT

system that duly represents a smart farming system [19].
Fig. 4 depicts our testbed with the testing environment com-
posed of four IoT stages: (i) Thing: the SenSE sensor simu-
lator [49] generates workload representing LoRaWAN sen-
sors that capture temperature and humidity data; (ii) Mist:
SenSE also abstracts the LoRaWAN gateway in the mist,
since our focus is to analyze the connection between fog and
cloud; (iii) Fog: a fog worker receives data from the mist us-
ing the ChirpStack LoRaWAN Server [46]; (iv) Cloud: runs
a Mosquitto MQTT broker and a FIWARE IoT Agent [50]
representing a data consumer.

The testbed comprises two physical servers running three
virtual machines for playing the role of thing/mist, fog, and
cloud nodes. The thing/mist and fog nodes run on a Linux
Ubuntu 18.04 operating system, with an Intel i5-8265U pro-
cessor at 1.60GHz and 8GB RAM. The cloud VM runs on
a Linux Ubuntu 18.04 operating system, with four 2.4GHz
CPU cores and 8GB RAM. Both physical servers are con-
nected by a network, with an averageRTT of 5.67ms± 3.3ms.

The SenSE simulator generates encrypted LoRaWANpack-
ets and publishes them viaMQTT in the fog, where the Chirp-
Stack server receives them. ChirpStack decrypts the packet
payload and passes it to the fog worker to be stored, filtered,
and transmitted to the cloud.

5.1. Metrics
During the experiments, we collect and compute the fol-

lowing metrics:
• Delay: The end-to-end delay (one-way delay) mea-

sured between the thing and the cloud states. We record
timestamps at packet creation for each LoRa packet
generated in the thing stage by SenSE.

• CPU and RAM Usage: CPU and RAM usage is mea-
sured every second for Mosquitto, ChirpStack, and
Fog-DaRe processes using the psLinux command. As
the CPU has eight cores, we convert the values accord-
ingly.

• Packet loss rate: computed by comparing the number
of packets received by the Mosquitto brokers installed
in the fog and the cloud.

• Storage Usage: the disk or SSD space used in the fog
for data storage.

• Throughput: This metric is the data throughput re-
ceived in the cloud and measured every second by the
ifstat Linux command.

• Batch transfer time: time for all packets stored by Fog-
DaRe in the fog to arrive in the cloud after the network
connection returns. It is the subtraction of the times-
tamps of the last and the first packets to arrive in the
cloud.

F. M. Ribeiro Junior and C.A. Kamienski: Preprint submitted to Elsevier Page 6 of 13



Data Resilience System for Fog Computing

Figure 4: Data Flow for the Experimental Environment.

5.2. Input Dataset and Workload Generation
We used a dataset containing air humidity and temper-

ature values from Spain [51] as the basis for our synthetic
input dataset. This dataset is not compatible with a sce-
nario with 5,000 sensors because it includes records mea-
sured every minute. Using the original data as a parame-
ter (one record per minute), we generated 5,000 datapoints
every ten minutes, following a fitted Gaussian distribution.
In other words, we simulated 5,000 sensors sensing the en-
vironment every ten minutes and sending data to the cloud
via the Fog-DaRe system. We also created a second dataset
with identical humidity and temperature values to evaluate
the system performance under typical circumstances of an
agricultural setting [32].

The SenSE simulator reads the input data and generates
the experiments’ workload simulating sensors in the thing
stage, each sensor sending data every ten minutes. Each
record is encapsulated in a LoRaWAN packet with approxi-
mately 481 bytes.
5.3. Experimental Configurations

Weevaluate 10 data-flow configurations for the Fog-DaRe
features of resilience and filtering. Resilience is tested by
disconnecting the network between fog and cloud for a pe-
riod and reconnecting it again. We explore two scenarios
of network connection: a) Scenario 1 (Network-On), where
the network connection between fog and cloud is continu-
ally operating throughout the 60 seconds of the experiment;
b) Scenario 2 (Network-On-Off-On), where the network be-
tween fog and cloud starts connected for 15 seconds, faces
a period of disconnection (we tested 5 and 30 minutes) and
reconnects again for 5 minutes.

In some cases, several sensors report identical values for
extended periods, such as soil moisture, air humidity, tem-
perature, or even binary values like a light detector (on or
off). For that reason, we considered in our experiments two
configurations that receive identical values of temperature
and air humidity as input data.

For each network connection scenario, we explore ten
cases of filtering techniques, with a queue threshold of 25
packets:
1. NoFilter: the fog worker does no use any filter (Fig. 5);
2. Mean: uses the arithmetic mean as the filtering method

(Fig. 6);
3. StdDev: uses the standard deviation method based on the

Chauvenet technique for data filtering. This technique

has a constant c for denoting a range of standard devi-
ations, which here is c=1 (section 2.3);

4. Zstd: uses the Zstandard compression algorithm for data
filtering (Fig. 6);

5. ZstdEncrypt: uses the Zstandard compression algorithm
for data filtering but does not use the LoRaWAN Chirp-
Stack server as they use encryption in the thing stage. In
this configuration, the fogworker compresses the original
encrypted data that arrive in the fog (Fig. 7);

6. ZstdIdentical: uses the Zstandard compression algorithm
for data filtering operating on the dataset with identical
values;

7. RLE: uses the run-length-encoding (RLE) algorithm for
data filtering

8. RLEIdentical: uses the RLE algorithm for data filtering
operating on the dataset with identical values;

9. SAX: uses the SAX algorithm for data filtering;
10. PAA: uses the PAA technique for data filtering;

Figure 5: Data Flow - NoFilter & ChirpStack LoRaWAN Net-
work Server.

Figure 6: Data Flow – Filtering Methods & ChirpStack Lo-
RaWAN Network Server.

Figure 7: Data Flow - ZstdEncrypt Configuration.

6. Results
Our evaluation considers 30 replications of each exper-

iment, from which we calculate the arithmetic mean of the
F. M. Ribeiro Junior and C.A. Kamienski: Preprint submitted to Elsevier Page 7 of 13



Data Resilience System for Fog Computing

Table 1
Network Delay, Throughput, CPU, RAM, and Storage Usage for Scenario 1.

Configuration Delay (seconds) Throughput (kB/s) CPU Usage (%) RAM Usage (%) Storage Usage (kB)

RLEIdentical 3.56 ± 0.05 2.71 ± 0.02 5.78 ± 0.10 1.12 ± 0.01 1.28 ± 0.01
Mean 3.58 ± 0.06 2.50 ± 0.09 5.79 ± 0.10 1.13 ± 0.01 1.34 ± 0.01
RLE 3.62 ± 0.05 2.47 ± 0.10 5.71 ± 0.11 1.12 ± 0.11 4.01 ± 0.04
Zstd 3.63 ± 0.04 2.69 ± 0.06 5.67 ± 0.11 0.93 ± 0.01 8.77 ± 0.09

ZstdIdentical 3.62 ± 0.05 2.78 ± 0.07 5.77 ± 0.10 0.93 ± 0.01 2.68 ± 0.03
ZstdEncrypt 3.59 ± 0.04 3.12 ± 0.05 1.27 ± 0.01 0.24 ± 0.001 29.15 ± 0.16

SAX 3.59 ± 0.04 2.50 ± 0.05 6.65 ± 0.11 2.73 ± 0.14 4.97 ± 0.05
PAA 3.63 ± 0.05 2.37 ± 0.06 7.67 ± 0.24 2.63 ± 0.01 6.95 ± 0.07

StdDev 3.62 ± 0.05 2.90 ± 0.07 5.84 ± 0.11 1.13 ± 0.01 13.29 ± 0.46
NoFilter (1 packet) 0.30 ± 0.01 7.89 ± 1.16 5.71 ± 0.12 0.93 ± 0.01 110.50 ± 0.18

NoFilter (25 packets) 3.24 ± 0.07 7.89 ± 1.16 5.71 ± 0.12 0.93 ± 0.01 110.50 ± 0.18

metrics, also calculating the mean and standard deviation of
these 30 means. Having these statistics, we calculate the
95% asymptotic confidence intervals. We do not present re-
sults for packet loss as the loss rate was 0% in all experi-
ments.
6.1. Scenario 1: Network Availability between Fog

and Cloud
Scenario 1 considers a stable network connection dur-

ing the experiments, and the worker filters the data every 25
packets sending the resulting filtered data immediately to the
cloud. As introduced in section 5.3, we used nine filtering
methods: Mean, StdDev, Zstd, ZstdEncrypt, ZstdIdentical,
RLE RLEIdentical, SAX, and PAA. Besides, we also con-
ducted experiments with NoFilter as the baseline. In this
scenario, we also calculate the delay for every 25 packets
using NoFilter to compare it to the other configurations.

Table 1 shows the packet delay metric, where we can ob-
serve that all nine filtering techniques render similar values
with overlapping confidence intervals. On the other hand,
when the fog forwards packets to the cloud with NoFilter
(even considering 25 packets), the delays cost 10% less than
the filtering techniques. One can realize that four seconds
may be considered an acceptable delay formost applications,
but not for all of them. For example, connected cars need a
real-time response from the computing infrastructure, which
may require fast fog-based processing times.

TheNoFilter configuration presents, on average, the high-
est value for throughput compared to the other configura-
tions. The nine data filtering configurations revealed simi-
lar results for throughput, from which Zstd and its variants
ZstdIdentical and ZstdEncrypt achieved the highest through-
put. The reduction factor achieved by the filtering techniques
varies from 2.53 (7.89 / 3.12) for ZstdEncrypt to 3.33 (7.89 /
2.37) for PAA (Table 1). Even though the overall bandwidth
required is low, one must consider that our results represent
an agricultural setting where sensors send data every 10min-
utes. In a vast IoT deployment and more constant data trans-
mission, reducing the network usage two to three times may
significantly differ.

The SAX and PAA configurations recorded the highest

CPUusage, an average of 6.65%±0.11% and 7.67%±0.24%,
respectively (Table 1). The ZstdEncrypt configuration de-
mands less CPU usage than the others because it is the only
configuration that does not use a LoRaWAN Server on fog
node (Section 5.3), in contrast to the others that need the
LoRaWAN Server to decrypt the payload. The remaining
configurations present a statistical tie for CPU usage. We
perceive the Zstd demands at least four times higher CPU
than ZstdEncrypt (5.67/1.27), and it happens because Zstd
additionally uses the ChirpStack LoRaWAN Server.

The SAX and PAA configurations had the highest average
percentage values for RAM usage. The ZstdEncrypt config-
uration registered the lowest RAM usage (Table 1) by com-
pressing the encrypted data. Contrasting Zstd, ZstdIdentical,
and NoFilter with ZstdEncrypt, we evidence that ZstdEn-
crypt achieves a 3.87 (0.93/0.24) reduction factor for RAM
usage compared to the other configurations.

We observe that when the input data have identical tem-
perature and humidity values, the configurations that use the
Zstandard and RLE algorithms require less storage usage
than when the input data have different values. We observe
that even the filtering techniques with the highest storage
usage like ZstdEncrypt, StdDev, or Zstd have a reduction
in storage usage by 3.79 (110.5/29.15), 8.31 (110.5/13.29),
and 12.59 (110.5/8.77), respectively. Therefore, even when
filtering data with a lossless compression algorithm, Fog-
DaRe reduces the storage needs for our evaluated input data
at least twelve times.
6.2. Scenario 2: Network Unavailability between

Fog and Cloud
Weconducted two experiments for the disconnection sce-

nario between fog and cloud, each with distinct periods of
five and 30 seconds. In both cases, the connection returns
after the disconnection period. Fig. 8 shows that the batch
transfer time has a proportional behavior for the 5-minute
and 30-minute disconnection experiments. We also perceive
a similar behavior for storage usage in both experiments (Fig.
9) and scenario 1 (Table 1).

When the connection returns, the NoFilter configuration
has the highest batch transfer time (Fig. 8). For the configu-

F. M. Ribeiro Junior and C.A. Kamienski: Preprint submitted to Elsevier Page 8 of 13



Data Resilience System for Fog Computing

Figure 8: Batch transfer time after the connection return,
with (a) 5 minutes disconnection and with (b) 30 minutes
disconnection (different scales).

rations with different input data, Mean and RLE present the
lowest batch transfer times. Remarkably, the values achieved
116 (15.08/0.13) and 107.97 (86.38/0.8) times lower than
using NoFilter for 5 and 30 minutes disconnection, respec-
tively. However, ZstdIdentical achieved the lowest batch trans-
fer time for identical input data (Fig. 8a).

For scenario 1 (Section 6.1),NoFilter presents the lowest
delay, though requiring higher storage space. However, dur-
ing disconnection, NoFilter storage usage is cumulative, in-
creasing faster than the other configurations with time. The
consequence ismore data to be transmitted to the cloudwhen
the connection returns. For this reason, when the link re-
turns, the all-other filtering configurations present a lower
batch transfer time than NoFilter in scenario 2.

RLEIdentical requires less storage space for both dis-
connection experiments, 5 and 30 minutes (Fig. 9). How-
ever, theMean configuration demands less storage usage for
both disconnection situations with different input data, with
6.6kB ± 0,01 for the 5 minutes (Fig. 9a) and 39.9kB ± 0,09
for 30 minutes (Fig. 9b). We observe data reductions for
all filtering configurations comparing to NoFilter. The stor-
age usage reduction is more evident when we compare Std-
Dev or ZstdEncrypt to NoFilter, where we perceive a data
reduction of 5.39 (3.416/632.7) and 9.08 (3.416/375.9) for
the 30-minute disconnection experiment.

Figure 9: Storage Usage in Scenario 2, with (a) 5 minutes
disconnection and (b) with 30 minutes disconnection (different
scales).

ZstdEncrypt achieves the lowest CPU (Fig. 10) andRAM
usage (Fig. 11) for disconnection times. In contrast, PAA
and SAX had the highest CPU and RAM usage. The NoFil-
ter, RLEIdentical, RLE, Mean, Zstd, ZstdIdentical, and Std-
Dev configurations had a statistical tie for CPU with 30 min-
utes disconnection (Fig. 11b). NoFilter achieved the low-
est RAM usage for 30 minutes (Fig. 11b) among the Lo-
RaWAN Server configurations. The exception is ZstdEn-
crypt that does not use a LoRaWAN Server. Therefore, even
in the worst case, Fog-DaRe filtering considerably reduces
data storage usage and batch transfer time.
6.3. Estimated Behavior for Long-Time

Disconnections
In sections 6.1 and 6.2, we observed that the storage us-

age and batch transfer time metrics increase linearly with
time. As the disconnection time rises, the fog may run out
of storage capacity, and the time for sending data after a re-
connection may create bottlenecks in the network between
cloud and fog. Also, it can impact the update of analyti-
cal or data-oriented application models, rendering outdated
models. Thus, we estimated the behavior for these metrics
varying the disconnection time between 5 minutes and 24
hours. In a smart farming scenario, the connection may take
some hours to return after a disconnection. Also, we be-

F. M. Ribeiro Junior and C.A. Kamienski: Preprint submitted to Elsevier Page 9 of 13



Data Resilience System for Fog Computing

Figure 10: CPU Usage in Scenario 2, with (a) 5 minutes dis-
connection and (b) with 30 minutes disconnection.

lieve 24-hour disconnection is reasonable because, in other
IoT applications, the fog can process the local data to make
decisions and keep the system working for a period without
cloud communication. However, the disconnection time is
relative, and it depends on the fog constraints.

Fig. 12 depicts that NoFilter may impose a batch trans-
fer time of 4,146.3 seconds for a 24-hour disconnection. It
means that the fog needs approximately 69 minutes for send-
ing all stored data to the cloud after the connection returns.
Even Zstd, which preserves the original data after decom-
pression and has not the lowest batch transfer time, takes
85.2 seconds to transfer the data (Fig. 12), a reduction factor
of 48.77 (4,146.3/85.2).

TheMean configuration has the lower batch transfer time
after a 24-hour disconnection, with varied input data. How-
ever, when the input data is identical, ZstdIdentical achieved
the lowest time with 16 seconds. We also perceive that even
compared with the worst case, using SAX, NoFilter takes
4.48 (4,146.3/923.9) times higher to transfer the data to the
cloud (Fig. 12).

NoFilter required 163.97 MB of storage during a 24-
hour disconnection (Fig. 13), but even Zstd used only 8.2%
(13.49/163.97) of the necessary space by NoFilter (Fig. 13).
Even for theworst cases, usingZstdEncrypt or StdDev, NoFil-
ter uses 5.39 (163.97/30.38) and 9.08 (163.97/18.04) times
the storage space. Therefore, the configurations with filter-

Figure 11: RAM Usage in Scenario 2, with (a) 5 minutes
disconnection and (b) with 30 minutes disconnection.

ing techniques significantly impact storage usage comparing
to the NoFilter configuration.

For datasets with identical input data, RLEIdentical has
the lowest storage usage (1,478 MB), which is 3.87 (5,731
/1,478) times lower than RLE with different input data val-
ues. This behavior happens because the RLE algorithm com-
bines the amount of identical data into a single category. The
ZstdIdentical needs only 19% (2,575/13,488) of the storage
used by Zstd. However, when the input data has different
values, theMean configuration had the lowest storage usage
(1.916 MB).

7. Discussion
After analyzing the results, we observe no significant ad-

vantages for CPU and RAM usage between configurations,
except for ZstdEncrypt that does not use ChirpStack. For
this reason, we remark that the ChirpStack LoRaWAN server
considerably increases CPU and RAMusage in the fog node.

We also realized thatmost filtering configurations present
lower storage usage and lower batch transfer times than Zst-
dEncrypt. Still, they need to decrypt data in the fog, making
it susceptible to intruders. In contrast, ZstdEncrypt keeps
data confidentiality and does not risk the data payload be-
cause it compresses the encrypted data received from the
mist. Therefore, there is a trade-off between confidentiality

F. M. Ribeiro Junior and C.A. Kamienski: Preprint submitted to Elsevier Page 10 of 13



Data Resilience System for Fog Computing

Figure 12: Projection of batch transfer time after the connec-
tion return, with 24-hour disconnection (logarithmic scale).

Figure 13: Projection for Storage Usage with 24-hour discon-
nection (logarithmic scale).

and storage usage, and batch transfer time.
For the scenario where the network is continuously avail-

able (section 6.1), we observe that the data filtering tech-
niques reveal advantages for the storage usage compared to
NoFilter. However, suppose the connection is continuously
available. In that case,NoFilter always introduces the lowest
delay because the fog only filters data after when the queue
threshold is reached, which negatively impacts the delay of
filtering techniques. Therefore, there is a trade-off between
packet delay and storage usage.

The batch transfer time and storage usage metrics have
significant variations between different configurations in the

disconnection scenario, where it is advantageous to use data
filtering compared NoFilter. Filtering techniques achieve
lower batch transfer times and storage usage compared to
NoFilter. This advantage is particularly evident when the
disconnection time increases because the longer the fog re-
mains disconnected, the more considerable the amount of
data to be transferred to the cloud in the future.

In the disconnection scenario, the configurations with
lossy data filtering had the lowest storage usage, confirm-
ing the intuition. However, this type of filtering suppresses
details as it does not keep the original data, which may cause
wrong decisions by the IoT system. The Zstd configuration
uses the Zstandard lossless compression algorithm, but its
storage usage and batch transfer times are higher than other
configurations that use lossy filtering techniques. The no-
ticeable exception is ZstdIdentical, but it loses generality
as identical data requirements limit the application scope.
Therefore, there is a trade-off between lossless and lossy fil-
tering in the fog because lossy compression techniques need
lower storage and transfer batch data faster to the cloud. Still,
it does not preserve the original dataset.

Also, the configurations with the lowest storage usage
do not have the lowest batch transfer times. Therefore, there
is a trade-off between the different Fog-DaRe configurations.
The trade-off also exists for the metrics evaluated and for the
data details in each filtering technique. Consequently, devel-
opers need to analyze the application domain to determine
which data flow configuration best suits each IoT system.

Finally, comparing Fog-DaRe to other solutions, we ob-
served that data reduction rates vary between 81.5% and 98.8%,
whereas F2MC [44] achieved 75% and F2C [45] 78%. This
difference is because Fog-DaRe uses more than only one
data reduction method. Also, the Fog-DaRe data filtering
mechanism is configurable, and some filteringmethods com-
press more than others depending on the data values pro-
duced by the sensors. However, F2MC [44] also reduces
multimedia file formats, such as AVI, JPEG, or MP3 files,
which is not the focus of Fog-DaRe. Still, it is feasible to
compute new data filtering configurations into Fog-DaRe,
for example, a Python Imaging Library [52], which can shrink
an image file size by reducing its quality.

8. Conclusion
This paper introduces Fog-DaRe that allows the deploy-

ment of a resilient data flow for a fog-based IoT system.
Fog-DaRe provides data resilience and deals with the fog re-
sources constraints, implementing mechanisms for filtering
(reducing) the data volume sent and stored by fog nodes. We
also evaluate 10 data flow configurations for the Fog-DaRe
system and assess each configuration in two network avail-
ability scenarios. We obtained at least 81.5% storage usage
reduction and 77.7% batch transfer time reduction for long-
term disconnections. However, we used only one dataset
considering a smart farming scenario, and the reduction rates
can vary using other dataset scenarios.

For the connection availability scenario, filtering tech-

F. M. Ribeiro Junior and C.A. Kamienski: Preprint submitted to Elsevier Page 11 of 13



Data Resilience System for Fog Computing

niques cause higher packet delays and lower throughput and
storage needs. Therefore, only in specific situations is it ad-
vantageous to use data filtering in the connection availability
scenario. We perceive a significant increase in batch transfer
times and storage usage in the scenario with temporary net-
work unavailability as the disconnection time increases. The
study also observes trade-offs between Fog-DaRe configu-
rations regarding the filtered data details, CPU usage, RAM
usage, storage usage, and the batch transfer times.

As future work, we intend to improve Fog-DaRe by in-
corporating more trustworthiness requirements - as redun-
dancy, load balancing, and security techniques - into the data
flow, aiming at obtaining a more robust, fast, and resilient
IoT system. Additionally, we plan to evaluate our solution
using other datasets and include multimedia data reduction
configurations in Fog-DaRe.

References
[1] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey,

Computer Networks 54 (15) (2010) 2787 – 2805. doi:https://doi.

org/10.1016/j.comnet.2010.05.010.
[2] M. Aazam, S. Zeadally, K. A. Harras, Fog computing architecture,

evaluation, and future research directions, IEEE Communications
Magazine 56 (5) (2018) 46–52. doi:10.1109/MCOM.2018.1700707.

[3] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow,
P. A. Polakos, A comprehensive survey on fog computing: State-of-
the-art and research challenges, IEEE Communications Surveys Tu-
torials 20 (1) (2018) 416–464. doi:10.1109/COMST.2017.2771153.

[4] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Ni-
akanlahiji, J. Kong, J. P. Jue, All one needs to know about fog com-
puting and related edge computing paradigms: A complete survey,
Journal of Systems Architecture 98 (2019) 289 – 330. doi:https:

//doi.org/10.1016/j.sysarc.2019.02.009.
[5] P. Ray, A survey on internet of things architectures, Journal of King

Saud University - Computer and Information Sciences 30 (3) (2018)
291 – 319. doi:https://doi.org/10.1016/j.jksuci.2016.10.003.

[6] H. F. Atlam, R. J.Walters, G. B.Wills, Fog computing and the internet
of things: A review, Big Data and Cognitive Computing (2018). doi:
10.3390/bdcc2020010.

[7] F. M. R. Junior, C. A. Kamienski, A survey on trustworthiness for the
internet of things, IEEE Access 9 (2021) 42493–42514. doi:10.1109/
ACCESS.2021.3066457.

[8] J.-H. Cho, S. Xu, P. M. Hurley, M. Mackay, T. Benjamin, M. Beau-
mont, Stram: Measuring the trustworthiness of computer-based sys-
tems, ACM Computing Surveys 51 (2019). doi:10.1145/3277666.

[9] J. Spiegel, P. Wira, G. Hermann, A comparative experimental study
of lossless compression algorithms for enhancing energy efficiency
in smart meters, in: IEEE 16th International Conference on Industrial
Informatics, 2018, pp. 447–452. doi:10.1109/INDIN.2018.8471921.

[10] A. Gupta, A. Bansal, V. Khanduja, Modern lossless compression tech-
niques: Review, comparison and analysis, in: Second International
Conference on Electrical, Computer and Communication Technolo-
gies (ICECCT), 2017, pp. 1–8. doi:10.1109/ICECCT.2017.8117850.

[11] S. K. Routray, A. Javali, A. Sahoo, W. Semunigus, M. Pappa, Loss-
less compression techniques for low bandwidth io ts, in: Fourth In-
ternational Conference on I-SMAC (IoT in Social, Mobile, Analytics
and Cloud) (I-SMAC), 2020, pp. 177–181. doi:10.1109/I-SMAC49090.
2020.9243457.

[12] T. N. Gia, L. Qingqing, J. P. Queralta, H. Tenhunen, Z. Zou,
T. Westerlund, Lossless compression techniques in edge computing
for mission-critical applications in the iot, in: Twelfth International
Conference on Mobile Computing and Ubiquitous Network (ICMU),
2019, pp. 1–2. doi:10.23919/ICMU48249.2019.9006647.

[13] R.Mahalakshmi, D. Kannan, Semantic filtering of iot data using sym-

bolic aggregate approximation (sax), Journal of Computer Science
and Applications, 2016.

[14] A. González-Vidal, J. Cuenca-Jara, A. F. Skarmeta, Iot for water
management: Towards intelligent anomaly detection, in: IEEE 5th
World Forum on Internet of Things (WF-IoT), 2019, pp. 858–863.
doi:10.1109/WF-IoT.2019.8767190.

[15] S. A. Abdulzahra, A. K. M. Al-Qurabat, A. K. Idrees, Data reduction
based on compression technique for big data in iot, in: International
Conference on Emerging Smart Computing and Informatics (ESCI),
2020, pp. 103–108. doi:10.1109/ESCI48226.2020.9167636.

[16] R. Rezvani, P. Barnaghi, S. Enshaeifar, A new pattern representation
method for time-series data, IEEE Transactions on Knowledge and
Data Engineering (2019) 1–1doi:10.1109/TKDE.2019.2961097.

[17] N. G. S. Campos, A. R. Rocha, R. Gondim, T. L. Coelho da Silva,
D. G. Gomes, Smart amp; green: An internet-of-things framework
for smart irrigation, Sensors (2020). doi:10.3390/s20010190.

[18] R. Ferrando, P. Stacey, Classification of device behaviour in internet
of things infrastructures: Towards distinguishing the abnormal from
security threats, Association for Computing Machinery, New York,
NY, USA, 2017. doi:10.1145/3109761.3109791.

[19] C. Kamienski, J.-P. Soininen, M. Taumberger, R. Dantas, A. Toscano,
T. Salmon Cinotti, R. Filev Maia, A. Torre Neto, Smart water man-
agement platform: Iot-based precision irrigation for agriculture, Sen-
sors (2019). doi:10.3390/s19020276.

[20] I. Zyrianoff, A. Heideker, D. Silva, J. Kleinschmidt, J.-P. Soini-
nen, T. Salmon Cinotti, C. Kamienski, Architecting and deploy-
ing iot smart applications: A performance–oriented approach, Sen-
sors (2020). doi:10.3390/s20010084.

[21] B. Omoniwa, R. Hussain, M. A. Javed, S. H. Bouk, S. A. Malik,
Fog/edge computing-based iot (feciot): Architecture, applications,
and research issues, IEEE Internet of Things Journal (2019) 4118–
4149doi:10.1109/JIOT.2018.2875544.

[22] M. Asif-Ur-Rahman, F. Afsana, M. Mahmud, M. S. Kaiser, M. R.
Ahmed, O. Kaiwartya, A. James-Taylor, Toward a heterogeneous
mist, fog, and cloud-based framework for the internet of healthcare
things, IEEE Internet of Things Journal (2019) 4049–4062doi:10.
1109/JIOT.2018.2876088.

[23] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, A view of
cloud computing, Commun.ACM (2010) 50–58doi:10.1145/1721654.
1721672.

[24] K. A. Delic, On resilience of iot systems: The internet of things,
no. February, Association for Computing Machinery, New York, NY,
USA, 2016. doi:10.1145/2822885.

[25] V. Prokhorenko, M. Ali Babar, Architectural resilience in cloud, fog
and edge systems: A survey, IEEE Access 8 (2020) 28078–28095.
doi:10.1109/ACCESS.2020.2971007.

[26] D. Ratasich, F. Khalid, F. Geissler, R. Grosu, M. Shafique, E. Bar-
tocci, A roadmap toward the resilient internet of things for cyber-
physical systems, IEEE Access 7 (2019) 13260–13283. doi:10.1109/
ACCESS.2019.2891969.

[27] T. N. Gia, M. Jiang, A. Rahmani, T. Westerlund, P. Liljeberg, H. Ten-
hunen, Fog computing in healthcare internet of things: A case study
on ecg feature extraction, in: IEEE International Conference on Com-
puter and Information Technology; Ubiquitous Computing and Com-
munications; Dependable, Autonomic and Secure Computing; Per-
vasive Intelligence and Computing, 2015, pp. 356–363. doi:10.1109/
CIT/IUCC/DASC/PICOM.2015.51.

[28] J. Azar, A. Makhoul, M. Barhamgi, R. Couturier, An energy effi-
cient iot data compression approach for edge machine learning, Fu-
ture Generation Computer Systems 96 (2019) 168 – 175. doi:https:

//doi.org/10.1016/j.future.2019.02.005.
[29] B. Negash, T. Gia, A. Anzanpour, I. Azimi, M. Jiang, T. Westerlund,

A.M. Rahmani, P. Liljeberg, H. Tenhunen, Leveraging fog computing
for healthcare iot., FogComputing in the Internet of Things, 2018.doi:
10.1007/978-3-319-57639-8_8.

[30] Y. Shi, G. Ding, H. Wang, H. E. Roman, S. Lu, The fog computing
service for healthcare, in: 2nd International Symposium on Future In-

F. M. Ribeiro Junior and C.A. Kamienski: Preprint submitted to Elsevier Page 12 of 13

http://dx.doi.org/https://doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/MCOM.2018.1700707
http://dx.doi.org/10.1109/COMST.2017.2771153
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2019.02.009
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2019.02.009
http://dx.doi.org/https://doi.org/10.1016/j.jksuci.2016.10.003
http://dx.doi.org/10.3390/bdcc2020010
http://dx.doi.org/10.3390/bdcc2020010
http://dx.doi.org/10.1109/ACCESS.2021.3066457
http://dx.doi.org/10.1109/ACCESS.2021.3066457
http://dx.doi.org/10.1145/3277666
http://dx.doi.org/10.1109/INDIN.2018.8471921
http://dx.doi.org/10.1109/ICECCT.2017.8117850
http://dx.doi.org/10.1109/I-SMAC49090.2020.9243457
http://dx.doi.org/10.1109/I-SMAC49090.2020.9243457
http://dx.doi.org/10.23919/ICMU48249.2019.9006647
http://dx.doi.org/10.1109/WF-IoT.2019.8767190
http://dx.doi.org/10.1109/ESCI48226.2020.9167636
http://dx.doi.org/10.1109/TKDE.2019.2961097
http://dx.doi.org/10.3390/s20010190
http://dx.doi.org/10.1145/3109761.3109791
http://dx.doi.org/10.3390/s19020276
http://dx.doi.org/10.3390/s20010084
http://dx.doi.org/10.1109/JIOT.2018.2875544
http://dx.doi.org/10.1109/JIOT.2018.2876088
http://dx.doi.org/10.1109/JIOT.2018.2876088
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/2822885
http://dx.doi.org/10.1109/ACCESS.2020.2971007
http://dx.doi.org/10.1109/ACCESS.2019.2891969
http://dx.doi.org/10.1109/ACCESS.2019.2891969
http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.51
http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.51
http://dx.doi.org/https://doi.org/10.1016/j.future.2019.02.005
http://dx.doi.org/https://doi.org/10.1016/j.future.2019.02.005
http://dx.doi.org/10.1007/978-3-319-57639-8_8
http://dx.doi.org/10.1007/978-3-319-57639-8_8


Data Resilience System for Fog Computing

formation and Communication Technologies for Ubiquitous Health-
Care (Ubi-HealthTech), 2015, pp. 1–5. doi:10.1109/Ubi-HealthTech.
2015.7203325.

[31] N. Narendra, K. Ponnalagu, A. Ghose, S. Tamilselvam, Goal-driven
context-aware data filtering in iot-based systems, in: IEEE 18th Inter-
national Conference on Intelligent Transportation Systems, 2015, pp.
2172–2179. doi:10.1109/ITSC.2015.351.

[32] F.M. Ribeiro, R. Prati, R. Bianchi, C. Kamienski, A nearest neighbors
based data filter for fog computing in iot smart agriculture, in: IEEE
International Workshop on Metrology for Agriculture and Forestry
(MetroAgriFor), 2020, pp. 63–67. doi:10.1109/MetroAgriFor50201.

2020.9277661.
[33] A. Jonathan, M. Uluyol, A. Chandra, J. Weissman, Ensuring reliabil-

ity in geo-distributed edge cloud, in: Resilience Week (RWS), 2017,
pp. 127–132. doi:10.1109/RWEEK.2017.8088660.

[34] Y. Harchol, A. Mushtaq, J. McCauley, A. Panda, S. Shenker, Cessna:
Resilient edge-computing, MECOMM’18, Association for Comput-
ing Machinery, New York, NY, USA, 2018, p. 1–6. doi:10.1145/

3229556.3229558.
[35] T. Jeong, J. Chung, J. W. Hong, S. Ha, Towards a distributed comput-

ing framework for fog, in: IEEE Fog World Congress (FWC), 2017,
pp. 1–6. doi:10.1109/FWC.2017.8368528.

[36] M. Al-khafajiy, T. Baker, A.Waraich, D. Al-Jumeily, A. Hussain, Iot-
fog optimal workload via fog offloading, in: IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Com-
panion), 2018, pp. 359–364. doi:10.1109/UCC-Companion.2018.00081.

[37] K. Fall, A delay-tolerant network architecture for challenged inter-
nets, in: Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, SIGCOMM ’03, As-
sociation for Computing Machinery, New York, NY, USA, 2003, p.
27–34. doi:10.1145/863955.863960.
URL https://doi.org/10.1145/863955.863960

[38] J. E. Luzuriaga, M. Zennaro, J. C. Cano, C. Calafate, P. Manzoni, A
disruption tolerant architecture based on mqtt for iot applications, in:
14th IEEE Annual Consumer Communications Networking Confer-
ence (CCNC), 2017, pp. 71–76. doi:10.1109/CCNC.2017.7983084.

[39] C. Kulatunga, L. Shalloo, W. Donnelly, E. Robson, S. Ivanov, Oppor-
tunistic wireless networking for smart dairy farming, Vol. 19, 2017,
pp. 16–23. doi:10.1109/MITP.2017.28.

[40] G. Castellano, F. Risso, R. Loti, Fog computing over challenged net-
works: A real case evaluation, in: IEEE 7th International Confer-
ence on Cloud Networking (CloudNet), 2018, pp. 1–7. doi:10.1109/

CloudNet.2018.8549354.
[41] J. Moura, D. Hutchison, Fog computing systems: State of the art,

research issues and future trends, with a focus on resilience, Journal of
Network and Computer Applications 169 (2020) 102784. doi:https:
//doi.org/10.1016/j.jnca.2020.102784.

[42] S. Chandak, K. Tatwawadi, C. Wen, L. Wang, J. Aparicio Ojea,
T.Weissman, Lfzip: Lossy compression ofmultivariate floating-point
time series data via improved prediction, in: Data Compression Con-
ference (DCC), 2020, pp. 342–351. doi:10.1109/DCC47342.2020.00042.

[43] D. Blalock, S. Madden, J. Guttag, Sprintz: Time series compression
for the internet of things, Vol. 2, New York, NY, USA, 2018. doi:

10.1145/3264903.
[44] Y. Fu, X. Qiu, J. Wang, F2mc: Enhancing data storage services

with fog-tomulticloud hybrid computing, in: IEEE 38th International
Performance Computing and Communications Conference (IPCCC),
2019, pp. 1–6. doi:10.1109/IPCCC47392.2019.8958748.

[45] A. Sinaeepourfard, J. Garcia, X. Masip-Bruin, E. Marin-Tordera, A
novel architecture for efficient fog to cloud data management in smart
cities, in: IEEE 37th International Conference on Distributed Com-
puting Systems (ICDCS), 2017, pp. 2622–2623. doi:10.1109/ICDCS.

2017.202.
[46] Chirpstack: open-source lorawan network server stack, https://www.

chirpstack.io, accessed: August, 2020.
[47] Eclipse mosquitto: An open source mqtt broker, https://mosquitto.

org, accessed: August, 2020.
[48] Pqueue, https://pypi.org/project/pqueue/, accessed: August, 2020.

[49] I. Zyrianoff, F. Borelli, C. Kamienski, Sense – sensor simulation envi-
ronment: Uma ferramenta para geração de tráfego iot em larga escala,
in: Salão de Ferramentas - Simpósio Brasileiro de Redes de Computa-
dores e Sistemas Distribuídos (SBRC), 2017.

[50] Fiware context broker, https://www.fiware.org/developers/, ac-
cessed: September, 2020.

[51] F. Aguilar, Press, temperature and humidity, in: Dryad, Dataset, 2014.
doi:https://doi.org/10.15146/R3730R.

[52] Python pillow, https://python-pillow.org/, accessed: May, 2021.

Franklin Magalhães Ribeiro Junior received a
B.S. and anM.S. degree in Computer Science from
the Federal University of Sergipe (UFS), Aracaju,
Brazil, in 2013 and 2015, respectively. He is cur-
rently pursuing a Ph.D. degree in Computer Sci-
ence at the Federal University of ABC (UFABC).
He is a lecturer of Information Technology at the
Federal Institute of Maranhão (IFMA). He is a re-
search fellow of the NUVEM Strategic Research
Unit. His research interests include dependable
systems, smart cities and fog computing.

Carlos Alberto Kamienski received the B.S. de-
gree in Computer Science from the Federal Uni-
versity of Santa Catarina, Florianópolis, Brazil, in
1989, the M.S. degree from the State University
of Campinas, Campinas, Brazil, in 1994, and the
Ph.D. degree in Computer Science from the Fed-
eral University of Pernambuco, Recife, Brazil, in
2003. He is a Full Professor of Computer Science
with the Federal University of ABC (UFABC),
Santo André, Brazil, where he currently also holds
the position of the Head of the NUVEM Strategic
Research Group. His current research interests in-
clude the Internet of Things, smart agriculture, net-
work softwarization, and fog computing.

F. M. Ribeiro Junior and C.A. Kamienski: Preprint submitted to Elsevier Page 13 of 13

http://dx.doi.org/10.1109/Ubi-HealthTech.2015.7203325
http://dx.doi.org/10.1109/Ubi-HealthTech.2015.7203325
http://dx.doi.org/10.1109/ITSC.2015.351
http://dx.doi.org/10.1109/MetroAgriFor50201.2020.9277661
http://dx.doi.org/10.1109/MetroAgriFor50201.2020.9277661
http://dx.doi.org/10.1109/RWEEK.2017.8088660
http://dx.doi.org/10.1145/3229556.3229558
http://dx.doi.org/10.1145/3229556.3229558
http://dx.doi.org/10.1109/FWC.2017.8368528
http://dx.doi.org/10.1109/UCC-Companion.2018.00081
https://doi.org/10.1145/863955.863960
https://doi.org/10.1145/863955.863960
http://dx.doi.org/10.1145/863955.863960
https://doi.org/10.1145/863955.863960
http://dx.doi.org/10.1109/CCNC.2017.7983084
http://dx.doi.org/10.1109/MITP.2017.28
http://dx.doi.org/10.1109/CloudNet.2018.8549354
http://dx.doi.org/10.1109/CloudNet.2018.8549354
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2020.102784
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2020.102784
http://dx.doi.org/10.1109/DCC47342.2020.00042
http://dx.doi.org/10.1145/3264903
http://dx.doi.org/10.1145/3264903
http://dx.doi.org/10.1109/IPCCC47392.2019.8958748
http://dx.doi.org/10.1109/ICDCS.2017.202
http://dx.doi.org/10.1109/ICDCS.2017.202
https://www.chirpstack.io
https://www.chirpstack.io
https://mosquitto.org
https://mosquitto.org
https://pypi.org/project/pqueue/
https://www.fiware.org/developers/
http://dx.doi.org/https://doi.org/10.15146/R3730R
https://python-pillow.org/

