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ABSTRACT
Multiway spatial joins are a commonly occurring and fundamental
type of query for spatial data processing. This article presents
models and algorithms to schedule this type of query in distrib-
uted database systems while attempting to strike a balance
between makespan and communication costs. We propose three
algorithms based on combinatorial optimization methods: the
well-known linear relaxation technique of rounding a solution
generated by linear programming (LP), a more sophisticated
Lagrangian Relaxation method (LR), as well as a greedy heuristic
(GR) for baseline comparison. Our evaluation shows that a sched-
ule built using GR consumes, on average, 22% more processing
and communication resources than a more elaborate schedule
constructed via the LR method, when scheduling a query for 64
machines. The schedule provided by LR is also, on average, an
order of magnitude closer to the optimal schedule for a query
compared to GR. We show that scheduling Gigabyte-size multi-
way queries before execution can reduce its processing time by
an order of magnitude compared to state-of-the-art frameworks
for spatial data processing that do not have this capability, and
can significantly reduce the amount of shuffled data in the
network.
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1. Introduction

The amount of spatial data available in many areas of human endeavor has signifi-
cantly increased with the popularization of GPS-enabled devices. This includes geo-
tagged satellite images and maps, sensor data from IoT (Internet of Things) devices,
open data, and census data. Typically, such data are continuously collected and organ-
ized in thematic datasets to, for instance, support decision-making and improve the
efficiency of market intelligence and logistics. An important kind of spatial query used
to process such significant amounts of spatial data is the multiway spatial join
(Mamoulis and Papadias 2001a). Multiway spatial join queries (MSJQ) are essential in
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several application fields, including geography [e.g. finding the animal species that
survived in a preservation area damaged by fire or finding all the forests crossed by a
river in each state (Du et al. 2017)], VLSI [e.g. identifying circuits that constitute a par-
ticular topological configuration (Mamoulis and Papadias 2001a)], and digital medical
imaging [e.g. analyzing microscopy whole slide images (WSI) of the brain to identify
tumor subtypes and characteristics, with a typical image containing 1010 pixels, hun-
dreds of millions of features, and thousands of images being generated daily in a
moderate-size healthcare operation (Aji et al. 2012)].

The complexity of the computational geometry algorithms used in MSJQ often
causes long query execution times (i.e. makespan). For practical spatial datasets, this
usually necessitates the processing of the related queries in distributed systems and
the partitioning of the datasets using spatial columns to split the processing cost
among many machines, consequently reducing query response time (Vu et al. 2020).
However, there are open issues related to the processing of multiway spatial join
queries in distributed environments (Huang et al. 2011). One such important issue,
which is addressed in this paper, refers to the efficient scheduling of query fragments
to improve the overall processing and communication costs. The partitioning of spatial
datasets often creates significant challenges due to their skewed nature, which may
cause unbalanced query execution. Further, besides considering the local CPU and I/O
costs in a distributed system, the selection of execution plans must take into account
the effect of data partitioning on the communication between the processors. Thus,
the challenge when choosing a schedule for a query is to find an appropriate division
of all work among processors, with regard to both the bandwidth limit of the network
interface and the load on the CPUs.

Selecting execution plans and identifying query schedules to efficiently process MSJQ
in distributed systems are critical steps towards moving spatial data analysis to scalable
platforms, as has already been done with relational and unstructured data. However,
new methods and algorithms to improve the scheduling of the execution plans must
be specified, taking into account the specifics of spatial data and the characteristics of
distributed systems. Spatial data analysis in such situations can significantly improve the
scalability of spatial data processing, especially in today’s environment of cloud comput-
ing platforms, taking advantage of elasticity, and pay-as-you-go offers.

The issue addressed here relates to the copy selection and sub-query allocation
problem described in the distributed database literature, dealing with the allocation
and copying of entire relations or fragments of horizontally partitioned relations (€Ozsu
and Valduriez 2011). Early work suggested the use of exhaustive enumeration or heu-
ristics to cope with the NP-hard complexity of the problem (Yu and Chang 1984). In
general, the proposed solutions assume a controlled number of disjoint relation frag-
ments and a small number of replicas.

In this paper, we consider a generalization of this problem in which even a single
step of a multiway query may have a relatively large number of data partitions to han-
dle, given the size of spatial datasets involved. Furthermore, the fragments (or data
partitions) are non-disjoint by nature, due to the intrinsic characteristics of spatial
data, and the processing of each query predicate may be split into several processors
in a distributed system. This generalized version of the problem adheres to recently
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proposed models for data processing in distributed platforms, such as MapReduce
(Dean and Ghemawat 2008) and Spark (Zaharia et al. 2016). However, the need for
methods that consider both the optimization of queries and more flexible ways to par-
tition data in such platforms has been previously identified as a future research direc-
tion in the literature (Doulkeridis and Nørvåg 2014).

In this direction, we propose a formal bi-objective linear model of the problem of
scheduling distributed multiway spatial join query plans. The model aims to minimize
the weighted sum of a query’s makespan and the total communication cost. We pre-
sent three methods, based on combinatorial optimization, to identify viable solutions
for the model: a greedy heuristic algorithm (GR), similar to those commonly used in
related work; the linear relaxation technique of rounding a solution generated by lin-
ear programming, known as Linear Relaxation (LP) (Vazirani 2001); and the more
sophisticated Lagrangian Relaxation (LR) method (Fisher 2004).

We also measured the benefits of query scheduling using an experimental distrib-
uted query engine. We ran some Gigabyte-size queries frequently reported in the lit-
erature and compared the execution time with that reported for related software
using state-of-the-art frameworks, such as MapReduce (Dean and Ghemawat 2008)
and its in-memory and more general counterpart, the Spark engine (Zaharia et al.
2016). We show that scheduling query plans before query execution can significantly
reduce the execution time of queries in a distributed environment.

Throughout the text, we assume a basic understanding of linear programming (LP)
and some elementary properties of linear models. We attempt to achieve a balance
between formalism and application, and present a brief introduction to Lagrangian
Relaxation in Section 2.4. For more comprehensive coverage of linear optimization, the
reader is referred to Bazaraa et al. (2009) and Vazirani (2001, Chapter 12).

The remainder of this article is organized as follows. In Section 2, we present back-
ground concepts on multiway spatial join, its processing in distributed systems, previ-
ously reported work on spatial query processing built on top of the MapReduce and
Spark frameworks, as well as some of the concepts of linear optimization used in our
algorithms. We propose new models and solution algorithms for scheduling multiway
spatial join queries in Section 3 and present their evaluation in Section 4. Finally, we
state our conclusions and ideas for future work in Section 5.

2. Background and related work

2.1. Multiway spatial join

A simple or pairwise spatial join query performs a combination of objects from two
spatial datasets in pairs that satisfy some spatial predicate, h, such as intersection or
coverage. The result of a spatial join of datasets A and B, denoted as A �� B, consists
of all pairs of objects fa, bg, a 2 A and b 2 B, which fulfill a h b (Brinkhoff et al. 1996).

A multiway spatial join query, in turn, is a set of interconnected spatial join queries
with an arbitrary number n of input datasets, n> 2 (Papadias and Arkoumanis 2002b).
It can be represented as a graph G ¼ ðD, PÞ with node set D and edge set P, where
each node represents a distinct dataset, and each edge represents a join predicate.
Formally, given a set of datasets D ¼ fD1, :::,Dng, each containing a set of records
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ri1, :::, r
i
mi
, 1� i� n and mi being the cardinality of Di, and a set of spatial predicates,

P ¼ fhij j 8 i, j, 1� i, j� ng, the query retrieves all n-tuples ðr1p , :::, rik , :::, rjl , :::, unr Þ such
that each predicate hij holds when applied to its respective elements in the n-tuple,
with p, k, l, and r referring to specific records of its respective datasets,
1� k�mi, 1� l�mj , and analogously for p and r (Papadias et al. 1999, 2001,
Mamoulis and Papadias 2001a, Papadias and Arkoumanis 2002a).

There are many distinct ways to process a multiway spatial join query, called execu-
tion plans. Each execution plan defines a distinct order of processing the datasets and
which algorithms to apply in each step to compute the final result of the query.
Mamoulis and Papadias (2001a) showed that the number of ways to process a query
on serial processors (i.e. non-parallel, non-distributed) is a function of the query type,
the number of input datasets, and the number of different join algorithms at each
query step. They concluded that the number of equivalent execution plans for a query
is exponential in the number of datasets. Although they are all equivalent and pre-
serve the same query semantics, each of them requires a different amount of comput-
ing resources to produce the final result. An inexpensive execution plan for a query is,
in general, orders of magnitude better than an expensive plan, regarding its process-
ing cost. Thus, a great amount of effort has been dedicated to proposing cost-based
optimizers that can select a relatively cheap execution plan for a query based on its
estimated computational costs (Mishra and Eich 1992).

Some authors have proposed functions that predict the cost of spatial join queries,
such as those by Sivasubramaniam (2001), Fornari et al. (2006), and Roh et al. (2010),
as well as methods to combine them to predict the cost of multiway spatial join
queries (Mamoulis and Papadias 2001a). Such methods and functions, i.e. a cost model,
predict the I/O and CPU resources needed by the join algorithms applied to an execu-
tion plan, assuming that the data fills the spatial extent uniformly. However, the uni-
formity assumption does not hold for practical spatial datasets and may cause the
selection of bad execution plans, especially in the presence of dataset skewness. To
improve plan cost estimation in this condition, Mamoulis and Papadias (2001b) pro-
posed a uniform (grid) histogram that divides the spatial extent of the dataset into
disjoint cells of fixed size that accounts the density of spatial objects and other meta-
data about them, such as its average length. Additionally, many histogram techniques
were proposed to improve the selectivity estimation—the main component of plan
cost estimation (e.g. Acharya et al. 1999, Sun et al. 2006, Cheng et al. 2013).

Careful use of the cost model can improve estimates by gathering additional meta-
data for complex spatial objects, such as the kind of object stored, the area of poly-
gons and length of polylines, and the number of spatial data points to estimate the
communication volume in distributed systems. Furthermore, specific estimation formu-
las and precise histogram techniques are often decidedly helpful for improving select-
ivity estimation when joining polygons and polylines, as reported by de Oliveira et al.
(2017) and improved by de Oliveira (2017).
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2.2. Distributed execution of multiway spatial join

With the increasing availability of large spatial datasets, many algorithms have been
proposed to execute spatial join and multiway spatial join queries in parallel and dis-
tributed environments (e.g. Patel and DeWitt 2000, Luo et al. 2002, Gupta and Chawda
2014, Du et al. 2017, Sabek and Mokbel 2017, Yu et al. 2018, Eldawy et al. 2021). Most
of these algorithms use a disjoint data partitioning strategy (declustering) to create
groups of spatial objects, called data partitions. A frequently proposed way of generat-
ing data partitions is to group objects by location, i.e. their intrinsic geographic loca-
tion. Before or during the join execution, a routine assigns a set of partitions (query
fragments) to a particular processor that performs the query over it. Thus, the number
of data partitions is a key parameter of a distributed query processing system as it
determines the level of parallelism. However, in general, this number is determined
empirically, for the data being processed. Eldawy et al. (2015) presented and evaluated
a comprehensive set of data partitioning schemes for spatial data.

In our work, the cost model mentioned in the previous section was used to com-
pute a spatial grid histogram for each dataset, with a specific granularity based on its
metadata. The histogram, in turn, establishes the number of data partitions for the dis-
tributed system. In this way, we can maintain metadata about each partition, deter-
mine the tasks for each query in advance, and optimize a query before its execution.
Furthermore, the strategy does not require the repartitioning of data in each join
query performed, in contrast to some of the related work investigated. Further, the
histogram acts as a distributed index structure, which stores the metadata about the
datasets—used to estimate the cost of processing a query—and also supports the cre-
ation and assignment of data partitions in the distributed environment. Due to space
limitations, we refer the reader to de Oliveira (2017) for further details.

Another issue regarding the distributed processing of MSJQ is how to schedule the
query fragments, or jobs, to processors in a way that achieves both a load-balanced
query execution and low network usage. The main difficulty in this regard is that a
data partition must be aligned with others, i.e. data partitions of distinct datasets but
from the same spatial region must be processed together on the same processor. The
model we propose in this paper addresses this issue and is described in Section 3.

We focus here on a hybrid optimization technique that splits the execution plan
into two parts: (i) a static plan to determine the access methods to use and the order
of dataset processing, and (ii) an execution plan, generated at run time, to determine
where the jobs will be executed and, consequently, where the data partitions will be
copied from. This way, we can focus on query scheduling (ii) and use previously
reported results for well-studied problems in (i), such as a plan enumeration explicitly
designed for multiway spatial joins (Mamoulis and Papadias 2001a).

2.3. Earlier work on the processing of spatial data in distributed systems

Recently, increasing attention has been focused on the processing of spatial data in
distributed systems and several studies on this topic have been published (see Eldawy
and Mokbel (2016) for a survey). In this section, we briefly describe previously reported
work on the topic that relates to the issues addressed in this article.

1392 T. B. DE OLIVEIRA ET AL.



Earlier studies based on MapReduce focused on how to make design decisions con-
cerning the underlying framework, such as the need to process the data in two phases
(the map and reduce functions) and the need to create homogeneous tasks with
regard to the load they cause in the reduction phase. Examples of such studies can be
found in SJMR (Zhang et al. 2009), VegaGiStore (Zhong et al. 2012), and
SpatialHadoop (Eldawy and Mokbel 2015). These studies, however, only support the
processing of pairwise spatial join queries, not providing strategies to process multi-
way queries. The work presented by Aji et al. (2012), and later improved on by the
same authors (Aji et al. 2013), although addressing multiway spatial join, used the
default MapReduce load balancer,1 and focused on dividing the load into evenly-sized
tasks. This is also the case for the work of Gupta et al. (2013), improved by Gupta and
Chawda (2014). The default load balancer algorithm of MapReduce assigns tasks to
available slots in the cluster in a greedy way and requires tasks to have evenly spread
loads to perform a balanced execution (Kwon et al. 2012). As discussed earlier, spatial
data is, by nature, non-uniform and thus, the occurrence of straggler tasks is expected,
resulting in unbalanced execution. Although other algorithms that improve the execu-
tion of non-uniform tasks in MapReduce frameworks are available (e.g. Afrati and
Ullman 2011, Moseley et al. 2011, Verma et al. 2012, Bhattu et al. 2020), all reported
studies maintain a focus on providing equally-sized-tasks.

The work on Spark for spatial data processing mainly supports the execution of
pairwise spatial joins (e.g. You et al. 2015, Yu et al. 2015, Xie et al. 2016, Yu et al. 2018,
Eldawy et al. 2021). However, it is possible to process a multiway join query in a sys-
tem designed to process pairwise join queries by cascading the result of a previous
step to the next. Nevertheless, it often incurs additional costs in collecting and redis-
tributing the intermediate results. As far as we know, Du et al. (2017) proposed the
only work that extends Spark to process multiway spatial join queries and does not
incur such costs. Similarly to MapReduce, Spark also requires evenly-sized tasks to per-
form a balanced execution. Even so, the Spark API allows an application to set the pre-
ferred locations for a task, a feature that enables the scheduling of data to process on
specific machines. However, all these studies focus on providing evenly-sized tasks
and do not mention the API for preferred locations.

There is also a significant body of research on distributed database technology with
some DDBMS supporting features for spatial data handling. However, the traditional
focus of DDBMS systems is on supporting multi-query workloads at the inter-operator
and inter-query levels of parallelism (€Ozsu and Valduriez 2011). Since our scope
focuses on intra-operator parallelism and does not include multi-query workloads, we
limited our comparison in this regard. An exception, however, is Distributed Secondo
(Nidzwetzki and G€uting 2017), a distributed, general-purpose DBMS which considers
both the intra-operator level of parallelism and query optimization. The authors pro-
pose a decentralized algorithm to assign tasks to query processing nodes in which
each machine creates its own jobs based on local data. A load balancing algorithm is
used at the end of query execution in which underutilized machines are used to
reduce the load of busy machines by randomly reassigning tasks. This strategy is simi-
lar to that used in MapReduce and Spark, and follows the principle of performing
computation in the same location where the data is originally stored (i.e. reducing the
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need to move data across the network). Although this scheduling strategy focuses on
reducing communication, Moseley et al. (2011) and Verma et al. (2012) showed that,
due to the combinatorial nature of the problem, constructing optimized job schedules
can greatly reduce the makespan. In contrast, we consider in this article both the mini-
mization of makespan and communication costs.

In general, the proposed techniques for the processing of MSJQ using the
MapReduce and Spark frameworks (e.g. Aji et al. 2013, Du et al. 2017, Eldawy et al.
2017, Sabek and Mokbel 2017, Yu et al. 2018, Eldawy et al. 2021) do not consider the
selection or even the scheduling of execution plans, which are well-established strat-
egies to process multiway queries in traditional database systems. In turn, the kind of
parallelism implemented by these frameworks, known as intra-operator parallelism, is
a fundamental design principle responsible for the high scalability achieved and, gen-
erally, is not implemented in traditional distributed database systems as they focus
mainly on intra-query parallelism (€Ozsu and Valduriez 2011). Recently, the lack of
attention to database theory in the above-mentioned emerging frameworks has been
criticized (e.g. Pavlo et al. 2009, Stonebraker et al. 2010) and a few surveys propose
the integration of query optimizers as future work (e.g. Doulkeridis and Nørvåg 2014).

2.4. Lagrangian relaxation

In terms of computational complexity, the problem considered in this article is NP-Hard,
which means that nontrivial, general, numerical instances of it are notoriously hard to solve.
A common approach to deal with such problems is to solve a simplified version of it to
obtain approximate solutions and bounds. The well-known technique of Lagrangian relax-
ation (LR) is suitable for such problems if their constraints can be divided into two sets:

� ‘simple’ constraints—when the problem consists of only these, it can be solved
relatively easily, and

� ‘difficult’ constraints—when these are added, the problem becomes very hard to
solve.

More detailed descriptions of LR have been given by several authors, including
Fisher (1985, 2004), Bertsimas and Tsitsiklis (1997), and Klau and Reinert (2007). The
main idea of LR is to relax the problem by removing the difficult constraints and plac-
ing them in the objective function, where they are assigned weights (the Lagrangian
multipliers). Each weight represents a penalty that is added to the cost of any solution
that does not satisfy the corresponding constraint. LR is often used for efficiently find-
ing a bound on the value of the optimal solution, Z, to such problems. Sometimes,
the bound equals Z and the use of LR leads to an optimal solution. Consider the fol-
lowing combinatorial optimization problem expressed as an integer linear program:

Minimize Z ¼ cTx,
subject to

(2.1)

Ax ¼ b, (2.2)

Dx� e, (2.3)

x 2 Z
n
1: (2.4)
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where x, A, b, c, D, and e are integral, with dimensions n� 1,m� n,m� 1, n� 1, k �
n, and k � 1, respectively.

Assuming that the constraints given by (2.2) are difficult, the original problem (2.1)–
(2.4) becomes intractable. When (2.2) is removed, the remaining problem, including
the easy constraints (2.3), is assumed to be relatively easy to solve compared to the
original problem. To attempt to solve (2.1)–(2.4) by LR, a vector of non-negative varia-
bles l ¼ ðl1, :::, lmÞ, termed Lagrangian multipliers, is introduced into the objective
function (2.1). This creates the following relaxed problem in which the difficult con-
straints (2.2) have been relocated and weighted with a set of fixed values from l :

Minimize ZDðlÞ ¼ cTx þ lTðb� AxÞ,
subject to

(2.5)

Dx� e, (2.6)

x 2 Z
n
1: (2.7)

Since (2.6) is a set of easy constraints, it is assumed that there exists an algorithm
that can be used to efficiently solve the relaxed problem (2.5)–(2.7) in polynomial or
pseudo-polynomial time. For any set of given non-negative values l, it is straightfor-
ward to show that ZDðlÞ� Z, i.e. the value of the solution to (2.5)–(2.7) is a lower
bound on the value of the solution to (2.1)–(2.4). Frequently, ZDðlÞ is a tighter lower
bound on Z than that provided by solving the linear relaxation of the model (2.1)–
(2.4). The widespread interest in LR stems from the fact that in some cases, ZDðlÞ ¼ Z,
i.e. the optimal solution to (2.5)–(2.7) is actually the optimal solution to (2.1)–(2.4).

Studying (2.5)–(2.7) raises the obvious question: What are the best possible values
for the entries of l, i.e. those that provide the tightest possible bound on Z (for which
either ZDðlÞ ¼ Z or, at least, ZDðlÞ is quite close below Z)? This question can be
answered by solving the following problem, termed the Lagrangian dual:

ZD ¼ max
lP 0

ZDðlÞ
¼ max

lP0
min

p

cTxp þ lTðb� AxpÞ, (2.8)

¼ max
lP 0

lTbþmin
p

ðcT � lTAÞxp, (2.9)

where fxp, p ¼ 1, :::, Pg is the set of feasible solutions to (2.5)–(2.7), assumed to be of
finite cardinality P.

Due to the integrality requirement (2.4), problems (2.1)–(2.4) and (2.8) are not, in
general, equivalent, and thus ZDðlÞ� Z (with equality not necessarily holding). Let l�

be the optimal multipliers for (2.5)–(2.7). As can be seen from (2.5), ZDðlÞ is the lower
envelope of a finite family of linear functions, but ZDðlÞ is not, in general, differenti-
able at any l�: This causes major difficulties in solving (2.8), making the steepest
ascent gradient solution method invalid. Instead, the so-called subgradient optimiza-
tion method (Anstreicher and Wolsey 2009) is commonly used, where the gradients
are replaced by subgradients of the form b� Axp, p ¼ 1, :::, P:

2.4.1. Solving the Lagrangian dual
Geoffrion (1974) showed that ZLP ¼ ZDðl�Þ and that ZDðl�ÞP Z�, l� P 0, where l� is
the multiplier vector regarding the optimal solution of (2.5)–(2.7), and Z� and ZLP are
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the values of the optimal solutions of the problem (2.1)–(2.4) and its linear relaxation,
respectively. Geoffrion also showed that a vector x is an optimal solution to (2.1)–(2.4)
if, given a certain set l of multipliers, it satisfies the following conditions:

i. x is optimal in (2.9);
ii. Ax ¼ b; and
iii. lðb� AxÞ ¼ 0:

Defining a vector D ¼ cT � lTA, then an optimal solution to (2.9) is obtained by fix-
ing:

xj ¼
1, if Dj < 0;
0 or 1, if Dj ¼ 0;
0, if Dj > 0:

8<
: (2.10)

One of the available methods to solve (2.9) is described in the next section.

2.4.2. Subgradient optimization method
The Subgradient Optimization Method, proposed by Held and Karp (1971), begins
with a vector of multipliers l0 and then, iteratively, calculates directions and steps to
obtain a sequence of vectors lk , which converges to the vector l� that maximizes
(2.9). Each vector lk is closest to the optimal vector l� (in terms of the norm
jjlk � l�jj) than its predecessor lk�1, despite the fact that the objective function does
not increase monotonically. The procedure below summarizes the method in
pseudocode.

SUBGRADIENT-OPT()

1 Determine a vector l0 of multipliers
2 for k ¼ 0 to t

3 Solve (2.9) with the vector lk

4 Calculate the subgradients rk ¼ b� Axp

5 Calculate the step tk ¼ kkðZ��ZDðlkÞÞ
jjrk jj

6 Do lk11 ¼ maxð0, lk þ tkrkÞ
7 return lt

The natural choice for the initial vector multiplier is l0 ¼ 0: However, the conver-
gence can be accelerated by making l0 ¼ u, where u is a solution to the dual of the
linear relaxation problem (2.1)–(2.4). In this method, there is no way to prove that the
optimal solution is reached unless it is obtained via a vector of multipliers lk such
that ZDðlkÞ¼Z�: Thus, the stopping criteria, in general, is a limited number of itera-
tions (t, line 2). The justification for how the step tk is performed and an explanation
about the factor kk can be found in Held and Karp (1971), Held et al. (1974), and
Goffin (1977). Held et al. (1974) validated the commonly-used step size for subgradient
optimization (tk, line 5), where the denominator is the square of the norm of the sub-
gradient vector b� Axp:
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3. MSJQ models and algorithms

3.1. The SM model

In this section, we describe a proposed model for scheduling multiway spatial join
queries in distributed systems, called SM (Spatial Multiway), together with solution
algorithms for it. To conform with the related literature, we use the term machine as a
synonym of a processor in a distributed system.

We assume that multiway spatial join queries are processed in a pairwise fashion,
two datasets at a time. We also assume that each dataset has been previously parti-
tioned and that the resulting data partitions have been distributed to the machines.
However, no prior knowledge of the queries is assumed (i.e. during data distribution
we do not know the set of queries that will be performed over the data).

A multiway spatial join can be thought of as a set of steps, each of them composed
by a set of jobs J, n ¼ jJj, with each job defined by a pair of data partitions that are
aligned by a spatial predicate between two spatial datasets. The pair of partitions that
compose a job needs to be processed in the same physical machine, as the spatial
objects that constitute them need to be evaluated against the spatial predicate algo-
rithm specified in the query step. Each job must be processed on exactly one of a
given number m of nonidentical and unrelated machines, running in parallel.

The model includes parameters that represent the datasets and their allocation in
the distributed system. The communication cost of processing a job j on a machine i,
cij, is defined as the data transfer cost that is incurred when moving a data partition
from the machine where it is currently located to the machine where it is assigned for
processing. No communication cost incurs if the data partition is processed on a
machine to which it has been previously assigned, whether it is the original data parti-
tion or a replica.

The processing cost w is defined as the processing time required to finish a job.
We assume that the processing cost of a job is the same on any machine. We also
consider a residual load u for a machine, arising from a prior unbalanced query execu-
tion, or any other particularity of the system. This residual load is useful when schedul-
ing multiway queries, as it accounts for the imbalance of a prior step, and hence may
induce a better balance for the entire query.

The cij and w parameters are estimated by a cost model for spatial query process-
ing. These metadata are gathered when datasets are loaded and spread in the under-
lying distributed data system. We focus here on the problem of scheduling the
multiway query and assume that these values are previously computed. For a compre-
hensive set of data structures, methods, and estimation formulas that can provide
these parameters, i.e. a cost model for multiway spatial join queries, please see de
Oliveira (2017).

The objective of the scheduling is to perform job allocation in such a way that the
query load is somewhat evenly distributed among the machines, i.e. reducing the
makespan, but acknowledging that the communication cost incurred must also be
controlled. However, these are two conflicting objectives in the sense that to achieve
a better balance in query execution we may incur unacceptably high costs in transfer-
ring data partitions to idle machines. To this end, we introduce a parameter f, to
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specify the desired emphasis on a balanced schedule or on a low usage of network
capacity. Table 1 summarizes the indices, parameters, and decision variables used in
the SM Model and in the algorithms presented in the following sections.

Then we have the following problem:

Minimize ZSM ¼ fx0 þ
Xm
i¼1

Xn
j¼1

cijxij,

subject to

(3.1)

Xm
i¼1

xij ¼ 1, j ¼ 1, :::, n; (3.2)

Xn
j¼1

wjxij þ ui � x0, i ¼ 1, :::,m; (3.3)

xij 2 f0, 1g, j ¼ 1, :::, n; i ¼ 1, :::,m: (3.4)

Function (3.1) represents the weighted objective of minimizing the makespan and
the sum of the communication costs. Constraint family (3.2) expresses the requirement
that each job must be processed on exactly one machine. Constraint family (3.3) is a
set of logical inequalities arising from the need to minimize the makespan. Constraint
family (3.4) represents the usual integrality constraints, indicating if a job is or is not
processed by a particular machine (xij).

Clearly, computational performance is sensitive to the relative value of f. If f is set
to zero, the makespan is of no importance and the problem reduces to one of only
processing cost minimization. If f is set to a relatively high value, the total processing
cost is of little importance and the problem reduces to one of makespan minimization.
Either of these reduced problems are easier to solve than the case where we have an
intermediate value of f. The weighting factor f can be adjusted so that for an optimal
solution to any numerical instance, the total communication cost is approximately
equal to the makespan. That is, the total communication cost and the weighted

Table 1. Symbols used in the SM Model and algorithms.
Symbol Description

J The set of jobs
Indices
j The job in set J, 1 ≤ j ≤ n
i The machine, 1 ≤ i ≤ m
Parameters (all nonnegative and finite)
n The number of jobs, jJj
m The number of machines, (m ≤ n)
wj The processing cost of j on any machine
cij The cost of communication incurred when j is processed in machine i
ui The residual load of i in a previous query or multiway step
f A factor that converts the communication cost into a processing cost,

enabling the two expressions in (3.1) to be measured in a common
unit of cost.

Decision variables
x0 The makespan for the query step
xij 1, if job j is processed on machine i,

0, otherwise:

�
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makespan are of roughly the same importance. From now on we assume the latter,
more challenging case.

Although determining a suitable value for f is nontrivial and instance-dependent, it
is possible to specify a value that establishes a compromise between makespan and
communication through a parametric analysis. Such analysis retrieves the nature of
solutions and their values as a function of f. Due to the focus on scheduling methods
and space limitations, we present the parametric analysis in the Supplementary
Material (de Oliveira et al. 2023). Also, we direct the reader to de Oliveira (2017,
Chapter 5) for a complete explanation with examples. Although f is continuous, we
have shown that it is possible to establish bounds and breakpoints to it, i.e. there is a
small set of values for f that changes the query schedule when solving SM.

3.2. Observations on the SM model

The SM model represents a problem that is an extension of the machine scheduling
problem RjpmtnjCmax, i.e. minimize the makespan with a number of unrelated
machines running in parallel. RjpmtnjCmax is NP-complete (by reduction from
3-PARTITION). Hence the problem related to SM is also NP-complete, so the likeli-
hood of the existence of a pseudo-polynomial exact algorithm for it is remote.

SM focuses on which processor a particular task is to be processed on. For instan-
ces with many given tasks having large processing times, the memory requirements
and the solution times will be high. This makes it extremely hard to solve practical
instances of the model exactly by standard integer programming methods, such as
branch-and-bound or branch-and-cut. This has been confirmed by computational
experiments with a branch-and-cut algorithm for the problem of minimizing the make-
span on parallel processors (cf Martello et al. 1997). An analysis of the distribution of
the total computation time over the various components of the branch-and-cut algo-
rithm by Martello et al. (1997) revealed that most of the time was spent solving linear
programs. This result reinforces the quest for efficient approximate solution methods
for SM.

3.3. Solution methods

3.3.1. Linear programming relaxation of SM
Linear relaxation of SM consists of removing the integrality constraints (3.4), thus let-
ting xij assume fractional values in the solution. Despite removing (3.4), the constraint
family (3.2) imposes an upper limit such that each job is still scheduled
once ðPm

i¼1 xij � 1Þ:
The optimal solution for the linear relaxation can be computed by a Linear

Programming method, such as the well-known Simplex algorithm (Bazaraa et al. 2009).
The solution, however, will be infeasible for SM if it has fractionally set jobs, i.e. jobs
partially scheduled on two or more machines. In this case, we use a repairing heuristic
to fix the schedule. We denote this procedure by LP in the following.

Both LP and the method resulting from the Lagrangian relaxation use the same
repairing procedure (REPAIR-PARTIAL-SOLUTION), which we introduce in Section 3.3.3.
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3.3.2. Lagrangian relaxation
Following Section 2.4, one possible Lagrangian dual for SM is obtained by dualizing
constraints (3.2) into the objective function (3.1) using the Lagrangian multipliers l ¼
ðljjj 2 JÞ: The resulting dual model is:

ZD ¼ max
lP 0

ZDðlÞ,
subject to ð3:3Þ and ð3:4Þ,

(3.5)

where

ZDðlÞ ¼ min
x

fx0 þ
Xn
j¼1

Xm
i¼1

cijxij þ
Xn
j¼1

lj
Xm
i¼1

xij � 1

 !

¼ min
x

fx0 þ
Xn
j¼1

Xm
i¼1

ðcij þ ljÞxij �
Xn
j¼1

lj:

(3.6)

Problem (3.5) reduces to m knapsack problems, one for each constraint in (3.3). A
knapsack problem (Kellerer et al. 2004) consists in choosing a subset of n̂ items, each
with a profit pj and weight ŵj , j ¼ 1, :::, n̂, such that the profit sum of the selected
items is maximized and the sum of weights does not exceed a given knapsack cap-
acity v. The problem can be solved in pseudo-polynomial time (Kellerer et al. 2004). A
knapsack model is given in (K.1)–(K.3) for reference. (K.1) is the objective function,
(K.2) ensures that the total weight of the selected items does not exceed v, and (K.3)
defines the integrality constraints for xj to indicate the selected items:

ZK ¼ max
X̂n
j¼1

pjxj,

subject to

(K.1)

X̂n
j¼1

ŵjxj � v, (K.2)

xj 2 f0, 1g, j ¼ 1, :::, n̂: (K.3)

The m knapsack problems for LR are obtained in the following way: Let KLRði, lÞ, i ¼
1, :::,m be the i-knapsack problem for LR. The number of items to select from is n̂ ¼
n, one item for each j 2 J: The weights ŵ for each problem are obtained from w val-
ues, and profits p from c and l: A lower bound for v can be determined byP

j2J wj=m� x0: The complete model for a KLRði, lÞ is defined by (3.7) to (3.9). The
inversion of the sign for the sum of profits in (3.7) is due to knapsack being a maxi-
mization problem, while SM is a minimization problem.

ZKLRði, lÞ ¼ max�
Xn
j¼1

cij þ ljð Þxij,
subject to

(3.7)

Xn
j¼1

wjxij � v � ui, (3.8)

xij 2 f0, 1g, j ¼ 1, :::, n: (3.9)
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Next, we present a procedure to compute l and to obtain feasible solutions to SM,
based on the iterative Subgradient Optimization Method. Algorithm 3.1 shows the
steps of the method in pseudocode. After setting initial values in lines 1–3, we com-
pute and set the initial upper bound on ZSM (line 4), by calling a greedy algorithm
that is presented next. The value of v (line 5) is set by using a best-fit heuristic that
provides an upper bound by ordering the jobs according to decreasing order of make-
span and allocating them to the least-used machine. The lower bound for v is set in
line 6. The algorithm then iterates from k¼ 0 to a specific number of iterations t and
while the conditions for tk and k are not met. In lines 9 and 10 the method iteratively
solves the m knapsack problems. Next, in line 11, the vector of subgradients r is com-
puted. If the value of ZDðlkÞ increases above the upper bound limit ZU (line 12), we
reduce the value of v by an arbitrary small percentage (line 13) and return to solve
the knapsack problems again. Otherwise, we call the procedure REPAIR-PARTIAL-SOLUTION
to repair the partial solution x, transforming it into a feasible solution to SM (line 15).
Next, based on a possibly improved upper bound ZU (line 16), a new tk and lk11 for
the next iteration are computed (lines 17 and 18). Line 19 updates k if a better ZD is
not found in ki iterations. The method returns the best feasible solution found (x̂ ). We
refer to this procedure as the LR method.

Algorithm 3.1 Procedure to compute a feasible solution to SM through LR-relaxation.
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3.3.3. Repairing heuristic
This section introduces a heuristic to repair a partial schedule provided by either LP or LR
by transforming it into a feasible solution. The partial LP solution can have fractionally
assigned jobs, where 0 < xij < 1, which we round up, eventually turning them into mul-
tiple assigned jobs. The partial LR solution, in turn, does not have fractionally assigned
jobs but can present multiple assigned jobs, as well. Let x be the partial solution provided
by the LP or LR method, and let us partition the jobs into three sets defined by:

S1 ¼ fj 2 Jj
Xm
i¼1

dxije ¼ 0g, (3.10)

S2 ¼ fj 2 Jj
Xm
i¼1

dxije ¼ 1g, (3.11)

S3 ¼ fj 2 Jj
Xm
i¼1

dxije > 1g, (3.12)

where S1 is the set of unassigned jobs, S2 is the set of jobs that are correctly assigned,
and S3 is the set of jobs that were multiply assigned. All j 2 S1 [ S3 need to be
repaired to transform x into a feasible solution.

Furthermore, let us introduce the concept of regret for a job. The regret rj for a job
j is defined as the difference between the maximum and the minimum cost that may
be incurred if the job has been scheduled in the worst or the best possible machine,
plus its load wj weighted by f. Formally, rj is defined by (3.13). We use this concept to
sort the assignment of jobs, in a way that jobs that have a large load (fwj) or a large
regret are scheduled first.

rj ¼ fwj þ ðmax
1� i�m

cij � min
1� i�m

cijÞ (3.13)

Algorithm 3.2 Procedure to repair a partial solution x to SM.
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We repair x using the procedure REPAIR-PARTIAL-SOLUTION in Algorithm 3.2. Let x̂ be
the feasible solution under construction. The procedure starts by setting the residual
load of previous steps u (lines 4 and 5). Next, it computes the number of machines
for which each j 2 J is allocated (t) and uses it to build the sets S1 and S3 (lines 7 to
11). If j is correctly set (t¼ 1), x̂ is set accordingly (line 14), and its load wj is added
to the array of loads for each machine i (line 15). The remaining jobs j 2 S1 [ S3,
denoted as Su, are assigned to machines by the procedure SCHEDULE-UNASSIGNED-JOBS
(line 16). After this call, x̂ has a feasible solution for SM. This solution is further
improved by procedure IMPROVE-REPAIRED-SOLUTION (line 17). Next, we describe these two
auxiliary procedures.

Procedure SCHEDULE-UNASSIGNED-JOBS, in Algorithm 3.3, starts by sorting the jobs in Su
in decreasing order of rj (line 1). Next, for each item j 2 Su, the procedure finds the
machine s for which the assignment of j least increases the cost (lines 2 to 12), assigns
j to it (line 13), and updates the load on machine s (line 14) for the next iteration. The
procedure is terminated when all jobs are assigned to machines. For the sake of sim-
plicity, we use x0 to represent the makespan. In this context, it can be obtained from
the maximum value of the load array after line 1 and updated after line 14 if load½s�
exceeds the stored x0 value.

Algorithm 3.3 Procedure to schedule unassigned jobs in Su.

After the scheduling of the jobs in Su, we then search for jobs for which a machine
exchange is worthwhile. Let xi0 be the machine with the largest load, x1 be the second
largest load for all machines, and pj be the index of the machine where j is assigned.
Procedure IMPROVE–REPAIRED–SOLUTION, in Algorithm 3.4, searches for a new machine s, in
which to schedule j, j 2 J, such that the sum of the processing and communication
costs are reduced by the most (lines 1 to 12). If there exists such machine s that
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would cause a positive cost reduction (line 13), j is moved from pj to s (lines 14 and
15) and the loads for machines s and pj are updated accordingly (lines 16 and 17).
Note that the value of zinc (line 9) is positive if moving j from pj to i does not improve
the solution, and negative otherwise.

3.3.4. A greedy algorithm for SM
Besides being used to repair a partial solution to SM, the procedure SCHEDULE-
UNASSIGNED-JOBS (followed by IMPROVE-REPAIRED-SOLUTION) can also be used to identify a
complete schedule, starting with no scheduled jobs in x̂ , Su ¼ J, and an empty load
array.

There are three purposes in using it in this way: (i) to compare the performance of
the combinatorial methods (LP and LR) with the performance of an intuitively appeal-
ing but simple method; (ii) to use it when the limit of time imposed on the query
optimization is critical, for example, for queries with small run times; and (iii) to use it
as a baseline for comparison, observing that there is no other established method to
compare against, and checking that it is similar to the greedy algorithm used in
related work. We refer to this way of using these procedures as the GR method since
it constitutes a greedy heuristic to provide solutions to SM.

Algorithm 3.4 Procedure to improve the feasible solution x̂:

4. Evaluation data and results

We chose a set of public spatial datasets, obtained from the Brazilian Institute of
Geography and Statistics2 (IBGE), from the LAPIG Laboratory3 of the Institute of Social
and Environmental Studies (IESA) at UFG, from the Digital Chart of the World4 (DCW),
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and from the TIGER 2015 spatial database (Bureau 2015). Table 2 shows the selected
datasets and their characteristics. All datasets have 2-dimensional objects, which repre-
sent geospatial objects on the Earth’s surface. We downloaded each dataset from
these sources in the well-known Shapefile (SHP) or FileGDB binary formats, and used
the GDAL5 and GEOS6 libraries to extract and process the geometry of each spatial
object contained in them.

The first and second groups of datasets, in Table 2, were used to perform the set
of experiments involving the scheduling methods due to their manageable sizes. We
observe that what determines the execution time of the optimization is not the size of
datasets, but the number of jobs and machines, as discussed in Section 3.2. The num-
ber of jobs, n, is determined by the number of data partitions. Larger datasets should
have larger data partitions as this improves query execution time by reducing the
number of control messages in the system, resulting in a similar number of jobs. The
Gigabyte-size experiments, in Section 4.3, combine the third group of datasets to form
multiway queries and measure their run time.

To evaluate our proposed methods, we employed the datasets listed in Table 2 to
build a set of pairwise and multiway spatial join queries. Each pairwise spatial join pro-
vides one scheduling instance, i.e. a set of jobs J with their corresponding costs (wj

and cij). Each multiway spatial join provides the same number of scheduling instances
as its number of steps. Additionally, in multiway instances, the imbalance from a prior
step is represented by the parameter u.

Table 3 displays the pairwise join queries used in the experiments. There are 20
queries, constructed using the datasets listed in Table 2 and providing an all-to-all
combination of the first group of datasets and also an all-to-all combination of the
second group of datasets. This set comprises queries that illustrate all possible combi-
nations of the two types of spatial objects, i.e. line �� line, line �� polygon, and

Table 2. Datasets used in experiments.
Name Abrev. Type Cardinality SHP/GDB size (MB)

Brazilian datasets (IBGE and LAPIG)
Fire alerts A Polygons 32,578 11.2
Hydrography H Lines 226,963 64.5
Roads R Lines 51,646 15.2
Counties C Polygons 5564 38.8
Vegetation V Polygons 2140 4.7

World-wide datasets (DCW)
Rivers RI Lines 943,638 243.2
Railways RA Lines 194,261 28.7
Hydrography—inland HI Polygons 338,860 136.7
Elevation contour EC Lines 703,574 572.5
Crops CR Polygons 123,746 69.3

Tiger datasets for gigabyte-size experiments
Primary roads PR Lines 13,373 47 (.csv 77MB)a

Area land mark LM Polygons 129,252 132 (.csv 406MB)
Area water AW Polygons 2,292,811 821 (.csv 6.5 GB)
Linear water LW Lines 5,825,479 2103 (.csv 18.3 GB)
Edges ED Lines 69,572,173 14,558 (.csv 62.0 GB)

aIt is common to find these datasets converted to .csv format in related work that uses the Hadoop or Spark frame-
works. Here, we depict both the original binary size and the .csv size reported in related work for a complete under-
standing of the experiment volume. As can be seen, the binary size is smaller, but when loaded, these datasets
occupy more work memory. The inverse can be the case for the .csv format, depending on the implementation
details of each system.
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polygon �� polygon, as well as distinct cardinality results. The join predicate used is
intersect. In what follows, we refer to these queries using their numbers, ranging from
J1 to J20.

Table 4 displays the set of multiway spatial join queries for the scheduling experi-
ments. We refer to the steps of a multiway query as Mi:j, where i is the query number
and j is the step. For example, M1 has three steps referred to as M1:1, M1:2, and M1:3:

Tables 3 and 4 also present the number of jobs n for each query (or query step). The
resulting 36 experiment instances, i.e. 20 spatial join queries and 16 steps of multiway
spatial join queries, were scheduled on m ¼ ð4, 8, 16, 32, 64Þ machines, that is, 180
schedules were tested for each method.

Before query execution, we distributed the data partitions to the machines, indi-
vidually for each dataset, using a round-robin algorithm. In the resulting data distribu-
tion, often a data partition from two distinct datasets with overlapping geographic
regions happened to be assigned to distinct machines. Our purpose in using this dis-
tribution is to force the scheduling algorithm to find a way to reduce the communica-
tion cost by strategically assigning the jobs to machines. We determined the
parameter f for each query step following the methods in the Supplementary Material
(de Oliveira et al. 2023), such that the total communication cost is approximately equal
to the makespan, i.e. the total communication cost and the weighted makespan are of
roughly the same importance.

The necessary parameters were set as ki ¼ 50 and t¼ 3000, when executing the
procedure SOLVE-LR-RELAXATION (Algorithm 3.1). The maximum number of iterations t was
reached for 11 experiment instances. For the others, the number of iterations
remained between 140 and 2700. The initial ZU was provided by the GR method.

Table 3. Pairwise spatial join queries used in experiments.
Name Query Jobs Name Query Jobs

J1 A �� H 8082 J11 RI �� RA 5572
J2 A �� R 8082 J12 RI �� HI 10,298
J3 A �� C 8082 J13 RI �� EC 10,019
J4 A �� V 8082 J14 RI �� CR 6630
J5 H �� R 7125 J15 RA �� HI 4614
J6 H �� C 7587 J16 RA �� EC 4588
J7 H �� V 7755 J17 RA �� CR 4209
J8 R �� C 2139 J18 HI �� EC 8495
J9 R �� V 2160 J19 HI �� CR 5624
J10 C �� V 114 J20 EC �� CR 5106

Table 4. Multiway instances with intermediate results and the number of jobs n of each step.

Query

Jobs n in each step

Mi:1 Mi:2 Mi:3

M1 ððA �� RIÞ �� RAÞ �� CR 148 69 69
M2 ðRI �� RAÞ �� EC 5572 5477 –
M3 ðRI �� HIÞ �� RA 10,298 5544 –
M4 ððR �� RIÞ �� RAÞ �� EC 581 263 229
M5 ððA �� HIÞ �� CRÞ �� C 112 112 112
M6 ððRI �� ECÞ �� HIÞ �� RA 10,019 9870 5450
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All algorithms were coded in the C language and compiled using Clang,7 with opti-
mization flags -Ofast -march¼native. Pisinger’s minknap algorithm8 (Pisinger
1997) was used to solve the m knapsack problems inside the LR algorithm. To find the
extreme point solution for the LP method, we used an academic license of IBM ILOG
CPLEX Optimization Studio,9 version 12.6.1. The model and its parameters are set in
the CPLEX optimization module through C API calls, and the extreme point solution is
captured after the optimization process terminates.

The experiments for Section 4.1 were performed in m4.4xlarge Amazon EC2 virtual
machines, with Intel(R) Xeon(R) CPUs, E5-2686 v4 model, running at 2.30 GHz with
64GB of RAM. The operating system used was the standard Debian 11 offered by the
provider through an AMI image. Experiments that display execution time, in Section
4.2, were performed in a controlled local environment, using an AMD PhenomTM II X6
1055 T 2.8 GHz processor with 8G of RAM, a Debian 8.7 distribution, and Linux Kernel
version 3.18.1. The environment for the distributed Gigabyte-size query experiments
will be described in Section 4.3.

4.1. Quality of generated schedules

In this section, we compare each schedule provided by the GR, LP, and LR methods
and show how close they are to a known lower bound (Zlb

SM) for the optimal value
Z�
SM, i.e. how good they are with respect to an ideal schedule for each instance of SM.

To calculate Zlb
SM, we processed SM via the CPLEX software and left its MIP (Mixed

Integer Programming) solver to run from the root node, applying all possible cuts. We
present the distance between the proposed schedule and the lower bound, computed
as gap ¼ ðZþ

SM � Zlb
SMÞ=Zlb

SM, where theþ sign indicates the method used in each case,
e.g. ZGR

SM:

Figure 1 presents the results. There are five charts, one for each cluster size (i.e.
number of machines, m). The gap scale is logarithmic, focusing on near-optimal sched-
ules. There are three marks for each query, indicating the gap for GR, LP, and LR. A
mark touching the x axis indicates a gap � 0:01%, i.e. a schedule that is very close
(and sometimes equal) to the optimum. The gaps for GR are the largest, almost all fit-
ting in the range of 10–100%. Although there exists an instance for which GR pro-
vided a good schedule (M5:2 for m¼ 64), the average for all gaps is 25.07%, with a
high standard deviation (r ¼ 31:71%). LP improved over the GR schedule in almost all
instances. Example instances for which it performed worse than GR are M1:1�1:3 for
m¼ 16, and M4:1�4:3 for m¼ 64. The main implication for LP is that the schedules
were worse than GR when the number of machines m increased, going from 1.10%
for m¼ 4 to 10.88% for m¼ 64. This occurs because the number of jobs that were
fractionally set, i.e. jobs that were partially scheduled in more than one machine,
increased with the number of machines. We present some statistical values in Table 5
where it is possible to check this behavior. The average of all gaps for LP is
6.38% (r ¼ 10:74%).

LR achieved the smallest gaps. Observing Figure 1, for m¼ 4, there are 21 out of 36
instances with gap � 0:01%, with the other 15 instances having gap � 1% (check
the dotted line at gap ¼ 1). The gaps increased when m increased, but not
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significantly (see LR line in Table 5). For m¼ 8, 34 instances still presented gaps � 1%
and two had a gap > 1% (� 1:8). For m¼ 64, 31 instances achieved a gap � 1% and
the other five instances were such that 1� gap� 4:5%: Of all the 180 runs, there are
only 10 cases for which LR generated worse schedules than LP (Jf3, 7g for m¼ 4, Jf3, 7, 9g
for m¼ 8, Jf3, 6, 7, 9g for m¼ 16, and J7 for m¼ 32). LR achieved the best gap in all
instances when m¼ 64 and also, the best gap for all M instances. The average for all
gaps was 0.43% (r ¼ 0:94%) with a worst case of 4.5%.

Figure 1. Gap between each schedule provided by GR, LP, and LR and a known lower bound of
Z�SM, for m 2 f4, 8, 16, 32, 64g: The y axis is logarithmic to emphasize the near-optimal schedules.

Table 5. Average and standard deviation for gaps in Figure 1.
Average for m Standard deviation for m

Method 4 8 16 32 64 4 8 16 32 64

GR 11.96 26.8 37.3 27.08 22.18 5.92 26.11 50.97 29.6 22.37
LP 1.1 2.98 7.16 9.75 10.88 1.65 4.7 12.36 12.63 12.97
LR 0.06 0.23 0.57 0.75 0.51 0.15 0.4 0.87 1.61 0.79
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4.2. Comparison of the execution time to produce a schedule

This section presents the execution time for GR, LP, and LR, and reports the computa-
tional experience in solving the practical numerical instances previously mentioned. In
the experiments involving the LR method, the CPLEX parallel execution option was
disabled, i.e. the solver was limited to use only one OS thread. The other two meth-
ods, GR and LR, were implemented sequentially, and thus, all methods used only one
thread. The time reported is wall clock time, obtained using the function clock_

gettime with the argument CLOCK_REALTIME. Furthermore, we measured only
the time taken in the optimization function, discarding initial dataset loading, job enu-
meration, and other cleanup routines, such as memory release.

As expected, we find that solving the MIP numerical instances to optimality using
CPLEX was very time-consuming compared to the execution times reported in the fol-
lowing. Moreover, the optimal solution did not show a significant benefit over LR as
previously reported—the gaps are <1% in all instances. For reference, the larger
instances, with respect to n and m, took from hours to days to achieve a gap <10�4

from Z�
SM: Thus, we decided not to include these timings in the charts.

Figure 2 presents the results. The y axis shows the execution time in seconds using
a logarithmic scale. As the behavior is very specific for each instance, we present in
(a), (b), and (c), the minimum, the average, and the maximum execution time, respect-
ively. As expected, GR is the fastest, followed by LP and lastly by LR. GR has an aver-
age time per instance of 0.002 s for m¼ 4, and 0.007 s for m¼ 64. LP has an average
time of 0.052 s for m¼ 4, and 2.7 s for m¼ 64. LR, in turn, has an average of 1.1 s for
m¼ 4, and 14.4 s for m¼ 64. The maximum execution time for m¼ 64 for GR, LP, and
LR are 0.017, 14.9, and 43.1 s, respectively. The small dot for each bar in (b) indicates
the standard deviation and it shows that the LP execution time is less stable than for
GR and LR (note the dot above the average for LP when mP 8, considering the loga-
rithmic scale).

An important question is what determines the execution time of GR, LP, and LR.
From a theoretical perspective, we can examine the complexity of the algorithms pro-
posed. In general, they depend upon n and m. GR complexity is HðnmÞ for sufficiently
large m, or Hðn lg nÞ otherwise. LP complexity is also determined by n and m, as the
underlying algorithm used to optimize the relaxed model (Simplex) is polynomial in

Figure 2. Execution time for GR, LP, and LR. (a) shows the minimum execution time, (b) the aver-
age, and (c) the maximum execution time for all J and M queries.
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the number of constraints and variables (Hall 2010). Note that n and m determine the
number of variables and constraints in the SM model. In turn, LR employs a pseudo-
polynomial 0-1 knapsack algorithm whose complexity is O(vn) and it is executed m
times in each iteration for a constant number of iterations. Its amortized complexity is
O(vmn). The instance parameters wj are used to compute the capacity v of the knap-
sacks. From a practical perspective, the number of jobs ranged from 69� n� 10, 298
in this experiment. Indeed, queries with smaller n had lower optimization time and
were prevalent to determine the minimums in Figure 2(a). Analogously, queries with
larger n establish the maximums in Figure 2(c). The impact of m is also perceptible for
all methods as the bars increase in size with increasing m. Finally, for a multiway
query, the number of steps also determines the execution time as we have as many
schedules to optimize as the number of steps.

Observing the execution times reported for this experiment and taking into consid-
eration the quality of schedules from the previous section, we now discuss how to
choose the optimization method for a query. In general, the time required to optimize
a query is supposed to be smaller than the time required to execute it with a bad but
fast-generated schedule. Observing this, the actual optimization method to be used
may be chosen based on the expected execution time of the query, which can be esti-
mated based on its estimated processing costs. For small ad-hoc queries, i.e. queries
expected to have shorter execution time and meant to be executed just once, the
best option is usually GR. For larger queries, however, the execution time can accom-
modate longer optimizations, and even benefit from the improved schedules provided
by LR.

If we focus on system throughput, though, LR appears to be the most promising
method, as it is the one that reduces the most the makespan of queries, as well as
their communication cost. Additionally, a strategy to amortize its footprint may be
worthwhile. One option is to cache and reuse the execution plan after the query opti-
mization process, a common strategy used for repetitive or stored queries in non-spa-
tial DBMSs (Graefe 1993). Other options to reduce the optimization time exist, as we
can efficiently parallelize LR by splitting the execution of the m knapsack instances in
each iteration. The same applies only partially to LP. Although there exist parallel ver-
sions of the Simplex Algorithm, their effectiveness is not always guaranteed as it
depends upon the problem structure (Hall 2010).

4.3. Execution time comparison with gigabyte-size datasets, MapReduce, and
spark

To investigate the effectiveness of the schedules provided by our proposed methods,
called DGEO for short, we compared the execution time, shuffled data, and peak exe-
cution memory for three Gigabyte-size multiway spatial join queries executed using
DGEO and Apache Sedona (Yu et al. 2018), formerly termed GeoSpark. Apache Sedona
is an open-source project currently incubated at Apache Foundation and is a represen-
tative work on top of Spark. Although it is not able to execute partitioned MSJQ, we
pipelined the results of pairwise joins and measured the resources spent with inter-
mediate steps. We also consider the execution time reported by Du et al. (2017) for
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MSJS and Hadoop �CR (Gupta and Chawda 2014). MSJS fully implements MSJQ with-
out collecting and redistributing results for intermediate join steps. However, as it is
closed-source software, we cannot reproduce their experiments in our environment.
Sphinx (Eldawy et al. 2017) presented results only for pairwise spatial joins using two
synthetic datasets with rectangles (not real spatial objects), and thus, it is not directly
comparable to our realistic scenarios. Tsitsigkos et al. (2019) also simplified data to rec-
tangles and is not considered. Finally, due to the differences in methodology, such as
the multiway queries used, we only include the results presented by Nidzwetzki and
G€uting (2017) (Distributed Secondo) in perspective at the end.

To make this comparison possible, we implemented a small distributed query
engine for query plan selection and execution, which can execute chain multiway spa-
tial join queries following the selected plan and the respective schedule provided by
the optimizer. We used two programming languages: C and Go.10 The C language was
used to code low-level algorithms that interface with the GDAL library, used to load
the dataset files in the ESRI Shapefile (.shp) and ESRI FileGDB (.gdb). The code also
interfaces with the GEOS library to process spatial predicates. Interoperability between
C and Go code was achieved using the native CGO extension. The Go language was
used in the distributed part of the system to implement the communication protocols
and the parallel join processing. We used queues of jobs that were implemented using
the mechanism of channels provided by the language. The communication protocols
used to provide the interaction between the modules run over TCP sockets, and the
serialization of data structures was implemented using the GOB package provided by
Go. Further detail about the query engine can be found in de Oliveira (2017).

The three multiway queries used the third group of datasets presented in Table 2,
from the TIGER 2015 spatial database. The queries and their sizes are detailed in Table
6, both in binary size (SHP or GDB format) and the .csv size reported in related work.
All queries process more than 2 million records. The last query, M9, processes more
than 77 million records and returns a set of more than 17.7 million results.

Our environment was composed of four m4.2xlarge Amazon EC2 instances, each
with four CPU cores of an Intel(R) Xeon(R) CPU, E5-2686 v4, running at 2.30 GHz, two
threads per core totaling eight vCPUs, and 32GB of RAM. According to the Amazon
specification, each vCPU is a Hyper-thread of an Intel Xeon core.11 The machines were
allocated in the same data center, interconnected by a virtual network with a capacity
of 10 Gbps for single-flow and 20 Gbps for multi-flow traffic in each direction (full
duplex). The operating system used was a Debian 11 offered by the provider through
an AMI image.

The execution environment used by Du et al. (2017) was composed of four Power
Edge R720 Servers, each with an Intel Xeon E5-2630 v2 2.60 GHz processor with 32GB
of RAM, and runs a SUSE Linux enterprise server 11 SP2 operating system. According
to the Intel documentation, the Xeon E5-2630 has six cores and 12 hyper-threads. The

Table 6. Gigabyte-size multiway spatial join queries used in experiments.
Name Query Binary size (GB) .csv Size (GB)

M7 PR �� LM �� AW 1.0 7.0
M8 PR �� AW �� ED 15.4 68.6
M9 AW �� LW �� ED 17.5 86.8
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network capacity was not mentioned in their experiment. Version 2.6.0 of Apache
Hadoop12 and version 2.0.1 of Spark were used, both running on JDK 1.7. Thus, by
comparing the specifications, the hardware used by Du et al. (2017) has the same
memory size but has more processing power: (i) we used a virtualized environment
that incurs the Hypervisor overhead, (ii) our environment CPU clock was smaller
(2.3� 2.6 GHz), and (iii) the number of hyperthreads per server is smaller (8� 12). As a
rough estimate, their cluster has �63% more computing power without considering
Hypervisor overhead.

The chart in Figure 3(a) presents the execution time of each query for each system.
M7 was executed in 6 s by DGEO, 22 s by Sedona (3.7�), and 84 s by MSJS (14�).
Similarly, M8 was executed in 1min and 32 s by DGEO, 67min by Sedona (44.7�), and
22min by MSJS (14.5�). DGEO executed M9 in 17.3min, compared with 90min by
Sedona (5�) and 28min by MSJS (1.6�). The gap between the systems lessened for
the largest query, M9, but the difference in the amount of time remains significant:
DGEO finished the execution 11min earlier than MSJS. The unbalanced execution at
the middle-end of query execution partially explains the higher execution time of
Sedona: in M8, the number of tasks (used CPU cores) starts decreasing at 40min of
query execution (12 of 32 possible tasks), and steadily decreases during the remaining
27min; in M9, the situation was even worse: only 10 of 32 tasks were running at
45min—at the middle of query execution. The presence of straggler tasks occurred
even when we controlled the number of partitions in the experiment (from 100 to
3000). In contrast, DGEO required only 17 s of unbalanced execution for M8 and
�3min for M9. We attribute this behaviour to the LR scheduling algorithm, and the
small unbalancing at the end occurs due to imprecision in query cost estimates.
Additionally, Sedona spent some time collecting and redistributing the intermediate
step: 19 s for M8 and 5min for M9 and also shuffled more data during query execution,
as described later. Finally, compared to the others, the performance of Hadoop �CR
can be explained by the use of data persistence in the disk, a design choice of the
underlying MapReduce framework.

Figure 3. Comparison of the execution time (a), shuffled join data (b), and peak execution memory
(c) for M7, M8, and M9. In (a), the gray bars indicate the results reported for a similar but distinct
cluster, with the same amount of memory but not virtualized and with �63% more processing
power (see the textual description in this section and Du et al. 2017). We put it into perspective
here as it was specifically targeted to MSJQ.
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Compared to DGEO, Sedona shuffled more data when running the two largest
queries, as depicted in Figure 3(b). The numbers account only for the shuffled data in
the join query execution—we did not account for the data loading as the data format
used in each system differs (gdb/shp vs csv). Sedona has transferred �2.6 times more
data through the network for M8 and M9. The shuffled data in the additional inter-
mediate step partially justifies the difference for Sedona: 1.7 GiB for M8 and 6 GiB for
M9. As we controlled the query optimization to maintain an equilibrium between exe-
cution time and communication cost in DGEO, through the f parameter, we attribute a
significant part of the difference to the query optimization. The optimization also justi-
fies the larger data shuffling in M7: the scheduler identified a way to significantly
reduce query execution time at the expense of a small increase in communication.
Finally, there are also differences in the underlying technologies used to communicate
between nodes: RPC (Netty) and Java Serialization for Sedona and GOB, a heavily opti-
mized binary protocol of the Go Language, used by DGEO. Du et al. (2017) have not
conducted this experiment.

Last but not least, Figure 3(c) presents the peak execution memory for DGEO
and Sedona. The numbers in the chart show the memory used for join query proc-
essing, not accounting for supporting structures and other processes in the system.
In M7, peak memory by DGEO is 4.5 GiB larger than by Sedona due to a larger
degree of parallelism during the execution in DGEO (100% CPU utilization for 6 s).
In M8, the inverse occurs: DGEO peak is 29.6 GiB smaller than the Sedona peak. In
M9, a particular situation occurred: both systems used almost all available memory
in the cluster (128 GiB), but Sedona occupied a larger amount with supporting
structures and processes (observe that the maximum is also reached at M8).
Observing that we reserved 2 GiB of memory to operating system processes per
node, DGEO was able to use more memory in the query execution due to its light-
weight and experimental query engine, and as such, having fewer features and
structures.

Although the same queries were not executed in Distributed Secondo (Nidzwetzki
and G€uting 2017), we nevertheless put into perspective the results given by the
authors. Nidzwetzki and G€uting (2017) compared the performance of their system with
those of SpatialSpark (You et al. 2015) and SpatialHadoop (Eldawy and Mokbel 2015).
The times reported for a pairwise spatial join involving two datasets from Germany,
called Roads and Buildings (size not mentioned in their study), generated from Open
Street Maps,13 are 9, 21, and 23min, for SpatialSpark, Distributed Secondo, and
SpatialHadoop, respectively. Considering this comparison and, due to the fact that
Distributed Secondo also stores intermediate results on disk, its performance seems
similar to that of MapReduce-based systems.

In summary, the reasons for the better performance achieved by DGEO stems from
the focus on query planning, i.e. the proposed query scheduling method (LR). We
observe that the execution time is an order of magnitude lower for two of the queries
studied (M7 and M8). The execution time of DGEO is also significantly lower for M9, a
Gigabyte-size query with millions of results. Indeed, for all queries studied, the differ-
ence was sufficiently large to accommodate even the most time-consuming schedules
generated by LR.
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About query scheduling, we demonstrated in Section 4.1 the difference in make-
span and communication costs between a naïve greedy algorithm and more efficient
methods based on the theory of combinatorial optimization. The systems compared
here use a load balancing mechanism rather than a query scheduling based on meta-
data. The load balancing is implemented by the underlying framework that is inde-
pendent of spatial data and is based on the assignment of tasks to idle machines
during query execution. This is a kind of greedy strategy, similar to the baseline GR
method, that often results in sub-optimal cluster resource usage.

5. Conclusions

In this article, we dealt with the problem of assigning jobs to machines in a locally dis-
tributed system. We considered a given set of jobs defined by data partitions of two
datasets that are aligned by a spatial predicate when processing a multiway spatial
join query. We introduced a multi-objective linear integer model for the problem that
embraces the minimization of both the makespan and the communication cost as
objectives. We discussed the difficulty of solving the problem by exact integer meth-
ods and introduced approximate algorithms based on combinatorial methods: the
well-known linear relaxation (LP) technique and the more sophisticated Lagrangian
relaxation (LR), as well as a baseline greedy algorithm (GR), similar to those used in
related work.

Our computational experiments showed that LR usually provided better solutions
than either LP or GR. Although LR often requires significant time to identify a solution,
it is interesting to observe how close its solutions often are to the optimum and to
note the reduction in makespan and communication costs that is achieved. LP and GR
are recommended for instances where small, ad-hoc queries are predominant.

We used the best schedules identified by our methods to run Gigabyte-size multi-
way spatial join queries, reported in the literature, in a realistic experiment that uses
practical spatial objects (not simplifications like rectangles). We showed that the
scheduling of a query before its execution can reduce the processing time in a distrib-
uted environment by an order of magnitude, while also shuffling significantly less
data through the network when compared to state-of-the-art frameworks for spatial
data processing that do not have this capability.

Although our models focus on multiway spatial join queries, they also apply to
other kinds of problems in distributed data processing systems, notably those that
require both the alignment of data partitions and the assignment of jobs to machines.
As demonstrated in our experiments, even a pairwise spatial join can have a more bal-
anced execution and reduced query cost by using the methods we propose to sched-
ule the query fragments to machines. In this usage, a single instance of SM for the
only existing pair of datasets will suffice, with the residual load of previous steps
zeroed (u ¼ 0). Another application is the scheduling of MapReduce jobs. Each task
has a set of key-value pairs generated by a map function, and each machine may
report the same key, producing key slices. Slices with the same key are aligned and
processed by only one reduce function (alignment of partitions), which computes the
desired result by applying the predicate algorithm (reduce function). Therefore, we
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believe that the generalization of our models and algorithms in this regard is a prom-
ising area for future work.

In our work, the number of jobs for a specific query is determined by the number
of data partitions and the intersection of the extent area of the datasets. The number
of jobs, in turn, is a major factor in the complexity of the studied methods. Although
it is possible to reduce the number of partitions to in turn reduce the optimization
time by concatenating histogram cells, this may reduce estimation accuracy and create
more skewed partitions, often resulting in unbalanced query execution. Conversely, a
large number of partitions increases the opportunity for using parallelism, which is
often efficient when using large clusters to process large queries. As today’s clusters
commonly have hundreds of machines, improving the methods in this respect will be
pertinent in future research.

Notes

1. The term scheduling in the MapReduce literature is reserved for the distribution of cluster
resources to multi-user loads, similar to multi-query database loads.

2. https://mapas.ibge.gov.br
3. Image Processing and Geoprocessing Laboratory: https://lapig.iesa.ufg.br
4. http://gis-lab.info/qa/vmap0-eng.html
5. Geospatial Data Abstraction Library: www.gdal.org
6. Geometry Engine: https://libgeos.org
7. http://clang.llvm.org
8. http://www.diku.dk/pisinger/codes.html
9. https://www.ibm.com/products/ilog-cplex-optimization-studio

10. http://golang.org
11. https://aws.amazon.com/ec2/instance-types
12. https://hadoop.apache.org/
13. http://www.openstreetmap.org
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