
Abstracting Big Data Processing Tools
for Smart Cities∗

Fernanda de Camargo Magano, Kelly Rosa Braghetto
Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo

Rua do Matão, 1010 – 05508-090 – São Paulo – Brazil
Email: {nanda,kellyrb}@ime.usp.br

Abstract—Large volumes of data from various sources are
generated continuously in cities. The processing and analysis of
these data play a key role in the implementation of initiatives
for smart cities. In order to process urban Big Data, it is
essential to use high-performance tools to accelerate processing
and provide quick answers. However, this use is not trivial
because Big Data tools are not interoperable and require from
their users knowledge of parallel and distributed computing and
databases. In this work, we compare popular open-source Big
Data processing frameworks and propose a software system to
abstract and facilitate their use in smart city applications. The
architecture of the system is composed by an interface to specify
dataflow models as well as services to interpret these models and
instantiate them in different Big Data tools. An implementation
of the system on top of a smart city platform is also addressed.

I. INTRODUCTION

The evolution of the Internet of Things (IoT) infrastructure
and the falling costs of technology are causing an impressive
increase in the number of electronic devices with sensing
capabilities pervaded in the urban environment, allowing
to monitor temperature, traffic, air quality, flooding, among
others. Moreover, social networks can be combined with
mobile devices and sensor networks in order to get contextual
information from users, supporting applications’ awareness of
their location, preferences and relationships. The processing
and analysis of these data are fundamental to the implemen-
tation of smart city initiatives, since they provide a better
understanding of what happens in cities. They make it possible
to identify problems and their probable causes, supporting
decision making. This impacts citizens quality of life.

The volume of urban data is quite large: in São Paulo
bus fleet there are almost 15,000 buses distributed in more
than 1,300 lines, 29 terminals and 18,800 stopping points,
according to data from São Paulo Transports [1]. Furthermore,
the buses position can be different at each instant of time.
Consequently, the bus location data is updated several times
per minute. The characteristics of urban data, combined with
the heterogeneity of their sources and their economic and
social value, enable us to classify them as Big Data.

Big Data processing is done in batches or in real-time
[2]. In batch processing, previously collected and stored data

*This research is part of the INCT of the Future Internet for Smart Cities
funded by CNPq, proc. 465446/2014-0, CAPES proc. 88887.136422/2017-00,
and FAPESP, proc. 2014/50937-1. Fernanda de Camargo Magano is supported
by CNPq (National Council for Scientific and Technological Development).

is processed, which may take hours if batches are large. In
real-time processing, the data is processed as it arrives at
the application, generating results with low latency. Some
applications require the combined use of batch and real-
time processing. This can be useful, for example, in a traffic
monitoring system: to identify and report real-time crashes
quickly, as well as to predict the most dangerous areas and to
avoid new situations of risk by querying historical information.

The use of Big Data processing tools to handle collected
data is critical to provide rapid response. There are several
tools with parallel and distributed computing capabilities to
process Big Data [2] and, albeit powerful, these tools are not
trivial to be used since they require from their users knowledge
in programming, parallel and distributed computing, besides
databases. Moreover, each of them has its particularities in
the way it receives, stores and processes data. Even though
they generally deal with open data formats, they do not use
standardized languages for specifying processing models and,
consequently, are not completely interoperable.

In this work, we propose a software system that integrates a
smart city platform with Big Data processing tools. The system
abstracts the specificities of the Big Data tools processing
models, making it easier their use in the development of
applications for smart cities. The architecture of the system
is composed of an interface (API) for the specification of
dataflow models for real-time and batch data processing, and
services which interpret dataflow models and instantiate them
in different Big Data tools. The interface synthesizes the data
routing and processing features most often found in Big Data
tools, providing a standardized representation for them.

Dataflow models are directed acyclic graphs (DAGs) where
nodes represent data processing activities and edges represent
the flows of data among them [3]. This model is very ex-
pressive and can describe both batch and real-time (stream)
processing. For this reason, dataflows can be used to create
an abstraction layer for Big Data tools. The interpretation
services map the dataflow models defined through the API
to specific models for Big Data tools. The instantiation refers
to a particular execution of a dataflow already mapped to a
tool.

We also present a proposal to implement the system on top
of the free software platform for smart cities [4] of InterSCity1,

1http://interscity.org/



a research project hosted by the National Institute of Science
and Technology (INCT) of the Internet of the Future for Smart
Cities, funded by FAPESP, CAPES, and CNPq. Applications
developed on this platform are expected to benefit from the
data processing efficiency provided by the Big Data tools
without the burden of having to deal with them directly.

II. RELATED WORKS

The most relevant works related to the approach presented
in this paper address real-time and batch processing [5], [6],
[7], dataflow models [8], [9] and abstraction layers [10].

Taneja et al. [5] presented the SMASH cloud platform,
to support data processing in transportation domain. SMASH
processes data in near real-time, since it uses micro-batches
and tools like Apache Spark2 and Apache Hadoop3. The
platform was applied to process traffic data in Australia.

Dissanayake and Jayasena [7] proposed a platform which
combines batch and real-time processing, being capable of
analyzing large volumes of data from Internet of Things. The
technology used for batch distribution is Hadoop Distributed
File System (HDFS). For the real-time processing layer, the
system uses Apache Storm4, not benefiting from features of
other frameworks. This also occurs in the work of Taneja et
al. [5], then both platforms are limited to a specific tool.

JSFlow [8] framework integrates real-time and batch proces-
sing into a single system that abstracts the data and provides a
programming model that uses a JSON-based dataflow algebra.
For this, it extends Jaql, a language which provides several
processing methods (e.g. filter, join, sort, and group by)
converted to Hadoop and Spark. JSFlow includes operators
for real-time processing in Jaql (e.g., window, tostream and
append). A prototype was built to evaluate the framework
using Apache Spark. However, the solution is still a prototype
and was not evaluated with other frameworks besides Spark.

Misale et al. [9] characterized the dataflow model used in
Big Data frameworks from a more theoretical perspective.
They also used the model to analyze some frameworks, such
as Spark and Storm, and their user APIs. However, they did
not addressed the implementation of the theoretical model.

In this work, we propose a software abstraction layer
for Big Data processing tools in order to homogenize their
form of usage and facilitate the implementation of smart city
applications. Similar approaches were already developed for
other application domains. For example, Crankshaw et al. [10]
presented CLIPPER, a modular architecture that isolates user
applications from the diversity of machine learning frame-
works, offering a common interface (API) to access them. In
CLIPPER, new frameworks can be added to the abstraction
without changing the final user applications.

III. COMPARISON OF BIG DATA FRAMEWORKS

A survey on Big Data processing tools was carried out in
order to characterize and compare them. We have considered

2https://spark.apache.org/
3http://hadoop.apache.org/
4http://storm.apache.org/

Table I
FRAMEWORKS COMPARISON: PROCESSING TYPE, LATENCY, THROUGHPUT

AND CONSISTENCY GUARANTEES

Frameworks/
Features Real-time processing Latency Throughput

Consistency
 guarantees

Apache Flink Native Low High Exactly-once

Apache Storm
Native

Micro-batches with Storm Trident Very low High
Exactly-once

(only for Trident)

Apache Spark Micro-batches
Not proper for
low latencies High Exactly-once

Apache Samza Native Low High At least once
Apache Apex Native Low High Exactly-once

Table II
FRAMEWORKS COMPARISON: APIS AND CONNECTORS

Connectors
Frameworks/

Features Written in APIs
Integration with

Kafka and Hadoop
Integration with

RabbitMQ
Apache Flink Java, Scala Declarative Yes Yes
Apache Storm Java, Clojure Compositional Yes No

Apache Spark
Java, Scala, 

Python, R Declarative Yes Yes
Apache Samza Java, Scala Declarative Yes No

Apache Apex Java, Scala
ApexStream - declarative
DAG API - compositional Yes Yes

the most popular free software tools to real-time processing
and whose development community is still active: Flink5,
Storm, Spark, Samza6 , and Apex7 – all from the Apache
Foundation. Based on this study, we have also identified the
common features of the tools, which were considered in the
definition of the abstraction system proposed in this work.

Table I characterizes the tools in terms of their data proces-
sing models, latency, throughput, and consistency guarantees.
All tools have native support for real-time processing except
for Apache Spark, which uses a micro-batch model. For this
reason, Spark is not the most suitable to process data with low
latencies. For consistence, the exactly-once guarantee is the
strongest since it prevents data loss and duplication. Apache
Samza does not support this guarantee, while Apache Storm
only provides it in its Trident API, which uses micro-batches.

Table II characterizes the tools in terms of their APIs,
connectors, and languages. All the analyzed tools can be
integrated with Kafka8 (a message broker) and HDFS. In the
context of this work, RabbitMQ support is an important feature
as this make the integration of the tool with the InterSCity
platform easier, since RabbitMQ is the broker used by the
platform. The tools with support to RabbitMQ are Flink,
Spark, and Apex.

Apache Flink, Spark and Samza have declarative APIs,
whereas Storm has a compositional API, which is lower level
comparing with the declarative ones. In compositional APIs,
the dataflows DAGs need to be explicitly defined, by declaring
the processing nodes and their connection channels. Apex has
a declarative (higher level) and also a compositional (lower

5https://flink.apache.org/
6http://samza.apache.org/
7https://apex.apache.org/
8https://kafka.apache.org



Figure 1. Microservices architecture

Dataflow Manager

Data Controller Flink Mapper Apex Mapper Tool Mapper 

InterSCity 
Platform 

Flink
Apex

Generic 
Tool 

API allows the user to represent the dataflow 

1

2 3 4 5

Data exchange via API

Microsservice

Flow of data 

Dataflows 
representation

level) API, hence these two different degrees of abstraction
can be applied by a user of this framework.

Apache Flink has two main declarative user APIs called
DataStream and DataSet, applicable to streams and batches,
respectively. Therefore, in some frameworks these two types
of data processing are treated separately.

IV. AN ARCHITECTURE TO ABSTRACT BIG DATA TOOLS

The abstraction system proposed in this work provides
an API for the specification of dataflow models. The basic
building blocks in this interface are activities, streams, data
batches, and channels for data transfers (between activities,
from data sources to activities or from activities to sinks).
An activity is a processing unit which receives input data and
generates output data. The dataflow process networks are used
as underlying theoretical model for the API building blocks,
as proposed by Misale et al. [9].

The abstraction system also offers microservices that map
dataflow models (specified through the API) into specific
source codes to be executed in Big Data tools. More details
about these microservices are presented in Section IV-A.

A. Integration with a Smart City Platform

The architecture of the abstraction system is illustrated in
Figure 1. The architecture is defined on top of the smart
city platform of the InterSCity project [4]. This platform has
a microservice architecture. To facilitate the integration, the
abstraction system proposed here is being created as new
microservices in the platform.

InterSCity platform receives data from external systems,
sensors, and other kind of devices through a microservice
called Resource Adapter. Therefore, the abstraction sys-
tem does not need to provide support for data collection,
since the platform already supports it. To obtain data, the
system needs to subscribe to a RabbitMQ topic created in the
platform or request data through a microservice called Data
Collector, which manages historical data storage. Thus,
the system microservice Data Controller (in Figure 1)
communicates with the platform’s microservices to get the data
to be processed.

The microservice Dataflow Manager is responsible for
receiving dataflows provided by users, specified through the

Figure 2. Overview of the API main classes

<<abstract>> 
IO<T>

+ type: String 

+ read(): Data<T>
+ write(Data<T> d): void 

 
DataTransformation<T>

+ format: String 
+ input: Data<T> 
+ output: Data<T> 

+ select(): Data<ResultSet> 
+ join(): Data<ResultSet>
+ count(): Data<ResultSet>
+ filter(String condition): Data<ResultSet>   

             . . .

Dataflow<T>
+ prop: Properties

+ Dataflow(IO<T> io, DataStream<T> data,
DataTransformation<T> trans): void
+ setEnv(Properties prop): void

<<dataType>> 
Data<T>

+ format: String 
+ type: char

+ Data(T obj): void 

1

*

1

*

1

*

API. This microservice does a preliminary “generic” mapping
before calling other microservices (e.g. Flink Mapper,
Apex Mapper, and Tool Mapper) responsible for the
specific mappings. These microservices convert the dataflow
into input formats readable by the Big Data tools. The
microservice Tool Mapper illustrates the flexibility of the
proposed abstraction, which can be extended to other existing
Big Data frameworks or new ones that may arise.

B. The API for Dataflow Specification

Big Data processing tools need to support transformations
on data. For this, they provide some built-in operators and
support to user defined functions (UDF). In the sequence, we
describe the operators identified as the most common in these
tools and, as consequence, chosen to be included in the API
to support the specification of dataflows.

Seeing that the tools use the MapReduce model or another
model based on it, the operators to perform mapping and
reduction are fundamental. Additionally, operations used in
databases are also present in Big Data frameworks. Aggrega-
tion functions that transform input data, grouping the data in
such a way as to summarize them considering some criterion,
are an example of this kind of operations. Other operations
such as selection, join, grouping, and filters are also available
in the Big Data frameworks.

Data processing include reading data, applying transforma-
tions on them, and writing the results in the output. These
elements are modeled in the UML class diagram of the
proposed API, shown in Figure 2 9.

Users interact with the API through the class
Dataflow<T>. An instance of Dataflow<T> created
by a user is composed of input and output (instances
of implementations of IO<T>), data (instances of
implementations of Data<T>) and their transformations
(instances of DataTransformation<T> class). The

9In Table II, it is possible to note that the Java language is used in the
implementation of all Big Data tools evaluated in this work. Moreover, new
updates for the tools become available first in this language. This is why we
have chosen Java for the implementation of the abstraction system.



Figure 3. Classes for input and output connectors
<<abstract>> 

IO<T>

+ type: String 

+ read(): Data<T>
+ write(Data<T> d): void 

Kafka<T>
+ topic: String
+ channel: String
+ url: String

+ Kafka(): void

RabbitMQ<T>
+ topic: String
+ channel: String
+ url: String

+ RabbitMQ(): void

Extends Extends Extends

File<T>
+ format: String
+ path: String

+ File(): void
+ readHadoop(Key, Value): FileInputFormat
+ readCsv(): CsvInputFormat
+ readText(): TextInputFormat

Figure 4. Classes for data transformations

DataTransformation<T>

+ format: String 
+ input: Data<T> 
+ output: Data<T> 

+ select(): Data<ResultSet> 
+ join(): Data<ResultSet>
+ count(): Data<ResultSet>
+ filter(String condition): Data<ResultSet>
                 ...

Map<T>
+ map(): Data<T> 
+ flatMap(): Data<T> 

UDF<T>(UserDefinedFunction)
+ udfName: String
+ javaClass: Class
+ checkParams(String name,
Class javaClass): boolean

Reduce<T>
+ reduce(): Data<T> 
+ fold(): Data<T> 

Extends Extends

Agregação

1..*

0 ..*

Agregação1..*

0 ..*

Window<T>
+ type: String
+ keyed: Boolean
+ size: int

+ apply(UDF function):
Data<T>

execution environment of a dataflow can be configured
through the setEnv method.

The abstract classes in Figure 2 were designed to allow the
API to be expanded in a transparent way to end users. For
example, to include a new type of data source, one can create
a new implementation of the abstract class IO<T>. The same
applies to data output. The API must have connectors for the
most commonly used types of IO, such as Kafka, RabbitMQ,
HDFS, and files (JSON, text, CSV), as shown in Figure 3.

There are two main categories of data transformations, as
shown in the class diagram of Figure 4. The first one is the
user defined functions (instances of the class UDF<T>) which
consist in functions implemented by the user of the abstraction.
Map and Reduce functions are examples of user defined
functions. The second category is the window operators (class
Window<T>), generally used to group data according to
temporal windows in stream processing.

C. Validation and Analysis

The implementation of the proposed abstraction system is a
work in progress10. As proof of concept, mapper microservices
for two different Big Data frameworks are being implemented.
An application for smart cities in the domain of urban mobility
will be used as case study. The application will process

10The source code of the abstraction system is available at https://github.
com/nandacamargo/abstraction-layer, under the Apache License.

real data from the city of São Paulo, Brazil. Through its
implementation and execution, it will be possible to evaluate
the API and the abstraction system.

The evaluation of the Big Data tools (Section III) has shown
that the best options to be considered in the proof of concept
are Flink and Apex. Both frameworks can handle real-time
and batch data. In addition, Flink architecture based on layers
with different levels of abstraction, as well as the Apex Malhar
operators library facilitate the mapping implementation.

V. CONCLUSION AND FUTURE WORKS

The ever-increasing volume of data collected in cities and
the need for rapid responses resulting from the processing of
these data make clear the importance that Big Data frameworks
have in contemporary society. Aiming the use of a variety of
frameworks with a smaller learning curve for their users, it is
essential to develop an abstraction that homogenizes the access
to the different features provided by the tools.

In this work, we compared popular open-source Big Data
tools to identify their common features and, based on that,
we defined the main operators the abstraction should have.
We proposed an API to support the specification of dataflows
with these operators. Moreover, we presented a microservices
architecture on top of a smart city platform, to map the
dataflows to different Big Data frameworks.

Our ongoing work includes the implementation of mapper
microservices and the evaluation of the system by means of
a smart city application which processes real data from urban
mobility of São Paulo, Brazil.

REFERENCES

[1] SPTrans, “SPTrans: São Paulo bus fleet data,” http://www.sptrans.com.
br/rede-onibus/, June 2018.

[2] Y. Zhang, T. Cao, S. Li, X. Tian, L. Yuan, H. Jia, and A. V. Vasilakos,
“Parallel processing systems for big data: a survey,” Proceedings of the
IEEE, vol. 104, no. 11, pp. 2114–2136, 2016.

[3] J. Yu and R. Buyya, “A taxonomy of scientific workflow systems for
grid computing,” ACM Sigmod Record, vol. 34, no. 3, pp. 44–49, 2005.

[4] A. D. Esposte, F. Kon, F. M. Costa, and N. Lago, “InterSCity: A scalable
microservice-based open source platform for smart cities,” Proceedings
of the 6th International Conference on Smart Cities and Green ICT
Systems, 2017.

[5] Y. Gong, P. Rimba, and R. Sinnott, “A big data architecture for
near real-time traffic analytics,” in Companion Proceedings of the10th
International Conference on Utility and Cloud Computing. ACM, 2017,
pp. 157–162.

[6] K. Taneja, Q. Zhu, D. Duggan, and T. Tung, “Linked enterprise data
model and its use in real time analytics and context-driven data discov-
ery,” in Mobile Services (MS), 2015 IEEE International Conference on.
IEEE, 2015, pp. 277–283.

[7] D. Dissanayake and K. Jayasena, “A cloud platform for big iot data
analytics by combining batch and stream processing technologies,” in
Information Technology Conference (NITC), 2017 National. IEEE,
2017, pp. 40–45.

[8] H. Cho, H. Shiokawa, and H. Kitagawa, “Jsflow: Integration of massive
streams and batches via json-based dataflow algebra,” in Network-Based
Information Systems (NBiS), 2016 19th International Conference on.
IEEE, 2016, pp. 188–195.

[9] C. Misale, M. Drocco, M. Aldinucci, and G. Tremblay, “A comparison of
big data frameworks on a layered dataflow model,” Parallel Processing
Letters, vol. 27, no. 01, p. 1740003, 2017.

[10] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: A low-latency online prediction serving system.”
in Proceedings of the 14th USENIX Symposium on Networked Systems
Design and Implementation, 2017, pp. 613–627.

https://github.com/nandacamargo/abstraction-layer
https://github.com/nandacamargo/abstraction-layer
http://www.sptrans.com.br/rede-onibus/
http://www.sptrans.com.br/rede-onibus/

	Introduction
	Related Works
	Comparison of Big Data Frameworks
	An Architecture to Abstract Big Data Tools
	Integration with a Smart City Platform
	The API for Dataflow Specification
	Validation and Analysis

	Conclusion and future works
	References

