Abstracting Big Data Processing Tools for Smart Cities

Fernanda de Camargo Magano
and Kelly Rosa Braghetto

Workshop on the Distributed Smart City (WDSC'2018)
Computer Science Department — IME USP

This research is part of the INCT of the Future Internet for Smart Cities funded by CNPq,

proc. 465446/2014-0, CAPES proc. 88887.136422/2017-00, and FAPESP, proc.
2014/50937-1. Fernanda de Camargo Magano is supported by CNPq.

October 2nd, 2018

@ &3 interscity ACNPq &

Conselho Nacional de Desenvolvimento
Future Internet for Smart Cities Cientifico e Tecnolégico CAPES

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 1/24

Index

@ Introduction

@® Concepts
Big Data Processing
Big Data Tools’ APIs

© Related Works
O Comparison of Big Data Frameworks

@ An Architecture to Abstract Big Data Tools
Integration with a Smart City Platform
API for Dataflow Specification
Validation and Analysis

@ Conclusion Remarks

@ References

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities

October 2nd, 2018

2/ 24

Introduction

Context

Urban Big Data

e Evolution of Internet of Things and cheaper technology

e Participatory sensing (mobile phones, social network, among others)
e Large volumes of data from heterogeneous sources

e Important role of data processing and analysis for smart cities

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 3/24

Introduction

Problem

Big Data tools

e Have good resources, but are hard to be used by data scientists or
developers beginners to these frameworks

e Require from their users knowledge in programming, parallel and
distributed computing

e Have not standardized languages and, therefore, are not completely
interoperable

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 4 /24

Introduction

Goals

The main goal of this work is to make the use of Big Data processing
frameworks easier for smart cities applications, by abstracting the
specificities of these tools. For this, we propose:

¢ An interface (API) to specify dataflows for processing data in real
time and batches

¢ A software system that integrates a smart cities platform with
Big Data processing frameworks, using the proposed API and
developing mappers for different tools

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 5/ 24

Bl
Big Data Processing Tools and the Dataflow Model

e Several tools share almost the same basic concepts
e Apache tools: Storm, Spark, Apex, Flink and Samza

e Open source, with active communities and widely used
e They use the Dataflow Model

e Expressive model: describes batches, micro-batches and streams
¢ Directed graph to represent data dependencies

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 6 /24

Real-time Dataflow Example

Check
shorter paths
Collected e
daL, separate traffic Combine | Best route

data information /J———>

Select streets
with less
traffic

O Operator

—> Data

Figure 1: Best route selector application for smart cities

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018

7/ 24

EielRachl e
User APls: Declarative and Topological

Declarative:
e High level
e Expressed as methods of objects representing collections

o Advanced operations (e.g., state and windows managing)

Topological or compositional:
e Programs expressed using graphs
e Explicit connection among nodes

e Specification of the code executed by the nodes

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018

8 /24

Related Works

Cho, Shiokawa, and Kitagawa (2016)

o JSFlow framework: uses dataflow algebra based in JSON
e Extends Jaql — a declarative and functional language

e Disadvantage: prototype only uses Spark

Misale et al. (2017)

e Describes the dataflow model and user APls

e Disadvantage: theoretical work

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 9 /24

Comparison of Big Data Frameworks

Comparison of Big Data Frameworks

e The features were chosen based on smart cities applications

e The comparison led to the proposed abstraction and API

Frameworks/ Consistency

Features Real-time processing Latency Throughput guarantees
Apache Flink Native Low High Exactly-once
Native Exactly-once

Apache Storm |Micro-batches with Storm Trident| Very low High (only for Trident)

Not proper for

Apache Spark Micro-batches low latencies High Exactly-once
Apache Samza Native Low High At least once
Apache Apex Native Low High Exactly-once

Table 1: Tools comparison - processing and consistency guarantees

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 10 / 24

Comparison of Big Data Frameworks

Comparison of Big Data Frameworks

Connectors

Frameworks/ Integration with Integration with

Features Written in Kafka and Hadoop RabbitMQ
Apache Flink | Java, Scala Declarative Yes Yes
Apache Storm |Java, Clojure Compositional Yes No
Java, Scala,
Apache Spark | Python, R Declarative Yes Yes
Apache Samza | Java, Scala Declarative Yes No
ApexStream - declarative
Apache Apex | Java, Scala | DAG API - compositional Yes Yes

Table 2: Tools comparison - APls and connectors

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 11 /24

Frameworks Architecture Structure

e Frameworks have a core layer

e Provide user APls

e Offer libraries (for 10 operators, SQL, ML)
e Can run above Hadoop ecossytem

Apex Malhar Customized
Operators Library Operators
REST
Apex Core API

Hadoop (YARN + HDFS)

Figure 2: Example of framework architecture — Apache Apex?

'Based on figure from http://dt-docs.readthedocs.io/en/latest/rts/

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018

12 / 24

http://dt-docs.readthedocs.io/en/latest/rts/

Comparison of Big Data Frameworks

Apache Apex - Dataflows representation

Code 1: Word count - DAG API

LineReader lineReader = dag.addOperator("input", new
LineReader());

Parser parser = dag.addOperator("parser", new Parser());

UniqueCounter counter = dag.addOperator("counter", new
UniqueCounter());

ConsoleOutputOperator cons = dag.addOperator("console", new
ConsoleQutputOperator()) ;

dag.addStream("lines", lineReader.output, parser.input);
dag.addStream("words", parser.output, counter.data);
dag.addStream("counts", counter.count, cons.input);

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 13 /24

Comparison of Big Data Frameworks

Apache Apex - Dataflows representation

Code 2: Word count - ApexStream API

StreamFactory.fromFolder ("/tmp")
.flatMap(input -> Arrays.asList(input.split(" ")),
name ("Words"))
.window(new WindowOption.GlobalWindow(),
new TriggerOption().accumulatingFiredPanes()
.withEarlyFiringsAtEvery (1))
.countByKey (input -> new Tuple.PlainTuple<>(new
KeyValPair<>(input, 1L)), name("countByKey"))
.map(input -> input.getValue(), name("Counts"))
.print (name ("Console"))
.populateDag(dag) ;

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 14 / 24

PANWAN ST CR WA SISt NI DET =ML B Integration with a Smart City Platform

Our Proposed Architecture

e The architecture meets the goals of this project by including an
interface (API) and a software system.

InterSCity
Platform
T l Data exchange via API

API allows the user to represent the dataflow

Dataflow Manager

(2] E
Data CQntroIIer

E 5]
Flink Mapper Apex Mapper Tool Mapper

‘ D Microservice

Generic
N Tool ——3 Flow of data
>
b 4

Dataflows
representation

Figure 3: Proposed microservices architecture

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018

15 / 24

Integration with a Smart City Platform
Integration with InterSCity Platform

Web Mobile Development
Application Application Tools

InterSCity Platform

Resource Resource
Discovery Viewer

Data Resource Actuator
Collector Catalog Controller

‘ Resource Adaptor ‘

— 1 5

loT Gateway | | loT Gateway | | loT Gateway

Figure 4: Smart-cities platform architecture 2

%lmage from https://gitlab.com/interscity/interscity-platform
Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 16 / 24

https://gitlab.com/interscity/interscity-platform

Dataflow<T>

+ prop: Properties

+ Dataflow(IO<T> io, DataStream<T> data,
DataTransformation<T> trans): void
+ setEnv(Properties prop): void

A G2 PR D S T
Our API for Dataflow Specification

[

1

<<abstract>>
10<T>

h

+ type: String

<<dataType>>
Data<T>

DataTransformation<T>

+ read(): Data<T>
+ write(Data<T> d): void

+ format: String
+ type: char

+ Data(T obj): void

+ format: String
+ input: Data<T>
+ output: Data<T>

+ select(): Data<ResultSet>

+ join(): Data<ResultSet>

+ count(): Data<ResultSet>

+ filter(String condition): Data<ResultSet>

Figure 5: UML class diagram of the proposed API (simplified)

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities

October 2nd, 2018

17 / 24

An Architecture to Abstract Big Data Tools B RTAPEIE RS e L THleN}

Abstraction - Input and Output

<<abstract>>
10<T>

+ type: String

+ read(): Data<T>
+ write(Data<T> d): void

Extends Extends

Extends

Kafka<T>

RabbitMQ<T>

File<T>

+ topic: String
+ channel: String
+ url: String

+ topic: String
+ channel: String
+ url: String

+ Kafka(): void

+ RabbitMQ(): void

Figure 6:

Classes for input and output connectors

+ format: String
+ path: String

+ File(): void

+ readHadoop(Key, Value): FilelnputFormat
+ readCsv(): CsvinputFormat
+ readText(): TextinputFormat

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities

October 2nd, 2018

18 / 24

An Architecture to Abstract Big Data Tools B RTAPEIE RS e L THleN}

Abstraction - Data Transformation

DataTransformation<T>

+ format: String
+ input: Data<T>
+ output: Data<T>

Aggregation + select(): Data<ResultSet> 1.
|

Aggregation
+ join(): Data<ResultSet> ‘ N
0." + count(): Data<ResultSet> o
UDF<T>(UserDefinedFunction)| |+ filter(String condition): Data<ResultSet> Window<T>
+ name: String . + type: String
+ javaClass: Class + keyed: Boolean
+ checkParams(String name, + size: int
Class javaClass): boolean + apply(UDF function):
Data<T>
Extends Extends Extends
ContextFunction<T> Map<T> Reduce<T>
+ status: boolean + map(): Data<T> + reduce(): Data<T>
+ decisionMaking(): + flatMap(): Data<T> +fold(): Data<T>
Data<T>

Figure 7: Classes for data transformations

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 19 / 24

An Architecture to Abstract Big Data Tools BAVEILEITRETTWAGEIEH

Validation

e Urban mobility case study

o Compare implementation codes with and without using the
abstraction (directly done using the Big Data tools)

¢ Use of metrics to measure API usability (Scheller e Kiihn, 2015)

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 20 / 24

VR) A
Case Study - Application to Predict Bus Arrival Time

Bus (id_user,
stops position,
information timestamp)
update (stop, line,
wait_time) Context 2
identification:
user location
bus user
with (bus_id, line, user arrival at a departure at a
Iknc:v‘vn previous_pos ...) bus stop bus stop
location (road_id,
(bus_id, line, Context 1 speed,

timestamp) |User waiting| “user_id, stop,
at bus stop | arrival_timestamp)

update
(user_id, stop, D Context

departure_timestamp)

position, timestamp)| identification:
bus

Activities

location

bus with (bus_id, line,
unknown last_known_pos,
location last_pos_timestamp)

|:| Known bus location
(user_id, line,
wait_time) D Unknown bus location

Current
bus
position | (bys id, line,
estimation| estimated_pos ...)

‘Bus stop —— User context used
information stop, line, ‘/ Output N\ internally

estimation estimated_wait_time) . data /

B) Data

Figure 8: Dataflow of the server system

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 21 /24

Conclusion Remarks

Conclusion Remarks

Our contributions in this work are

e A comparison among different Big Data tools
e The proposal of an API to support the specification of dataflows

e A microservices architecture on top of a smart city platform, to
map the dataflows to different Big Data frameworks.

Our ongoing work includes

e The implementation of mapper microservices

e The evaluation of the system by means of a smart city application
which processes urban mobility data

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 22 /24

References

References |

' Cho, Hirotoshi, Hiroaki Shiokawa, and Hiroyuki Kitagawa (2016). “JsFlow:
Integration of massive streams and batches via JSON-based dataflow
algebra”. In: 2016 19th International Conference on Network-Based
Information Systems (NBIS). |EEE, pp. 188-195.

| Misale, Claudia et al. (2017). “A comparison of big data frameworks on a
layered dataflow model”. [n: Parallel Processing Letters 27(01),

p. 1740003.

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018 23 /24

References

Abstracting Big Data Processing Tools for Smart Cities

Fernanda de Camargo Magano, Kelly Rosa Braghetto
fernanda.magano@usp.br kellyrb@ime.usp.br

Open source code at GitLab:
https://gitlab.com/interscity/abstraction-layer

InterSCity website:
http://interscity.org

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities October 2nd, 2018

24 / 24

mailto:fernanda.magano@usp.br
mailto:kellyrb@ime.usp.br
https://gitlab.com/interscity/abstraction-layer
http://interscity.org

	Introduction
	Concepts
	Big Data Processing
	Big Data Tools' APIs

	Related Works
	Comparison of Big Data Frameworks
	An Architecture to Abstract Big Data Tools
	Integration with a Smart City Platform
	API for Dataflow Specification
	Validation and Analysis

	Conclusion Remarks
	References

