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Introduction

Context

Urban Big Data

e Evolution of Internet of Things and cheaper technology

e Participatory sensing (mobile phones, social network, among others)
e Large volumes of data from heterogeneous sources

e Important role of data processing and analysis for smart cities
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Introduction

Problem

Big Data tools

e Have good resources, but are hard to be used by data scientists or
developers beginners to these frameworks

e Require from their users knowledge in programming, parallel and
distributed computing

e Have not standardized languages and, therefore, are not completely
interoperable
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Introduction

Goals

The main goal of this work is to make the use of Big Data processing
frameworks easier for smart cities applications, by abstracting the
specificities of these tools. For this, we propose:

¢ An interface (API) to specify dataflows for processing data in real
time and batches

¢ A software system that integrates a smart cities platform with
Big Data processing frameworks, using the proposed API and
developing mappers for different tools
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Bl
Big Data Processing Tools and the Dataflow Model

e Several tools share almost the same basic concepts
e Apache tools: Storm, Spark, Apex, Flink and Samza

e Open source, with active communities and widely used
e They use the Dataflow Model

e Expressive model: describes batches, micro-batches and streams
¢ Directed graph to represent data dependencies
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Real-time Dataflow Example

Check
shorter paths
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Figure 1: Best route selector application for smart cities
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EielRachl e
User APls: Declarative and Topological

Declarative:
e High level
e Expressed as methods of objects representing collections

o Advanced operations (e.g., state and windows managing)

Topological or compositional:
e Programs expressed using graphs
e Explicit connection among nodes

e Specification of the code executed by the nodes
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Related Works

Cho, Shiokawa, and Kitagawa (2016)

o JSFlow framework: uses dataflow algebra based in JSON
e Extends Jaql — a declarative and functional language

e Disadvantage: prototype only uses Spark

Misale et al. (2017)

e Describes the dataflow model and user APls

e Disadvantage: theoretical work
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Comparison of Big Data Frameworks

Comparison of Big Data Frameworks

e The features were chosen based on smart cities applications

e The comparison led to the proposed abstraction and API

Frameworks/ Consistency

Features Real-time processing Latency Throughput guarantees
Apache Flink Native Low High Exactly-once
Native Exactly-once

Apache Storm |Micro-batches with Storm Trident| Very low High (only for Trident)

Not proper for

Apache Spark Micro-batches low latencies High Exactly-once
Apache Samza Native Low High At least once
Apache Apex Native Low High Exactly-once

Table 1: Tools comparison - processing and consistency guarantees
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Comparison of Big Data Frameworks

Comparison of Big Data Frameworks

Connectors

Frameworks/ Integration with Integration with

Features Written in Kafka and Hadoop RabbitMQ
Apache Flink | Java, Scala Declarative Yes Yes
Apache Storm |Java, Clojure Compositional Yes No
Java, Scala,
Apache Spark | Python, R Declarative Yes Yes
Apache Samza | Java, Scala Declarative Yes No
ApexStream - declarative
Apache Apex | Java, Scala | DAG API - compositional Yes Yes

Table 2: Tools comparison - APls and connectors
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Frameworks Architecture Structure

e Frameworks have a core layer

e Provide user APls

e Offer libraries (for 10 operators, SQL, ML)
e Can run above Hadoop ecossytem

Apex Malhar Customized
Operators Library Operators
REST
Apex Core API

Hadoop (YARN + HDFS)

Figure 2: Example of framework architecture — Apache Apex?

'Based on figure from http://dt-docs.readthedocs.io/en/latest/rts/
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Comparison of Big Data Frameworks

Apache Apex - Dataflows representation

Code 1: Word count - DAG API

LineReader lineReader = dag.addOperator("input", new
LineReader());

Parser parser = dag.addOperator("parser", new Parser());

UniqueCounter counter = dag.addOperator("counter", new
UniqueCounter());

ConsoleOutputOperator cons = dag.addOperator("console", new
ConsoleQutputOperator()) ;

dag.addStream("lines", lineReader.output, parser.input);
dag.addStream("words", parser.output, counter.data);
dag.addStream("counts", counter.count, cons.input);
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Comparison of Big Data Frameworks

Apache Apex - Dataflows representation

Code 2: Word count - ApexStream API

StreamFactory.fromFolder ("/tmp")
.flatMap(input -> Arrays.asList(input.split(" ")),
name ("Words"))
.window(new WindowOption.GlobalWindow(),
new TriggerOption().accumulatingFiredPanes()
.withEarlyFiringsAtEvery (1))
.countByKey (input -> new Tuple.PlainTuple<>(new
KeyValPair<>(input, 1L)), name("countByKey"))
.map(input -> input.getValue(), name("Counts"))
.print (name ("Console"))
.populateDag(dag) ;
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PANWAN ST CR WA SISt NI DET =ML B Integration with a Smart City Platform

Our Proposed Architecture

e The architecture meets the goals of this project by including an
interface (API) and a software system.

InterSCity
Platform
T l Data exchange via API

API allows the user to represent the dataflow

Dataflow Manager

(2] E
Data CQntroIIer

E 5]
Flink Mapper Apex Mapper Tool Mapper

‘ D Microservice

Generic
N Tool ——3 Flow of data
>
b 4

Dataflows
representation

Figure 3: Proposed microservices architecture
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Integration with a Smart City Platform
Integration with InterSCity Platform

Web Mobile Development
Application Application Tools

InterSCity Platform

Resource Resource
Discovery Viewer

Data Resource Actuator
Collector Catalog Controller

‘ Resource Adaptor ‘

— 1 5

loT Gateway | | loT Gateway | | loT Gateway

Figure 4: Smart-cities platform architecture 2

%lmage from https://gitlab.com/interscity/interscity-platform
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https://gitlab.com/interscity/interscity-platform

Dataflow<T>

+ prop: Properties

+ Dataflow(IO<T> io, DataStream<T> data,
DataTransformation<T> trans): void
+ setEnv(Properties prop): void

A G2 PR D S T
Our API for Dataflow Specification

[

1

<<abstract>>
10<T>

h

+ type: String

<<dataType>>
Data<T>

DataTransformation<T>

+ read(): Data<T>
+ write(Data<T> d): void

+ format: String
+ type: char

+ Data(T obj): void

+ format: String
+ input: Data<T>
+ output: Data<T>

+ select(): Data<ResultSet>

+ join(): Data<ResultSet>

+ count(): Data<ResultSet>

+ filter(String condition): Data<ResultSet>

Figure 5: UML class diagram of the proposed API (simplified)

Fernanda Magano, Kelly Braghetto (USP) [Abstracting Big Data Tools for Smart Cities

October 2nd, 2018

17 / 24



An Architecture to Abstract Big Data Tools B RTAPEIE RS e L THleN}

Abstraction - Input and Output

<<abstract>>
10<T>

+ type: String

+ read(): Data<T>
+ write(Data<T> d): void

Extends Extends

Extends

Kafka<T>

RabbitMQ<T>

File<T>

+ topic: String
+ channel: String
+ url: String

+ topic: String
+ channel: String
+ url: String

+ Kafka(): void

+ RabbitMQ(): void

Figure 6:

Classes for input and output connectors

+ format: String
+ path: String

+ File(): void

+ readHadoop(Key, Value): FilelnputFormat
+ readCsv(): CsvinputFormat
+ readText(): TextinputFormat
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An Architecture to Abstract Big Data Tools B RTAPEIE RS e L THleN}

Abstraction - Data Transformation

DataTransformation<T>

+ format: String
+ input: Data<T>
+ output: Data<T>

Aggregation + select(): Data<ResultSet> 1.
|

Aggregation
+ join(): Data<ResultSet> ‘ N
0." + count(): Data<ResultSet> o
UDF<T>(UserDefinedFunction)| |+ filter(String condition): Data<ResultSet> Window<T>
+ name: String . + type: String
+ javaClass: Class + keyed: Boolean
+ checkParams(String name, + size: int
Class javaClass): boolean + apply(UDF function):
Data<T>
Extends Extends Extends
ContextFunction<T> Map<T> Reduce<T>
+ status: boolean + map(): Data<T> + reduce(): Data<T>
+ decisionMaking(): + flatMap(): Data<T> +fold(): Data<T>
Data<T>

Figure 7: Classes for data transformations
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An Architecture to Abstract Big Data Tools BAVEILEITRETTWAGEIEH

Validation

e Urban mobility case study

o Compare implementation codes with and without using the
abstraction (directly done using the Big Data tools)

¢ Use of metrics to measure API usability (Scheller e Kiihn, 2015)
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VR ) A
Case Study - Application to Predict Bus Arrival Time

Bus (id_user,
stops position,
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update (stop, line,
wait_time) Context 2
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bus user
with (bus_id, line, user arrival at a departure at a
Iknc:v‘vn previous_pos ...) bus stop bus stop
location (road_id,
(bus_id, line, Context 1 speed,

timestamp) |User waiting| “user_id, stop,
at bus stop | arrival_timestamp)
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|:| Known bus location
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Current
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B ) Data

Figure 8: Dataflow of the server system
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Conclusion Remarks

Conclusion Remarks

Our contributions in this work are

e A comparison among different Big Data tools
e The proposal of an API to support the specification of dataflows

e A microservices architecture on top of a smart city platform, to
map the dataflows to different Big Data frameworks.

Our ongoing work includes

e The implementation of mapper microservices

e The evaluation of the system by means of a smart city application
which processes urban mobility data
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Open source code at GitLab:
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