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The Border Gateway Protocol (BGP) orchestrates Internet communications between and inside Autonomous

Systems. BGP’s flexibility allows operators to express complex policies and deploy advanced traffic engineering

systems. A key mechanism to provide this flexibility is tagging route announcements with BGP communities,

which have arbitrary, operator-defined semantics, to pass information or requests from router to router. Typical

uses of BGP communities include attaching metadata to route announcements, such as where a route was

learned or whether it was received from a customer, and controlling route propagation, for example to steer

traffic to preferred paths or blackhole DDoS traffic. However, there is no standard for specifying the semantics

nor a centralized repository that catalogs the meaning of BGP communities. The lack of standards and central

repositories complicates the use of communities by the operator and research communities. In this paper, we

present a set of techniques to infer the semantics of BGP communities from public BGP data. Our techniques

infer communities related to the entities or locations traversed by a route by correlating communities with AS

paths. We also propose a set of heuristics to filter incorrect inferences introduced by misbehaving networks,

sharing of BGP communities among sibling autonomous systems, and inconsistent BGP dumps. We apply

our techniques to billions of routing records from public BGP collectors and make available a public database

with more than 15 thousand location communities. Our comparison with manually-built databases shows

our techniques provide high precision (up to 93%), better coverage (up to 81% recall), and dynamic updates,

complementing operators’ and researchers’ abilities to reason about BGP community semantics.
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1 INTRODUCTION
The Internet is composed of Autonomous Systems (ASes) that exchange reachability information

using the Border Gateway Protocol (BGP) [46, 48], its de facto interdomain routing protocol. The

BGP best-path selection algorithm is flexible and allows network operators to rank routes based on

policies and economic agreements. However, the growing needs for reliability and performance

have led to more dynamic and complex routing policies [20, 50, 56, 63], stressing BGP and exposing

the limitations of a protocol last updated more than two decades ago [46].

To overcome the limitations in BGP expressiveness, network operators have increasingly relied on

the optional BGP communities attribute to convey information in their route announcements. BGP

communities can encode information such as the city or router where a route was learned [19, 40],

the business relationship with the neighboring network the route was learned from [20, 30, 41], or

requests for actions such as BGP prepending or targeted route filtering [7, 56, 64]. Informational

communities facilitate identification and troubleshooting of anomalies such as path changes [19] or

routing detours [40]. For example, operators can use communities to identify the points of presence

(PoPs) or links traversed by a route and infer if more preferred or better performing alternate routes

exist. Action communities allow the deployment of more complex traffic engineering, helping

customize routing decisions at a much finer granularity than is possible by inspecting the AS path

of a route announcement. For example, operators can use communities to adjust routing parameters

(e.g., the LocalPref or the AS path length) or prevent route propagation to specific networks or

geographic regions [2, 56].

Figure 1 illustrates an example where AS𝑉 uses a location community to control route selection.

The origin AS𝑂 announces prefixes to AS𝐴 at different locations 𝐿1 and 𝐿2, and to AS 𝐵 at location

𝐿2. AS 𝐴 tags routes received at 𝐿1 and 𝐿2 with communities A:L1 and A:L2, respectively. AS 𝐴
announces to AS 𝑉 only the route it selects as the best according to its internal policies, i.e., AS 𝑉
receives one route from AS 𝐴 with either tag A:L1 or A:L2. Suppose that AS 𝑉 has a policy that

dictates that routes learned from AS 𝐵 should have higher priority than routes learned from AS

𝐴, e.g., because 𝐵’s transit costs are cheaper than 𝐴’s. However, AS 𝑉 may decide to use routes

received from 𝐴 that traverse 𝐿1, e.g., because they have better performance that justify the higher

cost. To implement this policy, AS 𝑉 sets LocalPref to 120 in all routes received from AS 𝐴 with

location community A:L1, sets LocalPref to 100 for routes learned from AS 𝐵, and sets LocalPref
of other routes to 80 (including routes from 𝐴 tagged with A:L2). As BGP uses LocalPref as the
first criterion to decide the best route, AS 𝑉 selects the high-performance route from AS 𝐴 when

it traverses 𝐿1 and the cheaper route from AS 𝐵 otherwise. Routes from AS 𝐴 with tag A:L2 are
chosen only when no route is available from 𝐵 (e.g., due to failures).

Unfortunately, the BGP communities attribute is an opaque identifier and its semantics are

neither standardized nor follow any universal rule. Therefore, network operators are free to decide

community values and semantics. A network𝐴may use community A:X for triggering BGP AS-path

prepending, while another network 𝐵 may use community B:X for a completely different purpose,

e.g., signal that a route was learned in New York. Some networks catalog their communities

in Internet Routing Registry (IRR) databases [58] or webpages (e.g., [16]), but we cannot find

documentation for most communities observed in the wild (§5). Using a manually built database of

documented communities from 10 Tier-1 and 5 Tier-2 ASes that publicize their communities, we

were able to classify only 56.4% of these ASes’ communities observed in BGP route announcements.

The lack of standardization and public databases mapping community values to their semantics

hinders the manipulation of routes for traffic engineering or the development of tools that take

advantage of metadata in BGP communities. Operators have to resort to ad-hoc information in

IRR databases or webpages, which may be incomplete, outdated, or available only by contacting
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Fig. 1. Example of traffic engineering using BGP communities. AS 𝑉 prefers routes from AS 𝐵, but may
configure import filters to prefer routes from 𝐴 when they traverse location 𝐿1, e.g., when performance
through AS 𝐴 and location 𝐿1 justifies choosing the less preferred neighbor. This policy can be implemented
in AS 𝑉 by inspecting the location communities in AS 𝐴’s route announcements.

the network operators of the particular AS. This manual process increases the effort required to

integrate community information in routing decisions, degrades user quality of experience when

BGP chooses suboptimal routes, and limits researchers’ understanding of routing.

In this paper, we bridge this gap by developing techniques to automatically infer BGP location
communities, defined as communities that carry metadata about the location (e.g., city, country,
continent, router, PoP, link, or interconnection) where a route was learned, and building a public

database of BGP location communities. Location communities allow richer manipulation inside

the tagging AS, but they would also be helpful to neighboring and remote ASes if their semantics

were publicly available. We focus on location communities because they represent the majority of

publicly-documented communities (§4) as well as a significant fraction of communities observed

in route announcements (§5). Also, the flattening of the Internet hierarchy has led networks to

interconnect through multiple physical links, and information about locations traversed by routes

improves operators’ ability to monitor policy compliance, detect unexpected behavior such as route

changes, and troubleshoot anomalous behavior such as congestion. For example, operators could

use a tool that correlates BGP location communities and performance to tune their route selection

preferences at a finer granularity than possible with just AS paths.

A recent effort proposes a mining tool to automatically build a database of BGP community

semantics by crawling information in IRR records or the support webpages of network providers [18].

The tool uses natural language processing to infer the meaning of each documented community

in those data sources. While the results in [18] show that the tool achieves good precision in the

extracted communities, the approach is limited (i) in the number of communities that it can infer, as

it relies on free text descriptions provided by network operators; and (ii) by the data sources, which

may be incomplete, outdated, or missing entirely, reducing precision of the inferred communities

and coverage of communities used in the Internet.

We take a fundamentally different approach. We propose an algorithm to automatically infer

location communities from public route announcements observed by BGP route collectors (e.g.,
RouteViews [42], RIPE RIS [47], and Isolario [25]). Our key insight is to use the sequence of ASes

connecting a tagging AS (i.e., an AS that tags routes with its location communities) to origin ASes

as a reliable marker for routes crossing specific interconnection points. We use BGP route collector

peers as vantage points from which we observe tagging ASes and correlate BGP communities with

AS paths in route announcements. We also propose a set of heuristics to filter noise introduced

by misbehaving networks, sharing of BGP communities among sibling autonomous systems, and
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inconsistent BGP dumps. We process over two billion route announcements from three route

collector projects [25, 42, 47] and infer 15,505 location communities across 1,120 ASes.

We evaluate our inference methodology using a manually built ground-truth dataset with

39,308 communities from Tier-1 and Tier-2 autonomous systems that publicize the semantics of

their communities on IRR databases or webpages. Our experimental evaluation shows that our

methodology yields high precision (up to 93%) and recall (up to 81%). We compare our results with

CAIDA’s manually-built public database of BGP communities [4] and show that our database has

higher recall and similar precision, with the advantage that it can be automatically updated as new

BGP communities are defined or as definitions change over time. Our code and databases of inferred

and ground-truth BGP communities is available online to allow for reproducibility of our results

and enhance the understanding of Internet routing by network operators and researchers [32].

1.1 Key Contributions
In this paper, we make the following key contributions:

• The design and evaluation of algorithms for automatically inferring BGP location communities

from public BGP dumps, which we make available online [32]. Our evaluation shows that

the algorithms achieve high precision (up to 93%) and recall (up to 81%).

• A public database with 15,505 location communities from 1,120 ASes built using our inference

algorithms, as well as a manually-built ground-truth dataset identifying the semantics of

BGP communities of 10 Tier-1 and 5 Tier-2 ASes.

• A characterization of the increasing use of BGP communities in the Internet. We analyze

route announcements between 2017 and 2020 and show that the number of visible BGP

communities increased by 51.9%, that the number of visible location communities increased

by 50.0%, and that the number of ASes defining communities increased by 26.5%.

2 BACKGROUND
BGP is the interdomain routing protocol of the Internet and is used for exchanging routing infor-

mation between Autonomous Systems (ASes)—i.e., networks operated independently and generally

by different entities—and between routers inside an autonomous system. BGP routers exchange

messages that carry one or more BGP attributes. Some attributes are mandatory, such as the AS path,
IP prefix, and next hop, and others are optional, such as communities and multi-exit discriminators.
The AS path contains a sequence of Autonomous System Numbers (ASNs) that describes the route
on the way to the origin network controlling and announcing the IP prefix, and the next hop

contains the IP address of the next router for the announced IP prefix. The optional attributes

can be transitive or non-transitive. Transitive attributes accumulate and are carried along with

the route, while non-transitive attributes are processed by BGP routers at the next AS but not

forwarded to upstream neighbors.

The BGP route selection algorithm uses mandatory attributes to select the preferred route to

a destination IP prefix. When a router receives two BGP announcements for the same prefix, it

uses a sequence of criteria to decide which route it selects. The first criterion is the local preference
(LocalPref), which is locally defined, usually from the business relationship with the neighbor the

route was received from. The Gao-Rexford model [14] defines two types of business relationships for

neighboring ASes: customer-provider and peer-to-peer. A customer AS pays a provider AS for transit,

i.e., accessing the Internet, while peer-to-peer relationships occur when ASes have a settlement-free

peering agreement where they exchange traffic free-of-charge. Autonomous systems can also have

a sibling relationship [13]. Two autonomous systems are siblings if they are owned or operated by

the same organization, share operational practices, and exchange traffic without cost or routing
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restrictions. The number of sibling ASes in the Internet has grown significantly in the last few

years due to acquisition or merging operations between network providers [10, 23, 41].

To implement economically favorable policies, an AS usually sets local preferences so that the

BGP best-path selection algorithm prefers routes learned from customers over routes learned from

peers, and prefers routes learned from peers over routes learned from providers. The selection

algorithm uses other tiebreakers for routes learned from neighbors with the same relationship,

such as routes with shorter AS path lengths, lower origin code, and lowest multi-exit discriminator

(MED) [46]. In the Gao-Rexford model [13], the type of neighbor also determines how routes are

exported. An AS exports routes learned from its customers to all neighbors, but it exports routes

learned from providers and peers only to customers. Exporting routes learned from a provider or

peer to other providers or peers is normally undesirable, as it would make the AS offer transit to

peers and providers without monetary compensation.

The BGP optional attributes are generally used for signaling information between routers and

are not used in the route selection process by default. However, they can influence the selection

algorithm to implement specific policies. For example, BGP communities have been used to restrict

route propagation to within a region or to influence peer selection by prepending the AS path to

make the route artificially less attractive.

A route announcement can carry any number of BGP communities. Each BGP community is

32 bits long and can carry any value representing an action or information [39]. The practical

convention dictates that the first 16 bits represent the ASN of the AS that defines the community’s

semantics, also known as Global Administrator, and that the last 16 bits is an arbitrary operator-

defined value [39].
1
The format used in documentation or in router configurations separates the

two 16-bit numbers with a colon. For example, AS3491’s operators defined that the community

3491:3000 signals (and is tagged on) routes received from peers in Europe [54].

Action communities influence the BGP selection process or how routing announcements propagate.

They generally signal an action that a transit provider should execute on behalf of a customer

to realize some traffic engineering policy. Examples include LocalPref adjustment, BGP AS path

prepending, selective advertisement, route suppression, and traffic blackholing [56].

Informational communities include metadata to a route announcement to assist operators with

troubleshooting issues, refining policies, or capacity planning. Examples include tagging a route

to inform that it was originated either internally or learned externally, marking the location

where the route was learned, or whether the route was learned from a customer, provider, or peer.

Informational communities may be used by the tagging AS itself as well as downstream ASes.

In this paper, we infer location communities, which are related to where a route was learned or

where it goes through. Location communities can tag specific links, routers, Points of Presence

(PoPs), Internet Exchange Points (IXPs), or geographical locations (e.g., city, state, country, or
continent). We define a geolocation community as one that tags a geographical location.

The use of communities has increased significantly in the past few years (§5, [56]). However,

determining the semantics of each community value is a daunting task. Previous efforts have pro-

posed standardization and better use of BGP communities to improve security [45], but operators

have not fully embraced these proposals. Only a handful of community values have been stan-

dardized [29, 35, 39]. For example, 65535:666 (blackhole) signals a request to an upstream network

that traffic to a destination prefix should be dropped [35], and 65535:65284 (no-advertise) signals a
request to a provider that a route should not be advertised further [39]. Standardized communities

1
In this paper, we consider only 32-bit communities [39], which use ASes with 2-byte AS numbers. BGP large communities

[26] are 96-bit long and include support for 4-byte AS numbers, but their use remains incipient. Although we do not analyze

large communities in this work, our techniques can be applied without modification to infer location large communities.
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cover only a tiny fraction of the communities visible in route announcements. Unfortunately, no

central database exists with the documentation of the existing communities. Network providers

catalog their communities in ad-hoc documents or in IRR databases; and some third-party websites

such as One Step aggregate this information [55]. The lack of documentation on communities and

the ad-hoc nature of available documentation constrains our understanding of Internet routing.

A few existing projects—e.g., University of Oregon Route Views (RV) [42], RIPE NCC Routing

Information Service (RIS) [47], Isolario [25], and Packet Clearing House (PCH) [28]—collect BGP

routing tables and BGP updates at several locations to help researchers and network operators

better understand how BGP announcements reach different parts of the Internet. These projects

deploy tens of routers that collect BGP updates from hundreds of collaborating ASes and generate

datasets with millions of records every day. The datasets are openly available and valuable assets

for the research and operator communities. Since the projects’ routers reside in physical facilities

in different parts of the world, we can use them to define vantage points to observe routes tagged

with BGP communities. We use the term vantage point (VP) to refer to a router that peers with

a BGP collector, and an AS might have multiple routers peering with BGP collectors at different

locations.

3 INFERRING BGP LOCATION COMMUNITIES
We infer location communities based on the fact that ASes peer at a finite set of locations and

enforce dynamic but deterministic routing policies [1, 14, 20, 30, 41]. We first provide an overview

of the key ideas in our inference algorithm using the example in Figure 2 (§3.1) and then present

our algorithm formally (§3.2).

3.1 Overview
Consider a target AS 𝑇 that tags received routes with location communities (see Figure 2). If

AS 𝑇 and AS 𝑁1 interconnect at a single location, then 𝑇 will tag all routes received from 𝑁1

with the location community corresponding to their single interconnection. The idea that all

routes received at a specific location will have the corresponding location communities is the

core of our algorithm. Unfortunately, we cannot simply infer communities that appear on all

routes received from a neighbor 𝑁1 as location communities. First, neighbor 𝑁1 may tag all of its

announcements with AS𝑇 traffic engineering communities, which would be incorrectly inferred as

location communities. Second, when AS 𝑇 and AS 𝑁2 interconnect at multiple different locations

(indicated by the multiple links between 𝑇 and 𝑁2 in Figure 2), then 𝑇 may choose routes received

from 𝑁2 at any of these locations. Each chosen route will have a different location community

corresponding on the interconnection over which it was received. No community will appear in

all routes, and no location community would be inferred. It is challenging to infer the number

of interconnections between two ASes [22], and so we do not want our approach to rely on that

information.

We relax the requirement of a single interconnection and avoid the need for quantifying the

number of interconnections between the target AS 𝑇 and neighboring ASes by looking at paths

that traverse multiple interconnections. Suppose that AS 𝑇 and AS 𝑁3 interconnect at multiple

locations and that AS 𝑇 receives routes with AS paths traversing ⟨𝑁3, 𝑁4, 𝑁5⟩ (blue dashed line in

Figure 2). Let 𝐼𝑇,3, 𝐼3,4, and 𝐼4,5 be the interconnections traversed by the routes. Interconnection 𝐼𝑇,3
is constrained by the set of interconnections between ASes 𝑇 and 𝑁3 and their routing policies.

Here is a non-exhaustive list of such constraints:

(1) AS 𝑇 might use multi-exit discriminators (MEDs) as a tie-breaker [46] and choose routes

from 𝑁3 received at a particular interconnection. For example, if 𝑁3 prefers to receive traffic
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Fig. 2. Example of how long sequences of ASes between origins and a target AS 𝑇 constrain the set of
locations of routes received and chosen by AS 𝑇 . We denote the (possibly empty) sequence of ASes between
the BGP collector peer 𝑉 and target AS 𝑇 as A and the nonempty sequence of ASes constraining the
locations where 𝑇 may receive a BGP announcement as B (highlighted in gray). Solid black lines denote
interconnections between ASes. In this example we assume that interconnections are at different locations,
but this is not required by our algorithm.

from AS𝑇 towards 𝐼3,4 at 𝐼𝑇,3, it may set lower MED values on routes exported at 𝐼𝑇,3, leading

AS 𝑇 to choose routes received at 𝐼𝑇,3 over routes received at other interconnections.

(2) Routers systematically choose routes from the closest (lowest IGP cost [46]) interconnection.

For example, if 𝐼𝑇,3 is the closest interconnection to AS𝑇 ’s egress router towards the vantage

point at 𝑉 , then the egress router will choose and export routes from 𝑁3 received at 𝐼𝑇,3.

(3) Routes may not be accepted by AS 𝑇 or exported by AS 𝑁3 at some interconnections, par-

ticularly when ASes 𝑇 and 𝑁3 have a complex peering relationship [20]. For example, if 𝑇

and 𝑁3 peer in Europe, but 𝑇 buys transit from 𝑁3 in the US, 𝑇 will receive routes from 𝑁3’s

peers and providers only in the US (e.g., 𝐼𝑇,3).
The constraints imposed by the set of interconnections and routing policies between each

pair of ASes in a route compound over consecutive AS hops. In particular, interconnection 𝐼3,4 is

constrained by the interconnections between ASes 𝑁3 and 𝑁4 as well as their routing policies; and

similar constraints apply to 𝐼4,5. AS 𝑇 ’s routes exported towards vantage point 𝑉 that traverse a

constraining sequence of ASes (like ⟨𝑁3, 𝑁4, 𝑁5⟩) will only be received by AS 𝑇 at a small set of

locations, possibly a single one. Looking at the problem another way, for VP 𝑉 to observe routes

from AS 𝑇 traversing ⟨𝑁3, 𝑁4, 𝑁5⟩ and received at different interconnections, then 𝑁3 needs to

receive and choose routes through ⟨𝑁4, 𝑁5⟩ at different interconnections, which implies 𝑁4 receives

and chooses routes from 𝑁5 at different interconnections.

We sidestep incorrect inferences for origins that tag all their announcements with traffic engi-

neering communities by combining observations on multiple routes from different origins. In the

example, routes originated by ASes 𝑁6, 𝑁7, and 𝑁8 reach AS𝑇 through the same sequence of transit

ASes. The chance that all these origins tag their announcements with AS 𝑇 traffic engineering

communities is low, which allows us to correctly remove traffic engineering communities from

the set of inferred location communities. In our algorithm, we require routes from a configurable

number of different origin ASes to infer location communities.

3.2 Inference Algorithm
Our algorithm looks for routes from multiple origins (e.g., 𝑁6, 𝑁7, and 𝑁8 in Figure 2) traversing

an overlapping sequence of ASes before reaching a target AS 𝑇 (e.g., ⟨𝑁3, 𝑁4, 𝑁5⟩ in Figure 2), and

infers communities from 𝑇 that appear on a significant fraction of routes as location communities.

We split a route’s AS path into five segments ⟨𝑉 ,A,𝑇 ,B,S⟩, where 𝑉 is the AS containing the

vantage point, 𝑇 is the target AS whose location communities we will infer, A is a possibly-empty

sequence of ASes between 𝑉 and 𝑇 , B is a nonempty sequence of ASes following 𝑇 , and S is a
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Table 1. Summary of Notation.

Var Description

𝑉 AS hosting a BGP vantage point

𝑇 Target AS whose location communities we are inferring

A Sequence of ASes between 𝑉 and a target AS 𝑇

B Sequence of ASes after AS 𝑇 constraining route propagation

S Suffix containing all ASes after B up to the origin AS

R Set of routes traversing a sequence of ASes

R𝑐 Set of routes tagged with community 𝑐

R𝑇 Set of routes traversing AS 𝑇 or any of 𝑇 ’s siblings

𝐾origins Minimum number of distinct origins in R for inference

𝐾prev Minimum fraction of routes in R with community for inference (prevalence)

𝐾filter Maximum hitting set size over routes with location communities that do not

traverse the community’s AS or any of its siblings

nonempty suffix containing all ASes after B up to and including the origin AS. We consider that B
constrains route propagation and the interconnections where AS 𝑇 ’s chosen routes are received.

AS 𝑉 may be considered the target 𝑇 , in which case 𝑉 = 𝑇 . An announcement needs to have an AS

path with at least three ASNs to support inferences. In the cases with exactly three ASNs, we have

|⟨𝑉 ,A,𝑇 ,B,S⟩| = 3, where 𝑉 = 𝑇 , A = ∅, |B| = 1, and |S| = 1. In Figure 2, 𝑉 ≠ 𝑇 and are shown

explicitly, A is implicit, and B = ⟨𝑁3, 𝑁4, 𝑁5⟩. The blue line in Figure 2 captures three routes from

origins 𝑁6, 𝑁7, and 𝑁8; the suffix S of each route contains only the origin AS.

We denote by R(𝑉 ,A,𝑇 ,B) the set of routes from one specific vantage point that traverse the

sequence of ASes given by ⟨𝑉 ,A,𝑇 ,B⟩. Each route 𝑟 ∈ R has a different nonempty suffix S𝑟 .
Table 1 summarizes the notation, and Algorithm 1 shows the pseudocode.

3.2.1 Minimum number of origins. For any combination of𝑉 ,A,𝑇 , and B from each vantage point,

we consider the set of routes R(𝑉 ,A,𝑇 ,B) for inferring location communities if R(𝑉 ,A,𝑇 ,B) con-
tains at least 𝐾origins distinct routes. In other words, we require announcements from at least 𝐾origins

distinct origin ASes to avoid incorrect inferences when origin ASes tag all their announcements

with AS 𝑇 traffic engineering communities (Lines 3–6 in Algorithm 1.)

3.2.2 Community prevalence. One could require a BGP community from the target AS 𝑇 to appear

on all routes in R(𝑉 ,A,𝑇 ,B) in order to infer it as a location community. However, Internet

routing information is often incomplete or inconsistent, e.g., due to delayed route propagation [34]

or ASes that remove BGP communities from announcements.
2
Rather than requiring a community

to appear on all routes, we relax this requirement to allow for incompleteness and inconsistency in

BGP dumps or route propagation, and infer any community from AS 𝑇 or its siblings that appears

on at least a fraction 𝐾prev of routes in R as a location community (Lines 7–13 in Algorithm 1).

We have observed that ASes often tag routes with location communities of a sibling AS. Sibling

ASes are operated by the same organization and often share routes and operational practices

[13, 14]. Sibling ASes may share BGP communities to avoid defining and maintaining multiple sets

of communities for different ASes belonging to the same organization. Sharing of BGP communities

may also happen during mergers, when updating AS numbers requires reconfiguration of BGP

sessions and coordination with peering networks. As an example, in 2018, after Level3’s and Global

Crossing’s merger [8, 31], we observed routes with AS paths traversing Global Crossing’s AS3549

2
BGP communities are a transitive attribute and ASes are not supposed to arbitrarily remove them from routes [5]. However,

filtering of BGP communities is available as a router configuration option from most vendors. Recent work reports that 25%

of ASes filter communities from routes [37, 38].
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Algorithm 1 Inference of Location Communities

1: for each vantage point 𝑣 do
2: L𝑣 ← ∅ {Set of location communities inferred from 𝑣 ’s routes}
3: for each R(𝑉 ,A,𝑇 ,B) in routes from 𝑣 do
4: if |R(𝑉 ,A,𝑇 ,B)| < 𝐾origins then
5: continue
6: end if
7: C ← all communities from AS 𝑇 or of a sibling of 𝑇 appearing in R(𝑉 ,A,𝑇 ,B)
8: for each community 𝑐 ∈ C do
9: 𝑁𝑐 ← number of routes in R(𝑉 ,A,𝑇 ,B) with 𝑐
10: if 𝑁𝑐 ÷ |R(𝑉 ,A,𝑇 ,B)| ≥ 𝐾prev then
11: L𝑣 ← L𝑣 ∪ {𝑐}
12: end if
13: end for
14: end for
15: for each community 𝑐 ∈ L𝑣 do
16: R𝑐 ← set of routes with 𝑐

17: R𝑇 ← set of routes whose AS paths traverse 𝑐’s AS or any of its siblings

18: F𝑐 ← R𝑐 \ R𝑇
19: if size of the minimum hitting set of F𝑐 ≥ 𝐾filter then
20: L𝑣 ← L𝑣 \ {𝑐}
21: end if
22: end for
23: end for
24: return

⋃L𝑣 for all vantage points 𝑣

tagged with Level3’s location communities. Thus, when processing R(𝑉 ,A,𝑇 ,B), we try to infer

communities from 𝑇 or any of 𝑇 ’s siblings as location communities (Line 7, Algorithm 1).

3.2.3 Removing communities unrelated to location. We develop a heuristic to filter out BGP commu-

nities that are unlikely to be location communities. We expect a location community to be tagged

when an AS receives a route. Thus, a location community from AS 𝑇 should only appear on routes

whose AS path includes AS 𝑇 or one of its siblings.

Unfortunately, databases identifying sibling ASes are challenging to build and may be incomplete,

leading direct application of the heuristic to incorrectly discard inferred location communities.

For example, we observed several routes traversing AS286 and AS5580 tagged with location

communities from GTT’s AS3257. Manual querying of ARIN’s IRR indicates that these three ASes

are siblings, but they are not identified as such in CAIDA’s sibling database (Section 4).

Another issue is that there are ASes that seem to tag routes with location communities of other

ASes, with no apparent sibling relationship. For example, we observed announcements traversing

AS20473 (Constant) tagged with location communities from AS1299 (Telia).
3

We relax the heuristic to allow for missing sibling ASes and ASes that reuse or incorrectly tag

announcements with another AS’s location communities. We try to identify cases where a small set

of ASes can be blamed for the tagging of a target AS𝑇 ’s communities on routes that do not traverse

𝑇 or any of 𝑇 ’s known siblings. In these cases, we do not filter out inferred location communities.

3
Although we could not establish a sibling relationship between AS20473 and AS1299, we plan to investigate this further as

BGP community cross-tagging might be a possible vector for identifying sibling ASes.
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More precisely, let R𝑐 be the set of routes tagged with community 𝑐 from AS 𝑇 (R𝑐 is a superset
of, and usually much larger than, the set R(𝑉 ,A,𝑇 ,B) used to infer 𝑐 as a location community), and

let R𝑇 be the set of routes whose AS paths traverse AS 𝑇 or any of 𝑇 ’s known siblings. We ignore

routes that traverse 𝑇 or any of 𝑇 ’s siblings, and consider the route announcements F𝑐 = R𝑐 \ R𝑇
when deciding whether to discard an inferred location community. We compute the minimum
hitting set of F𝑐 and discard 𝑐 as a location community if the set contains more than 𝐾filter ASes

(Lines 15–22 in Algorithm 1). In other words, we keep location community inferences only when

few ASes are to blame for AS 𝑇 ’s communities showing up on routes that do not contain 𝑇 or any

of 𝑇 ’s siblings. The minimum hitting set is the smallest set of ASesW such that the intersection

ofW and each route 𝑟 ∈ F𝑐 is nonempty. The minimum hitting set problem is equivalent to the

NP-complete minimum set cover problem [15, 33], and we solve it using a greedy heuristic, which

provides a tight approximation of the optimal solution [52].

3.2.4 Joining inferences across collectors. We infer location communities from route announcements

observed by each vantage point in isolation (loop in Line 1, Algorithm 1), in line with the ideas of

using each BGP collector as a vantage point and B to constrain where chosen routes are received.

After we infer communities from each vantage point, we take the union across vantage points from

all collectors as the database of inferred location communities (Line 24 in Algorithm 1). Although

we show that few vantage points are sufficient to infer most communities (§5), some communities

are only visible from specific vantage points, so taking the union across collectors and vantage

points maximizes coverage.

3.3 Implementation
Our implementation consists of over 2,100 lines of Python, with extensive use of the Pandas library

for data processing. We use Snakemake [43] to automate our database construction. Our system

can be configured to automatically process multiple RIBs from different BGP collectors, generate

various intermediate files that are reused in subsequent steps, and distribute the processing into

multiple servers to speed up the computation. Our code, the database of inferred communities, and

our manually built ground-truth dataset are available online [32].

4 DATASETS
We use BGP feeds from RouteViews [42], RIPE RIS [47] and Isolario [25].

4
Unless specified otherwise,

we use the first available route table dump (RIB) from each BGP route collector on December 2017,

2018, 2019, and 2020. We use BGP RIBs to process stable routes, but BGP updates could also be used,

which would possibly increase the number of observed communities. Table 2 shows a summary

for the route table dumps from December 2017 and 2020. We use CAIDA’s AS-to-Org database for

identifying sibling ASes [3]. We built and evaluated an alternate sibling database by grouping ASes

whose abuse contact e-mails have the same domain. We omit these results as they are quantitatively

similar to those obtained with CAIDA’s AS-to-Org database. When processing routes, we remove

repeated occurrences of an ASN in the AS path as our goal is to look at the sequence of ASes

traversed by the route regardless of AS path prepending. We also discard all routes containing

AS-sets, as they usually result from aggregation of routes traversing different ASes.

Table 3 shows a summary of our manually-built ground-truth dataset of BGP community seman-

tics for ASes that have public information available. We obtain ground-truth information from IRR

databases and documentation from network websites, and manually classify each community on

June 2021. The ground-truth dataset contains a large number of communities because some ASes

specify certain types of communities using ranges, and we consider all possible values defined

4
We do not use PCH feeds [28] as they do not include BGP communities.
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Table 2. Summary of RIB dumps of December 2017 and 2020 for RouteViews, RIPE RIS, and Isolario.

Project Collectors VPs

Total ASes

(thousands)

Prefixes

(millions)

Communities

(thousands)

Routes

(millions)

Year 2017 2020 2017 2020 2017 2020 2017 2020 2017 2020 2017 2020

RV 17 20 192 232 61 72 0.86 1.07 44 64 96 184

RIPE 20 20 330 510 61 72 0.80 1.03 46 71 115 311

Isolario 4 5 83 145 60 72 0.79 1.12 34 67 66 209

Total (unique) 41 45 529 738 61 73 0.90 1.22 56 79 277 704

Table 3. Number of communities for ASes in our ground-truth dataset by type and geolocation communities
in CAIDA’s database [4].

Community Type CAIDA

Network (AS) Geo Dev/link Relation Action [4]

Tier 1 [60]𝑎𝑎
𝑎𝑎

Verizon (701) 0 0 0 11 0

NTT (2914) 93 0 2 44 39

GTT (3257) 10,000* 11,000* 1,783* 13,023* 68

Deutsche Telekom (3320) 24 0 3 0 17

Level 3 (3356) 178 0 2 5 82

PCCW Global (3491) 44 0 0 21 24

Lumen (3549) 239 239 239 87 28

Orange (5511) 46 0 0 55 11

Zayo (6461) 804* 0 6 152 0

Telecom Italia (6762) 51 0 1 133 42

Tier 2 [61]

Cogent (174) 4 0 0 47 31

TDC (3292) 0 0 3 119 12

Easynet (4589) 800* 0 0 3 103

British Telecom (5400) 0 0 0 40 0

Comcast (7922) 0 0 0 7 0

Total

12,283 11,239 2,039 13,747 457

* Ranges covering automatically-generated community values, e.g., from geographical coordinates.

in the range (although our evaluation indicates actual utilization is sparse). For example, GTT

(AS3257) defines a rule saying that communities in the 3257:30000–3257:39999 interval identify
private interconnections [53]. In this case, we consider all 10,000 communities in the interval as

location communities in our ground-truth database.

We break informational communities into those that identify a geographical location, a device,

a link on a router, or a peering relationship; and we also identify action communities. We also

show the number of communities from the ASes in our database in CAIDA’s geographic location

BGP communities database from April 2019 [4]. Our ground truth dataset includes 1.7 times

more geolocation communities than CAIDA’s database for the ASes in our dataset (not including

autogenerated communities), but 13% of the geolocation communities in CAIDA’s database are not

in our ground-truth dataset.

Manual analysis indicates that these differences are due to new geolocation communities being

created since CAIDA’s database was built, and a few changes to previously-assigned ones.

5 EVALUATION
In this section we evaluate our algorithm. We report precision and recall, and show how they can

be prioritized by tuning the configuration of our algorithm (§5.1). We discuss community visibility

in BGP dumps and how additional vantage points could improve recall (§5.2). We quantify the
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Table 4. Precision, recall, inferable recall, F1-score, and the number of inferred, correctly inferred, and
inferred but undocumented location communities on December 2020. We show results for our algorithm’s
default configuration as well as configurations that prioritize high precision and high recall.

Inferable Inferred Communities

Configuration Precision Recall Recall F1 Score Total Correct Undocumented

Prioritize precision 0.93 0.72 0.89 0.81 946 878 513

Default configuration 0.91 0.80 0.87 0.85 1081 983 598

Prioritize recall 0.87 0.81 0.89 0.84 1150 995 634

impact of each parameter on our algorithm’s accuracy and show that inferences are not sensitive to

parameter values (§5.3). We compare our database of location communities with CAIDA’s manually-

built dataset and show we achieve competitive precision and significantly higher recall (§5.4).

Finally, we present a characterization of the adoption and stability of location communities (§5.5).

5.1 Inference Accuracy
We quantify inference accuracy with precision and different views of recall [27]. Precision is the ratio
between the number of correctly inferred location communities (true positives) and the number

of inferred communities (positives). As our ground-truth database contains many communities

that are not yet used (i.e., communities described as ranges on the providers’ websites but not

yet allocated), it would be unreasonable to use them to compute the recall. Furthermore, many

communities that are defined in the ground-truth dataset never show up in BGP dumps, possibly

because they are not in use or because vantage points lack visibility. We compute recall considering
only the communities that appear in the BGP dumps. More precisely, we define recall as the ratio

between true positives and the number of location communities in our ground-truth database

that also appear in the BGP table dumps. We also report the inferable recall, defined as the ratio

between true positives and the number of communities that our algorithm considers for inference,

i.e., communities that appear on routes from at least 𝐾origins origin ASes.

Table 4 shows the overall accuracy of our inferences for its default configuration, with𝐾origins = 2,

𝐾prev = 0.2, and 𝐾filter = 1 on December 2020. We evaluate the impact of each parameter and discuss

the default choices in Section 5.3. Table 4 also reports the total number of inferred communities

across ASes in our ground-truth dataset, the number of correctly inferred location communities,

and the number of inferred location communities that are undocumented in the ground truth.

Communities may be undocumented in the ground-truth because they are meant for private use

of the owning AS, or may be incorrectly tagged on routes. Because we cannot know whether

the inferences for undocumented communities are correct or incorrect, we ignore them when

computing precision and recall.

Our results show that inference precision is high. We find that 34.3% of location communities

in the ground-truth that are not auto-generated never appear in the BGP dumps, which makes

inference impossible. However, we do find reasonably high recall for observed communities. Results

for configurations prioritizing high precision (𝐾origins = 6, 𝐾prev = 0.5, and 𝐾filter = 1) and high

recall (𝐾origins = 2, 𝐾prev = 0.1, and 𝐾filter = 2) indicate that our algorithm can be configured to trade

off precision against recall depending on the operator’s, researcher’s, or application’s needs.

Table 5 shows the breakdown of the number of communities per category. The seen columns

show the number of communities in the BGP dump and in our ground-truth dataset, and the

inferred columns show the number of communities we infer as location communities. Despite an

imbalanced dataset and the high number of false positives for action communities, our algorithm

would still yield a positive predictive value [57] of 79% even if location and action communities
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Table 5. Number of communities from ASes in our ground-truth dataset seen in BGP and inferred as
location communities by our algorithm. We split communities by type, as given in the ground truth (location,
relationship, and action), and also show results for undocumented communities that do not show up in the
ground truth.

Community Category

Location Relationship Action Undocumented

Configuration seen inferred seen inferred seen inferred seen inferred

Prioritize precision 987 878 14 13 181 55 675 513

Default configuration 1123 983 15 13 235 85 911 598

Prioritize recall 1123 995 15 15 235 140 911 634
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Fig. 3. Number of inferred communities and recall as a function of the number of collectors.

were balanced.
5
We can increase the precision for action communities by tuning the algorithm’s

parameters (e.g., prioritize precision). We discuss these limitations and future work in Section 6.

5.2 Community Visibility and Recall
Figure 3 shows the cumulative distribution of the number of inferred location communities (left

𝑦-axis) and the number of inferred communities (right 𝑦-axis) across collectors (𝑥-axis). We rank

collectors on the 𝑥-axis by picking the collector that supports the most inferences, and then

iteratively selecting collectors by the number of new community inferences they support. Note

that we can infer a large number of communities in one collector, but those communities might

have already been inferred in a previous collector. That explains why we see some shorter bars on

the left of higher ones. For example, we inferred 17 communities from routes exported by vantage

points connected to the collector at rank 31, and 13 of those communities were new, while we

inferred 4,525 communities from routes exported by vantage points connected to the collector at

rank 35, and only 10 communities were new.

The number of inferred communities varies significantly across collectors, which can be ex-

plained by the different number of vantage points. We observe correlation (Pearson correlation

coefficient of 0.7) between the number of vantage points of a collector and the number of inferred

communities (not shown).

We also find that there is significant overlap among communities inferred from different collectors.

This explains why the fraction of inferred communities spikes to 61% with a single collector, and

5
This ignores relationship communities, which we expect to be few and not balanced, as an AS generally defines one
community for each type of relationship (provider, peer, or customer).
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Fig. 4. Precision and recall as a function of
𝐾origins. High precision for 𝐾origins = 1 in-
dicates that origins rarely tag all their an-
nouncements with traffic engineering com-
munities of other ASes.
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Fig. 5. Precision and recall as a function of
𝐾prev. Location communities appear on most
routes in R(𝑉 ,A,𝑇 ,B), so increasing 𝐾prev
up to 0.9 has small impact on precision and
recall.

then grows slowly. However, even though the growth is slow as a function of the number of

collectors, the tail of the distribution is long, indicating that some communities can only be inferred

by specific vantage points.

These results indicate that additional collectors and vantage points would allow inferences to

achieve higher coverage and recall, but that the existing set of collectors is sufficient to enter the

region where additional collectors will provide diminishing returns on community visibility.

5.3 Algorithm Parametrization
In this section we quantify the impact of configuration parameters in our algorithm. Our results

show that our algorithm is not sensitive to parametrization and that most parameter values yield

accurate predictions.

5.3.1 Number of origins. Figure 4 quantifies the impact of 𝐾origins on precision and recall. We

observe that precision increases slightly with 𝐾origins as we require routes from more diverse

origins. One factor contributing to improving precision is that larger 𝐾origins makes the algorithm

less susceptible to incorrect inferences when origins tag all their announcements with another

ASes’s traffic engineering communities. However, we observe that recall decreases as 𝐾origins

increases. This happens because the number of routes in R(𝑉 ,A,𝑇 ,B) traversed by 𝐾origins distinct

origins decreases, and thus the number of routes useful for inferring communities also decreases. The

limited improvement in precision implies that origins rarely tag all their announcements with traffic

engineering communities of other ASes.We argue that any choice of𝐾origins is reasonable as it trades

off precision and recall. Values of 𝐾origins larger than one have the advantage of avoiding incorrect

inferences in situations where an AS tags all its routes with traffic engineering communities. We

choose 𝐾origins = 2 as the default value in our algorithm as an intermediate value that prevents a

single origin causing incorrect inferences without significantly degrading recall.

Figure 4 also shows the recall of inferable communities, i.e., communities from ASes in AS path

segments shared by at least 𝐾origins origins. This is relevant because we cannot make inferences

for communities that do not appear in paths from enough different origins. We find that recall for

inferable communities increases with 𝐾origins, indicating that our algorithm performs better on

communities that appear on paths shared by many origins, which may be a result of a lack of path

diversity from these origins towards the target AS 𝑇 , funneling traffic through fewer locations.
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Fig. 6. Most inferred location communities appear on routes traversing the community’s controlling AS or
one of the controller AS’s siblings (not shown). For 85% of the inferred location communities that appear on
routes that do not traverse the controlling AS or one of its siblings, we find that a single AS can be blamed
for tagging the community (Figure 6a, 𝑥 = 1). Filtering inferences when a community appears on a diverse
set of routes that do not traverse the controlling AS or one of its siblings improves the precision of our
inferences without significantly reducing recall (Figure 6b).

5.3.2 Community prevalence. Figure 5 shows the impact of𝐾prev, the fraction of routes inR(𝑉 ,A,𝑇 ,
B) that a community needs to appear in to be inferred as a location community. Similar to Figure 4,

we find that precision and recall are high and do not vary significantly as a function of 𝐾prev. This

happens because (i) location communities have high prevalence, so increasing 𝐾prev has small

impact on the number of true positives, and (ii) other communities have low prevalence and get

promptly filtered as we increase 𝐾prev from zero. We set 𝐾prev = 0.2 as the default value in our

inferences, i.e., we require that a community appears in at least 20% of the route announcements in

R(𝑉 ,A,𝑇 ,B) tuple to infer it as a location community.

5.3.3 Filtering inferences. We filter the inference of an AS 𝑇 ’s community from our database of

location communities if it appears on paths that do not traverse 𝑇 or any of 𝑇 ’s siblings and the

appearances cannot be blamed on 𝐾filter or fewer ASes.

Figure 6a shows the distribution of the number of ASes in minimum hitting sets for inferred

communities. We observe that the majority of hitting sets (85%) have only one AS, which implies

that a single AS can be blamed for occurrences of those communities on paths that do not traverse

the community’s AS (or any sibling). A possible explanation for this finding is that these single

ASes may be undocumented siblings of the community’s AS or may incorrectly tag routes with

the community. Figure 6b shows the impact of 𝐾filter on precision and recall. We plot the 𝑥 axis

for decreasing values of 𝐾filter as the filter becomes more restrictive (i.e., we infer fewer location
communities) as 𝐾filter decreases. The results show that values of 𝐾filter below 3 have a slight impact

on precision, without impacting recall. This indicates that the proposed filter accurately identifies

and prunes incorrect inferences. We set the default value of 𝐾filter = 1 in our algorithm.

We also quantify how often ASes use communities from one of their siblings. We say an AS 𝐴

uses a community from its sibling AS𝑇 when a community owned by𝑇 appears in an AS-path that

includes 𝐴 and does not include 𝑇 . We find 95 ASes using communities defined by their siblings

in BGP dumps (across all ASes and all communities regardless of semantics), and our algorithm

infers location communities for 44 of these ASes. This result indicates that siblings do share BGP

communities, and accounting for this sharing is useful when filtering location communities.
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Fig. 7. Impact of the number of constraining ASes, i.e., |B|, on recall and precision. More constraining ASes
limit where chosen paths are received by a target AS 𝑇 , improving precision, but fewer AS paths are long
enough to support many constraining ASes, reducing recall.

5.3.4 Number of constraining ASes. Figure 7 shows the impact of the number of constraining ASes

after𝑇 in the AS path when making inferences, i.e., the size of B in ⟨𝑉 ,A,𝑇 ,B⟩ tuples. As discussed
in Section 3.1, more constraining ASes limit the set of locations where chosen routes arrive at the

target AS 𝑇 , leading to higher precision. However, AS paths in the Internet are usually short [6],

and there are fewer long AS paths to support inferences with long sequences of constraining ASes,

which ultimately limits recall. Although we consider all sequences with at least one constraining

AS, our algorithm can be configured to require more constraining ASes, which will lead to higher

precision at the cost of recall.

5.4 Comparison with CAIDA’s Database
We now turn to properties of our inference algorithm and compare the constructed database with

CAIDA’s public database. Table 6 shows statistics for geolocation communities in both databases

(first rows) and for location communities in our database (last row).We compute recall of geolocation

communities considering only the subset of geolocation communities in the ground-truth database.

We do not compute precision and the number of geolocation community for our inference algorithm

as it does not differentiate between geolocation and location communities.

We find that CAIDA’s database has high precision, but not 100%. Investigation of incorrect

inferences indicate they are concentrated on Tier-2 ASes and explained by out-of-date information,

e.g., resulting from the reassignment of community values. Also, CAIDA’s community database has

limited recall, which is somewhat expected for a manually-built database. Our inference algorithm

achieves significantly higher recall than CAIDA’s database even for geolocation communities.

The last row shows results for all location communities inferred by our algorithm. We find that

recall increases slightly compared to when we consider only geolocation communities. We also find

that the precision is competitive with that of manually-constructed but not up-to-date databases.

5.5 Adoption and Stability of Location Communities
Figure 8 shows the number of distinct BGP communities observed in the BGP route dumps, the

number of communities inferred as location communities, the number of ASes covered in the BGP

route dumps, and the number of ASes controlling the observed communities. We find that BGP

communities are becoming more popular, with a 51% increase in the number of distinct communities
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Table 6. Comparison between CAIDA’s manually-constructed database and our automatic inferences.

Community Communities

Type Database Recall Precision Total Correct

Geolocation CAIDA 0.21 0.86 303 261

Inferences 0.77 — — —

Location Inferences 0.80 0.91 1081 983

2017 2018 2019 2020
Year
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Covered ASes
ASes Controlling Observed Communities

Fig. 8. BGP community use in the Internet, quantified as the number of distinct BGP communities observed,
number of inferred location communities, and the number of ASes controlling BGP communities.

observed in the wild between 2017 and 2020 (50% increase for location communities). Not only are

there more communities, but they also belong to a larger number of ASes.

Figure 9 evaluates how stable are location community inferences over time. Figure 9(a) shows

the total number of communities inferred each day over the course of the first week of December

2020. We report the number of new communities never seen before (green line), the number of

inferences on each day (orange line), and the cumulative number of communities inferred (blue

line). We find that the set of inferred communities does not change significantly over the course of

one week. Figure 9(b) is similar, but shows communities inferred on the first day of each month

in 2020. We find that there is some stability, but distinct communities keep accumulating over

time. This result can be explained by changes in topology accompanied by the creation of new

location communities, e.g., when networks establish PoPs in new locations, or routing dynamics,

e.g., new peering relationships may lead to route changes that allow the inference of new location

communities. The change over time motivates an automated algorithm like the one we propose

for keeping the community database up-to-date. The drop in the number of inferred communities

around June 2020 can be mostly attributed to the disappearance of AS286’s communities from BGP

dumps, likely a result of AS286’s acquisition by GTT (AS3257) in December 2019.

6 LIMITATIONS AND FUTUREWORK
We require announcements from 𝐾origins distinct origin ASes to sidestep the case that an origin AS

tags all its announcements with traffic engineering communities of 𝑇 . Unfortunately, if any AS in

B tags all announcements from all origins with one of 𝑇 ’s traffic engineering communities, then

our algorithm would incorrectly infer a traffic engineering community as a location community.

Our algorithmwill also falsely infer a location community whenAS𝑇 tags all received routes from

a neighbor with a relationship community (e.g., peer, customer, or provider). However, the decrease

in precision is not significant because an AS generally defines a small number of relationship
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Fig. 9. Stability of location community inferences over time. Our results show that location communities
are stable over short timescales, but that new location communities appear over time. This motivates an
automated inference algorithm to keep community databases up-to-date.

communities, as we show in Section 5. We can avoid this case by requiring that a community

appears in routes from neighbors with different relationships at the expense of a lower recall. We

will investigate this trade-off in future work.

Our algorithm is unable to make inferences when ASes between the BGP collector and the target

AS 𝑇 remove communities from BGP announcements [38]. As the number of collectors on the

Internet is large, which provides visibility from multiple vantage points, we believe (based on the

results in Section 5) that we can still achieve high recall even if some ASes remove the communities.

We built our ground-truth database from Tier-1 and Tier-2 ASes because we could not find

documented communities for ASes lower in the Internet hierarchy. However, we expect our

techniques to work well for any target AS 𝑇 as long as routes received by 𝑇 have at least 𝐾𝑜𝑟𝑖𝑔𝑖𝑛𝑠
and a set B with at least one AS, as we discuss in Section 5.3.4.

We believe other heuristics may further improve our ability to infer the semantics of BGP

communities. We plan to investigate whether we can identify traffic engineering communities (e.g.,

“do not announce in Europe”) correlating changes in AS-paths to specific BGP communities. We

expect a better understanding of the semantics of BGP communities will support new solutions; for

example, we plan to investigate whether announcements where AS 𝑥 uses another AS 𝑦’s location

communities can be used to infer whether ASes 𝑥 and 𝑦 are siblings.

7 RELATEDWORK
Characterization of community usage. Streibelt et al. [56] present an extensive study of BGP

community usage on the Internet. The study shows the growing use of communities in the last few

years and how communities propagate much further than they should, sometimes reaching ASes

several hops away from the intended target. Unintended forwarding of communities to upstream

neighbors allows adversaries to trigger remote blackholing to disconnect destinations or to influence

route propagation to steer traffic through malicious actors without resorting to a prefix hijack. The

authors argue that standardization and better documentation of BGP communities could prevent

such abuses, which our paper is one step towards. Krenc et al. [38] propose a passive algorithm to

infer how ASes handle communities. BGP communities are a transitive attribute of BGP updates,

which means they should propagate from one AS to the next; however, routers may be configured

to filter them. Krenc et al.’s algorithm infers whether an AS forwards or discards communities in

BGP announcements. Their algorithm, like ours, also uses only passive measurements from BGP

collectors to infer the different types of ASes. We note that, although filtering of BGP communities

reduces recall of our algorithm, it does not impact precision of inferences.
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Standardization efforts. Quoitin and Bonaventure [44] discuss the two most common utiliza-

tion of BGP communities in the Internet: communities that tag routes received from a specific peer

(e.g., to indicate the type of relationship) or at a specific location, and communities that indicate how

external peers should redistribute a route to perform, for example, interdomain traffic engineering.

Donnet and Bonaventure [11] extend the classification in [44] and propose a taxonomy of BGP

communities that allows network operators to document their communities better. The first level of

the taxonomy divides the communities into inbound, outbound, and blackhole. Subsequent levels

specialize their applications into several categories: tagging, route redistribution, type of peer,

IXP, geographic, and prepend. Birge-Lee et al. [2] augment the taxonomy in [11] and present an

extensive discussion about where communities should not be accepted (e.g., ASes should not accept
communities from peers or providers) or propagated (e.g., community propagation should be limited

to two hops). These measures, however, can significantly limit legitimate uses of communities.

Unfortunately, network operators have not embraced the proposed taxonomies, challenging the

development of automated tools for cataloging existing communities.

Inference of community semantics. Recent efforts use natural language processing (NLP) to
automatically identify the semantics of BGP communities from Internet Routing Registries and

support webpages of network providers [18, 21]. These data sources are generally incomplete and

outdated, significantly limiting the number of communities that approaches based on NLP can

achieve. On the other hand, our approach automatically generates an up-to-date database contains

BGP communities currently in use by the network operators, increasing coverage and precision.

Legitimate uses of BGP communities. Determining the relationship between two ASes is a

hard problem, but it has many applications [41]. In particular, network operators can detect if route

announcements do not violate practical norms, such as advertising routes from a peer to a provider,

that may lead to route leaks and disrupt the traffic of large portions of the Internet. Giotsas et
al. [18] shows that a reliable dictionary of BGP communities can significantly improve the detection

of infrastructure outages, Feldman et al. [12] use communities to locate routing instabilities, and

Giotsas et al. [19] look for changes in communities to identify intradomain path changes.

Malicious uses of BGP communities. Some works have shown that BGP communities can

be a vector for malicious attacks [2, 56]. Interception attacks based on prefix hijacks generally

disrupt significant portions of the Internet [49], which induces quick detection and remediation

by network operators. SICO [2] builds community-based interception attacks that target small

portions of the Internet and are harder to detect. Streibelt et al. [56] present several scenarios where
a malicious actor can abuse BGP communities to launch several types of attack, as we mentioned

above. These attacks generally rely on action communities, such as the blackhole and no-export
communities, and improperly configured routers that forward non-transitive communities. While

location communities, the focus of our work, can improve route visibility, their use as an attack

vector is limited as they do not directly trigger any action on a remote network.

Inference of AS relationships. Autonomous Systems connect to each other and exchange

routes based on business relationships. AS relationships can be broadly classified into four categories:

customer-to-provider (c2p), provider-to-customer (p2c), settlement-free peering (p2p), and sibling-

to-sibling (s2s). Unfortunately, these business relationships are rarely disclosed, which reduces the

amount of metadata available to annotate the Internet’s AS graph, and consequently complicates

the deployment of many applications such as congestion detection between ASes with specific

peering agreements [9] (e.g., congestion on an ISP link to a client), malicious AS identification,

and deployment of BGP security mechanisms [17, 36, 51]. For the past 20 years, researchers have

proposed different techniques to infer AS relationships [13, 20, 24, 30]. Most techniques assume
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that BGP paths follow the valley-free property, which states that a path is a sequence of zero or

more c2p links, followed by zero or one p2p link, and zero or more p2c links [13]. Jin et al. and
Giotsas et al. [20, 30] argue that AS relationships are more complex and propose algorithms to infer

non-conventional peering practices, such as hybrid relationships, in which ASes have different

relationships depending on the peering location, and non-valley-free routing resulting from sibling

relationships. A few efforts [44, 59, 62] propose or discuss the use of BGP communities to infer AS

relationships and show that they enable great accuracy. Our algorithm uses CAIDA’s AS-to-Org

database [3] to detect sibling ASes, but does not rely on AS relationship inferences. A more complete

database of sibling ASes could improve the precision of inferences.

8 ETHICAL CONCERNS
To build our community database, we use publicly available datasets voluntarily exported to BGP

collectors by autonomous systems on the Internet. Our techniques do not send active probes.

Location communities are informational communities that do not trigger any action on peering

or remote ASes. The known reported attacks using BGP communities rely exclusively on action

communities [2, 56]. Furthermore, our database lists only the semantics of the communities and not

the specific geographic locations they represent, so an attacker would have to glean complementary

information from diverse data sources to plan a targeted attack.

Our community database will be valuable for network operators and researchers to reason about

traffic dynamics on the Internet, improve network performance, and check policy compliance. We

believe that the positives of a public database of location communities far outweigh the possibility

of misuse for malicious activities.

9 CONCLUSION
In recent years, the use of BGP communities has increased significantly. As routing policies

have become more complex and performance requirements have become more stringent on the

Internet, network operators have to deploy ever more elaborate traffic engineering solutions.

Traffic engineering solutions can utilize information and action BGP communities to achieve

operational goals, and our results indeed indicate an uptick in the adoption of BGP communities.

Unfortunately, there is no standard for specifying semantics nor a centralized repository that

catalogs BGP communities, which complicates their use by network operators and researchers.

Our work is the first we are aware of to use routing announcements publicly available from

BGP collectors to infer the semantics of BGP communities. We leverage the existing routing BGP

collectors as a positioning system to correlate route announcements with the locations that a route

traverses. Our algorithm automatically infers location communities and achieves high precision

(93%) and recall (81%) for communities from a set of Tier-1 and Tier-2 ASes. Compared with the

manually built database from CAIDA [4], our inference algorithm generates a database with similar

precision and much higher recall. We make our database with 15,505 inferred location communities

as well as our code publicly available [32].
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