Active Learning Approaches for Deforested Area Classification

Fernanda B. J. R. Dallaqua, Fabio A. Faria and Alvaro L. Fazenda

Instituto de Ciência e Tecnologia Universidade Federal de São Paulo, São José dos Campos

30/10/2018

Introduction

Photo Jorge Araújo/VEJA

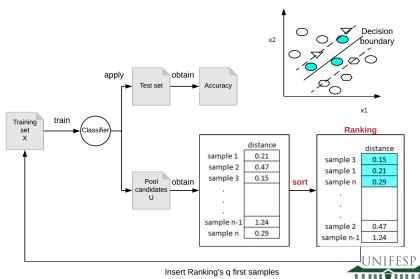
Photo Eduardo Anizelli/Folhapress

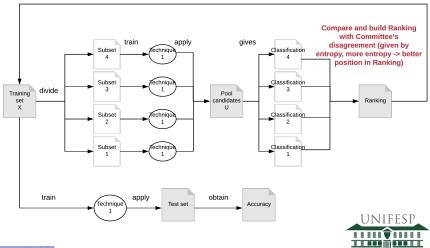
Photo ©Greenpeace/Marizilda Cruppe

Background and Related Works Brazilian Amazon Deforestation Monitoring

Background and Related Works Active Learning

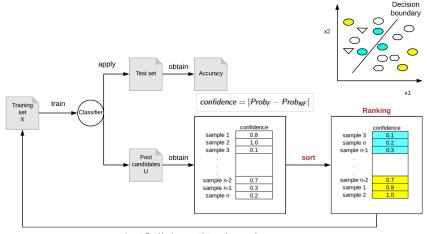
Algorithm 1 GENERAL PROCEDURE FOR ACTIVE LEARN-ING **Inputs :** Initial training set X Pool of training samples candidates UNumber of samples q to add at each iteration 1 repeat Train a model with current training set X. 2 for each candidate in U do 3 Evaluate a user-defined heuristic 4 end 5 Rank the candidates in U according to the score of the 6 heuristic. Select the q most interesting samples. 7 The user assigns a label to the selected samples. 8 Add these samples to the training set X. 9 Remove the samples from the pool of candidates U. 10


11 until stop criteria is reached;



Baseline Approaches Margin Sampling (MS)

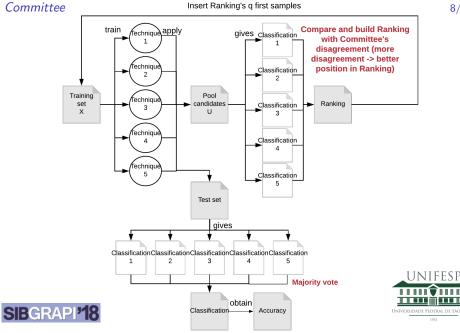
Baseline Approaches Normalized Entropy Query-by-Bagging (nEQB)



Insert Ranking's q first samples

Proposed Active Learning Approaches

Confidence Heuristics: Low confidence, High confidence and Hybrid confidence 7/19



Insert Ranking's q most interesting samples

Proposed Active Learning Approaches

Differences among Baseline and Proposed Approaches

- Proposed approaches use simpler classifiers: Baseline uses Support Vector Machines (SVMs)
- Free availability: Baseline uses MATLAB
- Baseline tunes the classifier's parameters; ours don't
- Processing time
- ► Classifiers used in *Committee* are used to classify the test set → majority vote to decide final classification
 - \blacktriangleright Different from nEQB where SVM applied in test set is different from SVMs used in the Committee \rightarrow can be costly
 - Don't need to divide the training set in subsets

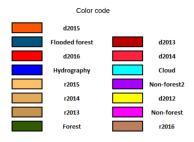
Experimental Methodology Datasets

Images from Landsat-8 and PRODES (Rondônia 2016)

Cross-validation experiment

(a) Original Image. (b) PRODES Image. (c) Binary Image.

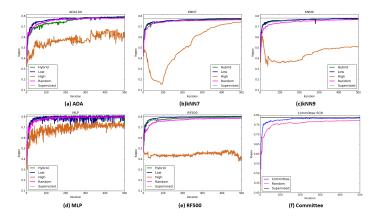
Cross-dataset experiment


(a) Original Image.

(b) PRODES Image.

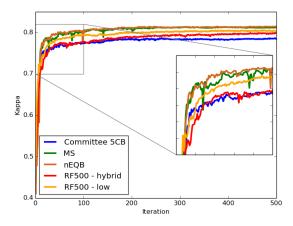
(c) Binary Image.

SIBGRAPI'18


Experimental Methodology

- Classifiers from Scikit-Learn: AdaBoost (ADA), Gradient Boosting Classifier (GBC), k-Nearest Neighbors (kNN), Multi-Layer Perceptron (MLP), Gaussian Naïve Bayes (GNB), Linear Discriminant Analysis (LDA) and Random Forest (RF);
- Baseline approaches (Margin Sampling and Normalized Entropy Query-by-Bagging) implemented by Tuia et al., 2011;
- 5-fold cross-validation with Confidence Heuristics, Committee and baseline approaches;
- Cross-dataset with best approaches from cross-validation experiment

Results (Cross-validation Scenario) Effectiveness Analysis among Active Learning Approaches



SIBGRAPI'18

13

Results (Cross-validation Scenario)

Comparison among the Best Approaches

Results (Cross-Dataset Scenario)

TABLE I

EFFECTIVENESS RESULTS AMONG THE BEST AL APPROACHES FOR A CROSS-DATASET SCENARIO. AVERAGE KAPPA INDEX MEANS THE ARITHMETIC MEAN OF THE KAPPA INDEX FOR THE HIVE TRAINING SETS.

Technique	Iteration Cut-Points (Average Kappa Index \pm CI 95%)						Supervised
	10	20	30	40	50	100	Supervised
Committee 5CB	0,39 ±0,20	0,60±0,24	$0,46{\pm}0,22$	0,33±0,03	$0,32{\pm}0,03$	0,37±0,16	0,68±0,10
MS [3], [21], [27], [28]	0,49±0,38	0,57±0,30	$0,16\pm0,17$	$0,26\pm0,28$	0,03±0,12	0,12±0,34	0,03±0,21
nEQB [3], [26]	$0,35\pm0,30$	$0,11\pm0,36$	$0,17\pm0,37$	$-0,06\pm0,26$	$-0,22\pm0,18$	$-0,18\pm0,21$	
RF - hybrid	$0,22\pm0,14$	0,33±0,02	$0,27\pm0,05$	$0,29\pm0,07$	$0,29\pm0,07$	0,31±0,03	0,30±0,12
RF - low	$0,48{\pm}0,26$	$0,33{\pm}0,05$	$0,36{\pm}0,02$	$0,36{\pm}0,02$	$0,34{\pm}0,02$	$0,35{\pm}0,02$	0,50±0,12

TABLE II

EFFECTIVENESS RESULTS AMONG THE BEST AL APPROACHES FOR A CROSS-DATASET SCENARIO. AVERAGE OA MEANS THE ARITHMETIC MEAN OF THE OA FOR THE FIVE TRAINING SETS.

Technique	Iteration Cut-Points (Average OA \pm CI 95%)						Supervised
	10	20	30	40	50	100	
Committee 5CB	$0,70{\pm}0,09$	$0{,}80 \pm 0{,}12$	$0,74{\pm}0,10$	$0,\!68{\pm}0,\!02$	$0,\!68{\pm}0,\!01$	$0,70 \pm 0,07$	0,85±0,05
MS [3], [21], [27], [28]	$0,73\pm0,22$	0,79±0,13	$0,54\pm0,10$	$0,60\pm0,16$	$0,53 \pm 0,05$	$0,58\pm0,16$	0.50 ± 0.10
nEQB [3], [26]	$0,68\pm0,15$	$0,55\pm0,20$	$0,57\pm0,20$	$0,43\pm0,15$	$0,35\pm0,08$	$0,38\pm0,12$	0,50±0,10
RF - hybrid	$0,62\pm0,07$	$0,68 \pm 0,01$	$0,65\pm0,03$	$0,66\pm0,04$	$0,66\pm0,03$	$0,67\pm0,02$	0.661.0.05
RF - low	$0,75{\pm}0,12$	$0,68{\pm}0,02$	$0,70{\pm}0,01$	$0,\!70{\pm}0,\!01$	$0,69{\pm}0,01$	$0,70{\pm}0,01$	0,66±0,05

Results (Cross-Dataset Scenario)

TABLE III

CROSS-DATASET EXPERIMENT'S AVERAGES OF KAPPA INDEX AND OA.

Technique	Average Kappa Index	Average OA
Committee 5CB	0,41±0,10	0,72±0,05
MS	$0,27\pm0,21$	$0,63\pm0,11$
nEQB	0,03±0,22	0,49±0,13
RF - hybrid	$0,28\pm0,04$	$0,66 \pm 0,02$
RF - low	$0,37{\pm}0,06$	$0,70{\pm}0,02$

Results (Cross-Dataset Scenario)

Groundtruth MS Committee 5CB nEQB $kappa = 0.60 \pm 0.24$ $kappa = 0.57 \pm 0.30$ $kappa = 0.11 \pm 0.36$ $OA = 0.80 \pm 0.12$ $OA = 0.79 \pm 0.13$ $OA = 0.55 \pm 0.20$ **RF-hybrid RF-Low** Supervised

kappa = 0.33 ± 0.02 OA = 0.68 ± 0.01 kappa = 0.33 ± 0.05 OA = 0.68 ± 0.02 kappa = 0.68 ± 0.10 OA = 0.85 ± 0.05

16/19

SIBGRAPI'18

Conclusion

- Active Learning approaches were validated for the dataset
- High confidence delivered the worst results (as expected)
- Low and Hybrid confidence had similar results than supervised learning using much fewer samples
- Committee and RF with 500 estimators
 - similar results than the baseline for the cross-validation experiment (without tuning classifier's parameters)
 - better results than the baseline for the cross-dataset experiment
 - better processing time and free availability in comparison with the baseline

Future Work

- More images to improve the cross-dataset experiment
- Study the dataset's noise
- Use of Citizen Science instead of specialists to classify the pixels
 - Prototype being made at Zooniverse, a Citizen Science web portal (www.zooniverse.org/projects/dallaqua/foresteyes)
- Study of semantic segmentation with deep learning to be used in an Active Learning procedure with volunteer's classification

Acknowledgment

19/19

1933