
Efficient Prediction of Region-wide Traffic States in Public Bus
Networks using LSTMs*

Marcos Amaris1 Mayuri A. Morais2 Raphael Y. de Camargo2

Abstract— Public bus systems are impacted by many factors,
such as varying traffic conditions, passenger demand, and
weather changes. One can combine all those factors that affect
bus travel times into a single factor called link state, where a
link represents part of a bus route. Several works exist that
predict single link states using different statistical and machine
learning approaches. More recently, deep learning techniques,
such as LSTMs, started to be used to predict the state of entire
bus routes. The main problem with this approach is that it uses
extensive computational resources.

In this work, we evaluate the use of LSTMs to predict the
state of entire city regions instead of single routes. It has
two advantages: (i) the state of each link is evaluated only
once for all the bus routes that cross it, and (ii) information
from buses from all routes can be used to determine future
link states. Using a shallow bidirectional LSTM architecture
produced accurate state predictions with an average MAPE of
12.5. Moreover, we show that it can be trained daily and used
to predict link states in real-time for a large metropolis, like
São Paulo.

I. INTRODUCTION

Nowadays, half of the world population lives in about 37
megacities with more of 10 million inhabitants [1], such
as São Paulo, with its 12.04 million inhabitants. Large
cities have complex interactions among their entities (people,
vehicles, objects) and understanding these interactions is still
an open challenge [2].

Managing public bus transportation system in these system
is complex, specially for cities in developing countries, which
have deficient transit infrastructure and frequent traffic jams.
This results in highly unpredictable trip times and frequent
bunching events. One important way to improve the service
level is to use smart city enabling technologies.

In several cities buses operate with different sensors,
such GPS (Global Position System) sensors [3]. Using real-
time information on bus positions, it is possible to estimate
the mean velocity of buses on different roads, allowing
better bus travel time estimations. The subject of travel time
predictions has been extensively studied, employing from
simple techniques, such as [4] to more advance ones, such
as deep learning [5]. More sophisticated techniques, such as

*This research is part of the INCT of the Future Internet for Smart Cities,
funded by CNPq (proc. 465446/2014-0), Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Funding Code 001 and
FAPESP (procs. 14/50937-1 and 15/24485-9)

1Marcos Amaris is with Faculty of Computing Engineering,
Federal University of Pará, Campus Tucuruı́, Tucuruı́-PA, Brazil.
amaris@ufpa.br

2Mayuri and Raphael is with Department of Computer Science,
Center for Mathematics Computing and Cognition, Federal Univer-
sity of ABC, Santo André-SP, Brazil mayuri.ann@gmail.com,
raphael.camargo@ufabc.edu.br

Long Short-Term Memory (LSTM) networks, can improve
predictions [6], since they consider the state of the entire
route and generate predictions of the evolution of this state.

But in megacities, scalability in the prediction mechanisms
is an essential factor. São Paulo has a fleet of 15000 buses,
operating over 2000 routes and 18000 bus stops, generating
around 24 million data points per day. Training one model
for each route becomes computationally expensive, making
the use of LSTM and similar models impractical. Similarly,
running predictions is also problematic, since we have to
update the state of all bus lines every few seconds.

In this work we propose and evaluate the use of LSTM
models to predict the state of entire areas in the city. We
model the public bus network as a graph, with routes divided
in links and nodes, and multiple routes sharing each link.
Each area typically contains a few dozen links and bus routes,
which brings two important advantages: (i) the model can use
information from buses from multiple routes, improving the
estimation the state of each link inside the region, and (ii)
each link is part of only a single LSTM model, reducing the
number of models required for the city by at least one order
of magnitude. We evaluated five LSTM-based architectures
to predict link states of individual bus lines and of city
regions. We compared they performance in terms of accuracy
and computational requirements to define the best strategy to
use in a megacity such as São Paulo. This work has three
important contributions:

• We propose and evaluate the prediction of future link
states by geographical areas of the city using LSTM-
based architectures;

• We compare five LSTM-based architectures with sim-
pler predictions models for both route-based and area-
based predictions;

• We show the viability of performing accurate future link
state predictions in real-time for large cities.

The remaining of the paper is structured as follows. In
Section II we present a theoretical background in Neural Net-
works and links state predictions. We discuss related works
in Section III, followed by the methodology in Section IV,
and the experimental results in Section V. Finally, we present
the conclusions and future work (Section VI).

II. BACKGROUND AND CONCEPTS

The prediction of links states in bus urban networks is
fundamental because bus system operators and workers need
to take fast decisions without enough information. Simu-
lations permit to create hypothetical situations to evaluate
the impact of the interactions of different variables in a



controlled environment [7]. In this section, we provide some
background about link states predictions in urban transport
(see Section II-A) and background about Recurrent Neural
Network (RNN), Long Short-Term Memory (LSTM) and
derivatives (see Section II-B).

A. Time series, Geo-location and Link states Predictions

Currently, the number of buses of public transport in the
city of São Paulo is around 14.500; Buses are distributed
in 2271 bus lines approximately. All buses operate with
different sensors on them, collecting data from passengers
and other information. One of these sensors is the GPS
(Global Position System), used for the geo-location of each
bus in the network [3]. Nowadays, measurements coming
from GPSs offer the opportunity to investigate interactions
and behavior of the buses during their travels. This can be
done with high temporal and spatial resolution and studied
independently as time series.

Time series are characterized as a set of observations
collected over time in an ordered and sequential manner.
The mathematical representation of an uni-dimensional time
series is a vector Z, of order n× 1, where n is the number
of observations. Multiple time series can be analyzed jointly
in order to use the statistical information between them
and thereby to find patterns which can be used for spatial
forecasting [8]. Regression techniques based on machine
learning are used on data series for temporal or spatial
analysis, to try to predict the future values of a series or
to predict the future values or otherwise of another series,
respectively.

Geo-location information can be studied using graph algo-
rithms. A graph G is a set of vertices V and a set of edges
E, comprising an ordered pair G = (V,E). Analogously
in a bus urban network, each vertex is represented as a
bus stop or a terminal and each edge is represented as the
distance between two continuous bus stops. A network can
be represented as a graph G = (V,E). A graph can be
described by the adjacency matrix. This matrix describes
how the vertexes of the graph are linked and the distance
or weight between all the vertexes.

All models are abstractions of a reality and simulations can
be used to evaluate the correctness of such models. To build a
model aiming to evaluated future link states of the bus urban
network of São Paulo city is a real problem of Big Data and
data analytics. GPS of each one of the buses is used for the
geo-location and this data is used as historical information
of the buses to analyze the link state of the network. Thus,
travel times of the buses crossing the links are characterized
by discretizing the temporal and spatial data from each one
of the GPS’s of the buses.

Figure 1 presents a idea where different stops are shared
by different routes. When links travel time are organized and
analyzed by line buses in these routes, link travel time of the
same links are computed several times. Figure 2 corroborate
this idea, showing 4 different time series of the same links
when they are computed with data from buses of the same
bus line or trip.

Fig. 1. Graphical representation of several intersections of a bus urban
network. Bus stops in green are shared by route 1 and 2.

Fig. 2. 4 different time series of link travel time of a link shared by 4
trips.

Different set of time series about the states of each link
of the bus urban network can be computed with the geo-
localization of each bus. These series can be organized
and analyzed in different groups. Thus, one purpose of this
research is to explore the relationship of link states between
different links when they are grouped in two ways: by geo-
graphical areas and by bus route (trip).

B. RNN, LSTM and derivatives

Artificial Neural Network (ANN) architectures are classi-
fied in two mains categories: feed-forward and recurrent. In
the feed-forward algorithm the output of one layer is used
as input in the next layer and so on, and the connections
between the nodes do not form a cycle. In recurrent neural
networks (RNNs), the outputs of each layer are feedback
as input to the same layer. These networks can store internal
states, which are useful in problems involving time series [9].

A simple RNN compute the output of yt as f(Wyht),
where ht is σ(Whht−1 +Wxxt), and Wy , Wh and Wx are
matrices; for hidden layers output ht, past hidden activity
ht−1 and the input xt. The logistic function σ(·) perform a
nonlinear relation in the recurrence. Long Short-Term Mem-
ory (LSTM) and derivatives belongs to RNN approaches.
It maintains an internal state with accumulated information
from previous data.

LSTM introduce linear relations between this recurrence
adding memory cells ct and ct−1. LSTMs also have gates
for input and output data in the cells. The input gate, forget
gate, output gate, and memory cell in an single LSTM cell
are calculated using the following equations



it = σ(Wxixt +Whiht−1 +Wcict−1) (1)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1) (2)
ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1) (3)
ot = σ(Wxoxt +Whoht−1 +Wcoct) (4)
ht = ot � tanh(ct) (5)

where it, ft, ot and ht are the input gate, forget gate,
output gate and the layer output. � is the element-wise
vector/matrix multiplication operator.

A single LSTM architecture is comprised of a single
hidden LSTM layer followed by a standard feed-forward
layer. Multiple LSTMs can be stacked and temporally con-
catenated to create more complex architectures. Recently,
variants of LSTM architectures were created, such as the
use of a bidirectional training process [10] or the inclusion of
convolutive processes in the LSTM gates [11]. Bidirectional
LSTM (Bi-LSTM) contains two separate LSTM hidden
layers that receive the input data in the forward and backward
directions. ConvLSTMs try to capture spatio-temporal corre-
lations using convolutional structures in the training process.
These convolutional processes are applied in equations (1),
(2) e (4), affecting the input gate it, forget gate ft, and output
gate ot respectively. LSTMs and derivatives are describe in
detail elsewhere [9], [11]. In Section IV-B, we describe the
architectures used in this work.

III. RELATED WORKS

In the literature we find two distinct types of predic-
tions for bus travel time: predictions of total travel time
and predictions of time / arrival time at a specific point,
where efforts are more concentrated in this second type of
prediction. In this section we discuss some recent works
using these techniques [12], [13], [14], [15], [16], [17],
[6]. Most of the work on predicting link states are based
on ARIMA (AutoRegressive Integrated Moving Average),
Markov Processes and neural networks. In fact, LSTM and
recurrent neural networks are based on similar techniques
than hidden Markov Models. In this sense, while hidden
Markov models ignore past inputs, RNN works with this
principle.

Ma et. al [12] performed a stochastic analysis using
Markov chains. They focused their method in two major
phases: Markov chain identification and probability distri-
bution estimation. The outputs of the first phase are prob-
abilities of link traffic states, link TTDs (conditional on
states), and time-space dependent transition probabilities.
They used a Gaussian Mixture model (GMM) based clus-
tering algorithm to define the states of the model and a logit
model formulation to estimate the transition probabilities.
The authors also considered correlations in time and space,
and created a heuristic based on the statistical information of
the data (i.e. probability distributions, transition probabilities
and well-defined states).

Kumar et. al [13] used kNN algorithm to classify data
input. They used a Euclidean distance to classify input data

in relation to historical data. They performed a sensitivity
analysis based on the Mean Absolute Percentage Error
(MAPE) to determine the optimum number inputs to be used
for the kNN algorithm. Once, the inputs are identified, the
estimation was carried out by using a hybrid time discretized
model. Authors used Auto Regressive Integrated Moving
Average (ARIMA) models to combine samples from time
series to make estimation, following the historical data auto-
correlation profiles. Their model can not deal with long-
term travel time estimations and with a variety of weather
parameters which were difficult to calculate in real-time. To
deal with this, they used an exponential smoothing technique
with recursive estimation scheme based on the Kalman
Filtering (KF) technique. To test their model, they used data
from the Metropolitan Transport Corporation (MTC) bus of
the city of Chennai, India.

Kun Tang et. al [14] used large-scale and sparse GPS
trajectories generated by taxicabs. Authors created a tensor-
based Bayesian probabilistic model for citywide and per-
sonalized travel time estimation for taxicabs. This model
comprised three components: map matching, travel time
tensor construction and travel time tensor factorization. After
map-matching, each GPS trajectory was converted into a
road trajectory, which was represented by the travel time of a
driver traversing a road segment in a time slot. They included
a Markov Chain Monte Carlo (MCMC) method in the last
component travel time tensor factorization. MCMC was
applied to sample directly posterior distributions, because,
they considered the distribution of a missing travel time as a
multi-dimentional integral. MCMC sampled from a distribu-
tion based on constructing a Markov chain that has desired
distribution as its equilibrium distribution. This model was
applied in different case studies on the citywide road network
of Beijing, China. They performed also correlations in time-
space of the information.

According to Kumar et. al [13], time series analysis
is identified to be suitable for bus travel time estimation
under different traffic conditions, because of their ability in
capturing the variations in travel time. Ma et. al [12] used
Markov chain to predict the changes of the link states while
buses travel for those links. In our proposal, we will use
Neural Networks to model the evolution of the links as a
model of the city, without concerning about the buses.

Some recent work has used LSTM for traffic state predic-
tions. Cui et. al. used stacked bidirectional and unidirectional
LSTM for Forecasting Network-wide Traffic State with
Missing Values [17]. They also proposed a data imputation
process in the structure of the LSTM. They designed an
imputation unit to infer missing values. Although, Cui et. al.
presented optimum results they did not present experiments
about a high scale prediction model.

Petersen et. al. [6] compared the accuracy of LSTM
techniques and used them to predict multiple step in a
single bus line of the city of Copenhagen in Denmark.
They presented good results in the accuracy of the models,
however these models neither were not tested in a huge scale
experiment and the behavior or statistics of the link states



were not as complexes as in the city of São Paulo in Brazil.
To the best of our knowledge, this is the first work that

tackles the prediction of link travel time of a public service
bus in a big region-wide size. This approach has the potential
to improve the trade-off between accuracy and efficiency
when LSTMs models are created by geographical regions
and not by bus lines.

IV. METHODOLOGY

Here, we describe the data acquisition and its preparation
process, followed by the methodology, where LSTM archi-
tectures and the experimental platform are presented.

A. Acquisition and Preparation of the Dataset

We use historical data from the public bus fleet of São
Paulo, from June 21th to September 28th of 2017. We
processed the GTFS1 data from São Paulo using a frame-
work developed at our research group [18], which provides
scalable processing of historical and real-time bus GPS data.
GTFS data is transformed into a graph, where each node
represents a point equidistant from two consecutive bus stops
in a route, and each link the bus trajectory between two
nodes. Each link may shared among multiple bus routes that
have the same trajectory. The link state prediction is part of
the framework and is useful for improving travel time (TT)
predictions.

We selected five geographical areas from the city to
perform the area-based link state prediction. Table I shows
the number of links inside the areas and bus routes that
crosses the areas. The areas are located in the different parts
of the city (Figure 3). We also selected three bus lines from
each area to perform the route-based predictions.

TABLE I
GEOGRAPHICAL AREAS SELECTED FOR THE EXPERIMENTS

No. Name Links Lines Route Codes

1 Lapa 33 14 809N-10-0, 7181-10-1, 875H-10-0
2 Paulista 25 90 930P-10-0, 715M-10-1, 719R-10-1
3 Butantã 20 41 778J-10-1, 106A-10-1, 648P-10-0
4 Itaim Bibi 61 82 709G-10-1, 709M-10-0, 5175-10-1
5 Ibirapuera 28 43 5614-10-1, 5611-10-1, 177Y-10-0

Fig. 3. Map with the 5 geographical areas and the selected bus lines that
cross each area.

We used historical data to compute the link travel time (ltt)
for each bus and computed the link state as the mean ltt of

1General Transit Feed Specification.

all buses that crossed the link during a sliding window of 30
minutes. The obtained data is noisy, with some incorrectly
reported GPS data, and we excluded buses with ltt smaller
than 10 seconds and larger than 4.5 times the interquartile
range (IQR) above the median. We filled missing values,
resulting from no buses passing in the link for 30 minutes,
with a forward-fill to propagate the last observed value,
followed by backfilling for missing values in the series
beginning. We removed periods between midnight and 6
am. Finally, we performed the following data transformation
steps: (i) log-transformation, (ii) z-score normalization, and
(iii) min-max normalization between 0 and 1.

B. Prediction Algorithms

We applied the prediction algorithms over the link travel
time series, each containing 3850 samples. We grouped time
series by geographical areas and by bus lines and used them
predict up to three forward time step, each with 30 minutes.
For all the experiments, we used the last 7 seven days (252
samples) as test set, and the remainder as train set.

Our baseline comparison was to repeat state of a given
link l state for the next three time steps. We also applied
Linear Regression and Random Forests, using as input the
last s states from link l and from its o nearest neighbors
from each side, resulting in (2o+ 1) ∗ s input variables. We
predicted the three future states (T1, T2, and T3) of link l,
and repeated the process for each monitored link. We applied
these models only to data from individual bus lines. After
evaluating all combinations of s and o values, we decided
to use the last s = 4 states from o = 1 neighbors from each
side, which provided the best predictions.

For the LSTM architectures, we provide as input the links
states from all links from the line/region for n steps in
time steps. The network then predicts the next three states
(T1, T2, and T3) for all links from the line/region. We used
the same architecture from [6] for LSTM and Conv2DDeep.
The Bi-LSTM and Conv2D are simplified architectures, with
a single layer, which should be faster to train. If they
provide comparable results to the their deeper counterparts,
they should be preferable. We now describe the 4 LSTM
architectures using a block syntax:

• LSTM: LSTM and Conv2DDeep have an
encoder/decoder network topology. The decoder and
decoder are created both by two hidden LSTM layers:
LSTM → LSTM → RepeatVector → LSTM → LSTM

→ DENSE
• Bi-LSTM: This architecture allows the RNN to have

both backward and forward information about the series at
every time step. We used a single layer of Bidirectional
LSTM: Bi-LSTM → DENSE

• Conv2DDeep: Similar than LSTM, but it has Conv-
LSTM2D layers. Follow a block diagram of this architecture:
ConvLSTM2D → ConvLSTM2D → RepeatVector

→ ConvLSTM2D → ConvLSTM2D → DENSE
• Conv2D: In this architecture, we employed a single

layers of ConvLSTM2D: ConvLSTM2D → DENSE



All LSTM techniques used 64 units in each layer,
except Conv2D which uses 32 to reduce training time.
LSTM and Conv2DDeep used BatchNormalization
and Dropout layers between LSTM layers. We used the
Adam optimizer, mean square error (mse), and batch size of
128 samples. We trained the LSTM architectures for 50, 250
and 500 epochs, with an early stop mechanism, applied when
the mse did not change for 5, 10 and 10 steps, respectively.
We used as inputs the last 16, 24, and 36 time steps of the
link states. Each LSTM architecture used 80% of data as
training set and 20% for validation of the models.

For the experiments, we used an machine with Intel Core
i7 with 8 cores at 3.60GHz, 64 GB of RAM, and a GPU
Nvidia Geforce RTX 2080, with 4352 CUDA cores. We used
Ubuntu 20.04 LTS 64-bit distribution with Linux kernel 5.8
and NVIDIA drivers 450.102.04. Experiments used Python 3
with Tensorflow 2.3.1 and Keras 2.4.3 packages, among
others. Collected data, experimental results, and source codes
are publicly available at a Github repository.2

V. EXPERIMENTS AND EVALUATIONS

We evaluated the Mean Absolute Percentage Error
(MAPE) to measure the accuracy of the different models.
MAPE is equal to 100

N

∑N
n=1

∣∣∣Mn−Pn

Mn

∣∣∣, where Mn are the
measured values and Pt are the predicted values, and N is
the number of all the predicted samples.

Table II shows the MAPE of the experiments using the
actual state T0, to predict T1, T2 and T3 of all the 15 bus
lines. Results with a single link neighbor represented the
best accuracy with Linear regression and Random Forests
techniques. We used the default algorithm of Linear Re-
gression, without modification of its initial values. For the
Random Forests algorithm, the variables n estimators,
max depth, random state and max features were
initialized as 100, 10, 5 and ‘auto’, respectively. Table II,
show the MAPE for LR and RF with a single link neigh-
bor, models with more of two neighbors finished in worst
predictions.

TABLE II
MAPES OF SIMPLE TECHNIQUES OF TIME TRAVEL PREDICTIONS

Technique T1 T2 T3 Average

Actual ltt State T0 19.85 23.47 26.11 23.14
Linear Regression 20.74 20.79 20.67 20.73

Random Forest 20.88 20.92 20.81 20.87
LSTM 12.70 12.48 12.53 12.92

Bi-LSTM 12.31 12.36 12.24 12.5
Conv2D 16.53 16.70 16.54 16.82

Conv2Deep 11.88 11.79 11.99 12.13

For LSTM techniques, the accuracy of the models im-
proved when the number of input steps increased. The
LSTM technique with the best MAPE were those with 32
input steps. Results show that Bi-LSTM presented the best
accuracy when models are organized by bus lines, resulting

2https://github.com/marcosamaris/links_states_
prediction_LSTM

in an average error of 12.5 to predict the 3 next steps in all
the links of different bus lines.

Figure 4 presents the average of T1, T2, T3, MAPE of
the links which are in the geographical models, and they
are also in the bus lines models. In this way, we compare
the results of the links which make part of both approaches.
In Figure 4 is possible to see that geographical area models
presented better accuracy than models using all data of single
bus lines. This experiment also tested the models when they
were trained with 50, 250 and 500 epochs. The number of
epochs does not demonstrated improvements of accuracy and
they represented in the increasing of time to perform the
training process. MAPE with 250 epochs and 500 was larger
than 50, this happened because over-fitting in the training
processes, this can be avoided using 5 epochs as patience.
Geographical models presented a higher correlation between
the links than models by bus lines. Geographical models had
more information about the states of the links, due to the
integration of many trips by link. Area with

Fig. 4. MAPE of link state predictions for the area and trip models, using
32 time steps as input.

São Paulo city has more than 2000 bus lines and the graph
representing the whole city has 28.242 links. Grouping in
sets of 40 links representing regions of the city results in
700 models. Table III presents estimated time necessary to
train these models on both approaches, geographical area
and bus lines or trips. To reach the total time when using
the line approach, we multiplied the average training time
for the 15 selected bus lines by the total number of bus lines
in São Paulo. Similarly, for the area approach, we multiplied
the mean training time for the five selected areas by 700,
representing the 700 models. Bi-LSTM with 50 training
epochs presents the best trade-off between accuracy and
training time, since it required the least amount of training
time while presenting a MAPE value only 1% above those
obtained with 250 training epochs. The LSTM also had
similar results in both metrics and could also be used. Both
require at most 8 hours for training in a single GPU, which
could be done at night. With 2 GPUs or next generations
ones, this value could be reduced to a few hours.



TABLE III
ESTIMATED TIME (IN HOURS) REQUIRED TO TRAIN ALL MODELS FOR THE ENTIRE CITY, USING THE AREA AND TRIP APPROACHES, FOR DIFFERENT

LSTM ARCHITECTURES, NUMBERS OF TRAINING EPOCHS AND PAST TIME STEPS.

No. Input Ave. LSTM Bi-LSTM Conv2D Conv2Deep
Epochs steps Epoch Area Trips Area Trips Area Trips Area Trips

16 48.7 5.62 16.07 2.42 6.92 3.33 9.51 25.75 73.58
50 24 48.1 6.92 19.76 6.37 18.19 6.32 18.05 45.03 128.66

32 48.5 7.36 21.03 8.14 23.25 7.64 21.82 57.23 163.52

16 228.4 24.73 70.66 9.63 27.51 11.07 31.63
250 24 218.8 31.10 88.86 26.18 74.81 17.79 50.84

32 204.0 32.89 93.98 35.95 102.70 18.04 51.54

16 347.1 48.80 139.42 12.18 34.80 15.07 43.05
500 24 323.9 61.15 174.71 32.57 93.05 18.02 51.49

32 309.4 65.04 185.84 37.99 108.55 17.08 48.80

VI. CONCLUSIONS

In this work, we evaluate the use of LSTMs to predict the
state of entire city regions instead of single routes. We com-
pared four LSTM architectures, in respect to accuracy and
computational time. The Bidirectional LSTM demonstrated
the best trade-off between accuracy and efficiency. It showed
an average MAPE of 12.5 and it would spend around of 8.14
hours to train 700 models to predict whole the links of São
Paulo city when links are grouped by geographical areas.
This shows that it is viable to deploy more complex and
accurate models in large cities like São Paulo.

The work has some limitations, since we just estimated the
total time to train the models. Performing real deployments
could bring unexpected difficulties. We also did not deploy
the model for real-time travel time predictions of single bus
trips and this is our next planned step. Finally, although
it is clear that having better link state estimates leads to
improved travel time predictions, we did not compare travel
time predictions accuracy with other methods.

REFERENCES

[1] W. Cox, “Demographia world urban areas,” 14th Annual Edition ed.
St. Louis: Demographia. Available: http://www. demographia. com/db-
worldua.pdf. Date of access May, 30th of 2018, p. 120, 2018.

[2] V. Albino, U. Berardi, and R. M. Dangelico, “Smart cities: Definitions,
dimensions, performance, and initiatives,” Journal of Urban Technol-
ogy, vol. 22, no. 1, pp. 3–21, 2015.

[3] E. Mazloumi, G. Currie, and G. Rose, “Using GPS data to gain insight
into public transport travel time variability,” Journal of Transportation
Engineering, vol. 136, no. July, pp. 623–632, 2009.

[4] F. Alrukaibi, R. Alsaleh, and T. Sayed, “Applying machine learning
and statistical approaches for travel time estimation in partial network
coverage,” Sustainability, vol. 11, no. 14, 2019.

[5] M. Abdollahi, T. Khaleghi, and K. Yang, “An integrated feature
learning approach using deep learning for travel time prediction,”
Expert Systems with Applications, vol. 139, p. 112864, 2020.

[6] N. C. Petersen, F. Rodrigues, and F. C. Pereira, “Multi-output bus
travel time prediction with convolutional lstm neural network,” Expert
Systems with Applications, vol. 120, pp. 426–435, 2019.

[7] P. Wepulanon, A. Sumalee, and W. H. Lam, “A real-time bus arrival
time information system using crowdsourced smartphone data: a novel
framework and simulation experiments,” Transportmetrica B, vol. 6,
no. 1, pp. 34–53, 2018.

[8] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[9] F. A. Gers and J. Schmidhuber, “Recurrent nets that time and count,” in
Proceedings of the IEEE-INNS-ENNS International Joint Conference
on Neural Networks. IJCNN 2000. Neural Computing: New Chal-
lenges and Perspectives for the New Millennium, vol. 3, 2000, pp.
189–194 vol.3.

[10] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997.

[11] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo,
“Convolutional LSTM network: A machine learning approach for
precipitation nowcasting,” CoRR, vol. abs/1506.04214, 2015.

[12] Z. Ma, H. N. Koutsopoulos, L. Ferreira, and M. Mesbah,
“Estimation of trip travel time distribution using a generalized
markov chain approach,” Transportation Research Part C: Emerging
Technologies, vol. 74, pp. 1 – 21, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0968090X16302248

[13] B. A. Kumar, L. Vanajakshi, and S. C. Subramanian, “A hybrid model
based method for bus travel time estimation,” Journal of Intelligent
Transportation Systems, vol. 2450, no. December, pp. 1–17, 2017.

[14] T. Kun, S. Chen, Z. Liu, and A. J. Khattak, “A tensor-based Bayesian
probabilistic model for citywide personalized travel time estimation,”
Transportation Research Part C, vol. 90, no. March, pp. 260–280,
2018.

[15] N. Ranjan, S. Bhandari, H. P. Zhao, H. Kim, and P. Khan, “City-wide
traffic congestion prediction based on cnn, lstm and transpose cnn,”
IEEE Access, vol. 8, pp. 81 606–81 620, 2020.

[16] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning
traffic as images: a deep convolutional neural network for large-scale
transportation network speed prediction,” Sensors, vol. 17, no. 4, p.
818, 2017.

[17] Z. Cui, R. Ke, Z. Pu, and Y. Wang, “Stacked bidirectional
and unidirectional lstm recurrent neural network for forecasting
network-wide traffic state with missing values,” Transportation
Research Part C: Emerging Technologies, vol. 118, p. 102674, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0968090X20305891

[18] M. A. Morais and R. Y. Camargo, “A framework for scalable data
analysis and model aggregation for public bus systems,” in Anais do
III Workshop de Computação Urbana. SBC, 2019, pp. 83–96.


