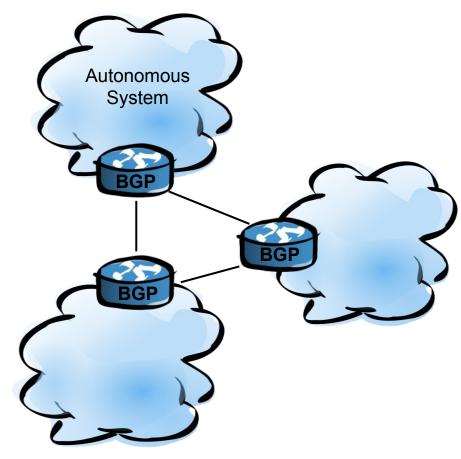
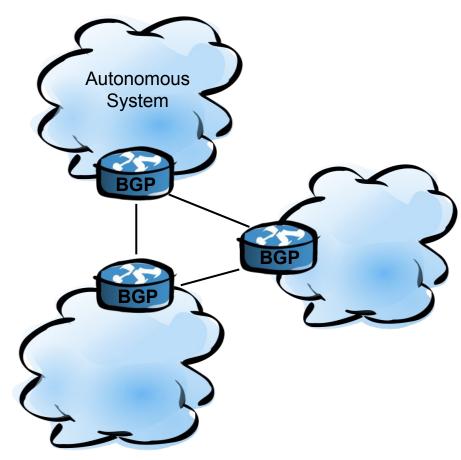

Automatic Inference of BGP Location Communities

Brivaldo A. Silva JrPaulo MolOsvaldo FonsecaÍtalo CunhaRonaldo A. FerreiraEthan Katz-Bassett

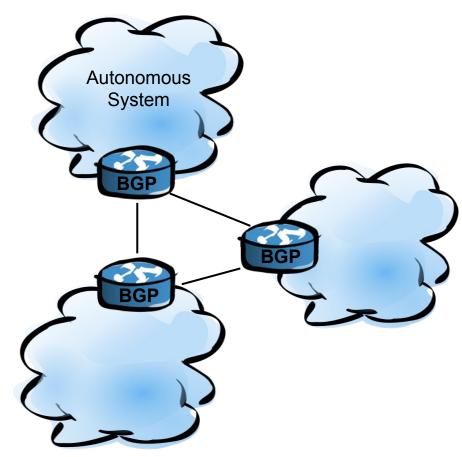
SIGMETRICS 2022 Mumbai, India

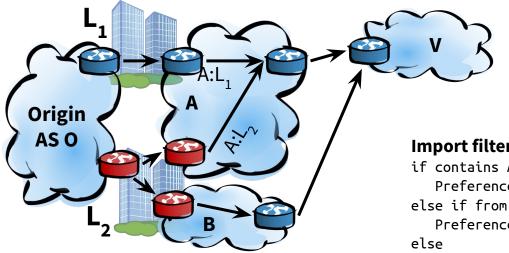


BGP: the routing protocol used to exchange Internet routes and reachability information between autonomous systems

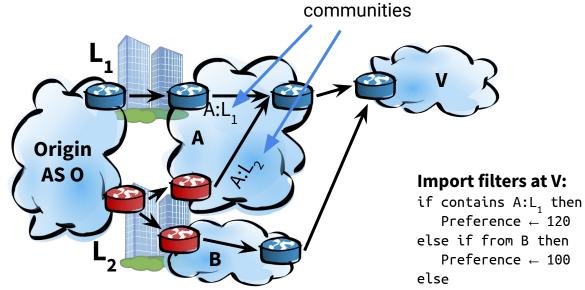


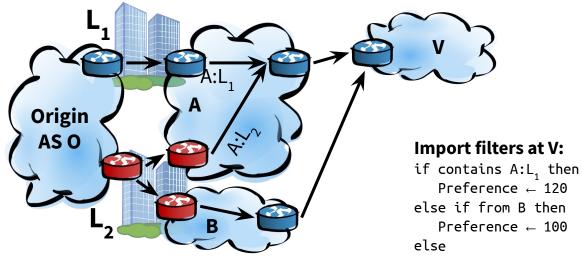
- BGP: the routing protocol used to exchange Internet routes and reachability information between autonomous systems
- BGP is an old protocol used to sustain the current need of stability, reliability, and complex policies.



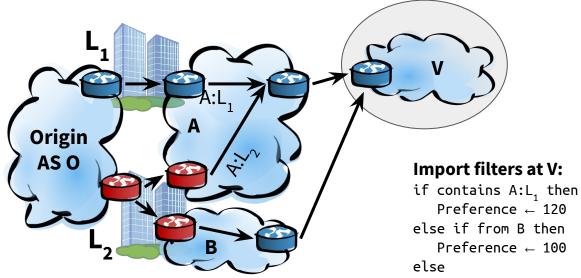

- BGP: the routing protocol used to exchange Internet routes and reachability information between autonomous systems
- BGP is an old protocol used to sustain the current need of stability, reliability, and complex policies.
- Operators explore all available options to improve the "user experience".

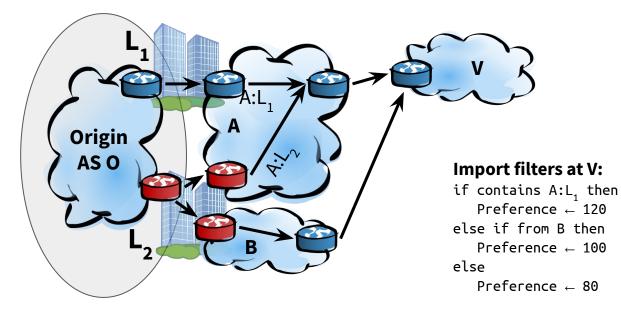
- BGP: the routing protocol used to exchange Internet routes and reachability information between autonomous systems
- BGP is an old protocol used to sustain the current need of stability, reliability, and complex policies.
- Operators explore all available options to improve the "user experience".
- Network operators have increasingly relied on the communities attribute to instrument BGP.

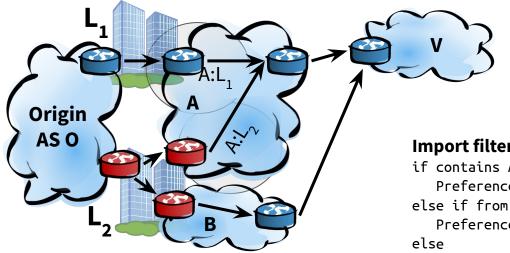



Import filters at V:

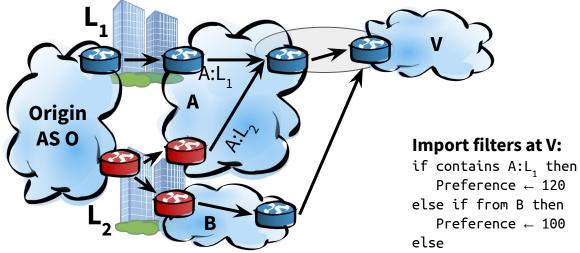
if contains $A:L_1$ then Preference $\leftarrow 120$ else if from B then Preference \leftarrow 100 Preference \leftarrow 80



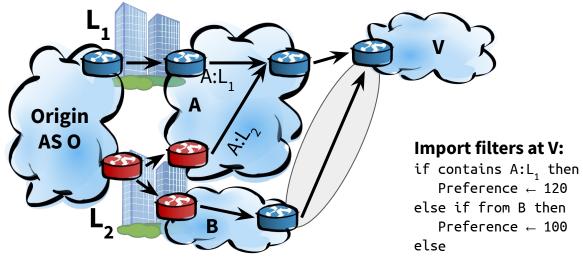

Preference \leftarrow 80

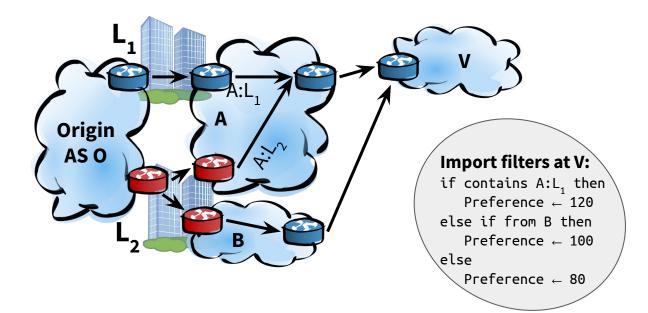


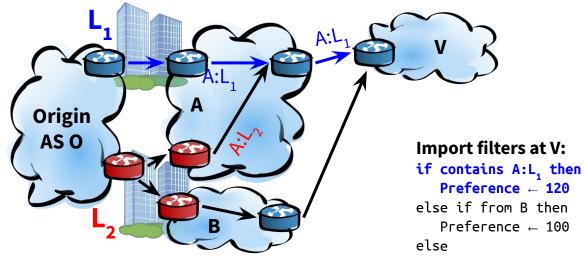
Preference \leftarrow 80



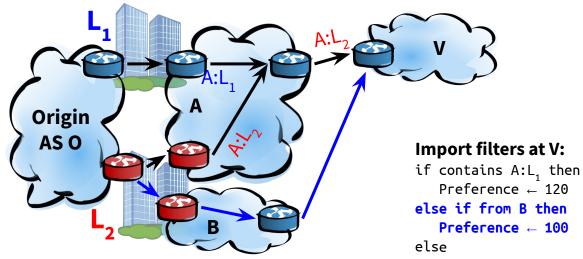
Import filters at V:

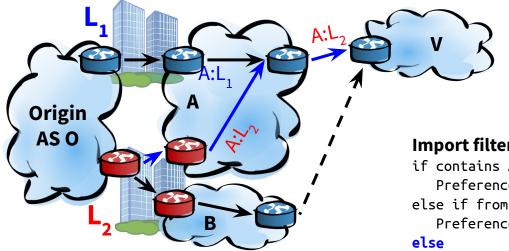

if contains $A:L_1$ then Preference $\leftarrow 120$ else if from B then Preference \leftarrow 100 Preference \leftarrow 80

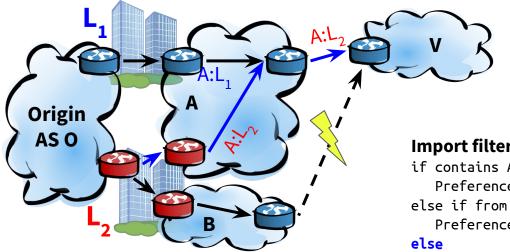

Preference \leftarrow 80



Preference \leftarrow 80





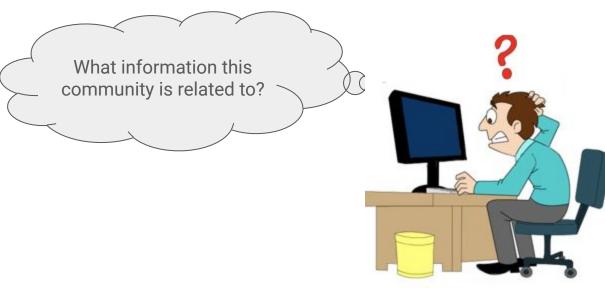


Import filters at V:

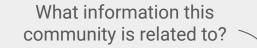
if contains $A:L_1$ then Preference $\leftarrow 120$ else if from B then Preference \leftarrow 100

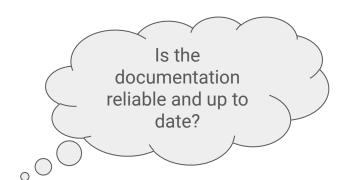
Import filters at V:

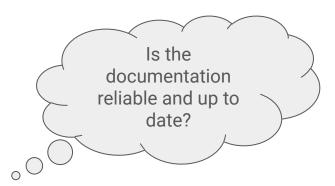
if contains $A:L_1$ then Preference $\leftarrow 120$ else if from B then Preference \leftarrow 100

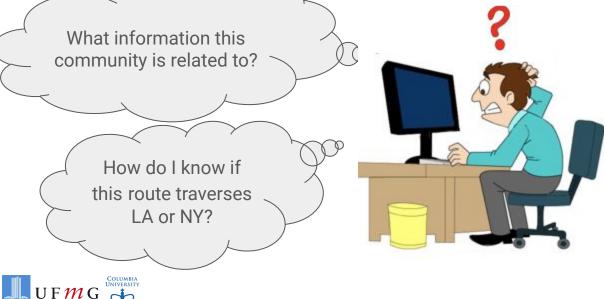


• Community semantics are not standardized




- Community semantics are not standardized
- □ Hard to know the semantics of a specific community


- Community semantics are not standardized
- Hard to know the semantics of a specific community
- Hard to know the community for some specific goal



- Community semantics are not standardized
- Hard to know the semantics of a specific community
- Hard to know the community for some specific goal

What information this community is related to?

How do I know if

this route traverses

LA or NY?

COLUMBIA UNIVERSITY

F*M*(

- Community semantics are not standardized
- Hard to know the semantics of a specific community
- Hard to know the community for some specific goal

What we have so far?

- □ Current practical applications of BGP communities:
 - Help identify outages (Giotsas, et al, 2017)

What we have so far?

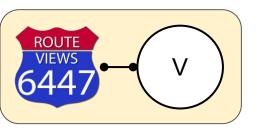
• Current practical applications of BGP communities:

- Help identify outages (Giotsas, et al, 2017)
- Determine the AS behaviour (remove or not communities) (Krenc, et al, 2021)

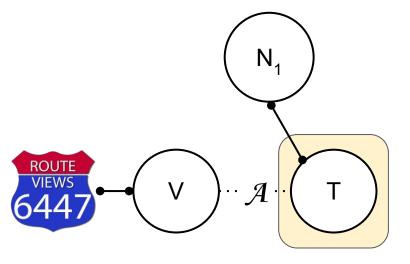
What we have so far?

• Current practical applications of BGP communities:

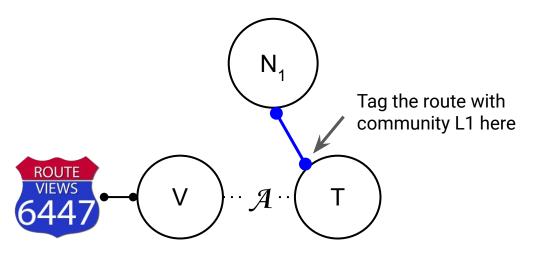
- Help identify outages (Giotsas, et al, 2017)
- Determine the AS behaviour (remove or not communities) (Krenc, et al, 2021)
- Correct values for blackhole communities (Giotsas, et al, 2017)

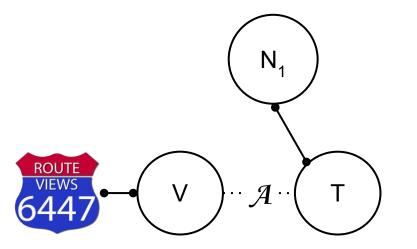

Algorithm

Inference of Location Communities

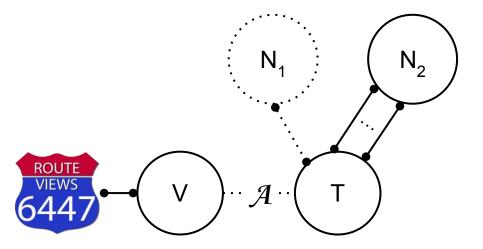


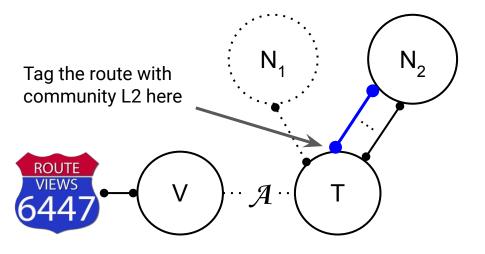
Collector

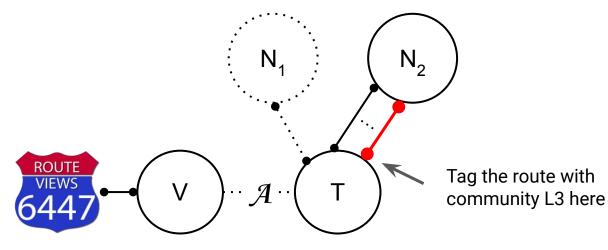


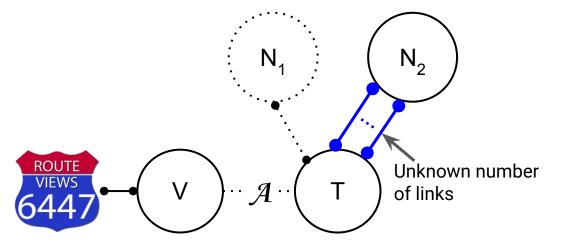


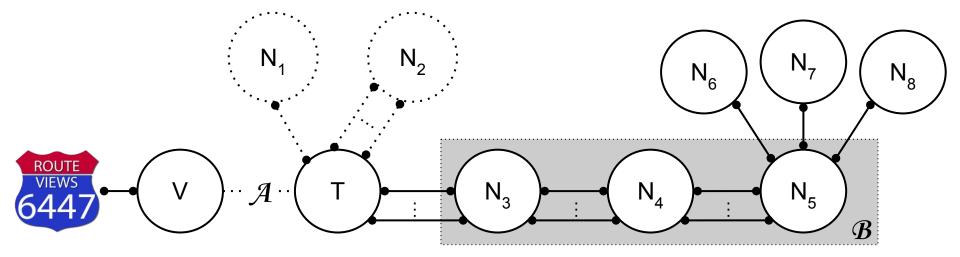
target AS T

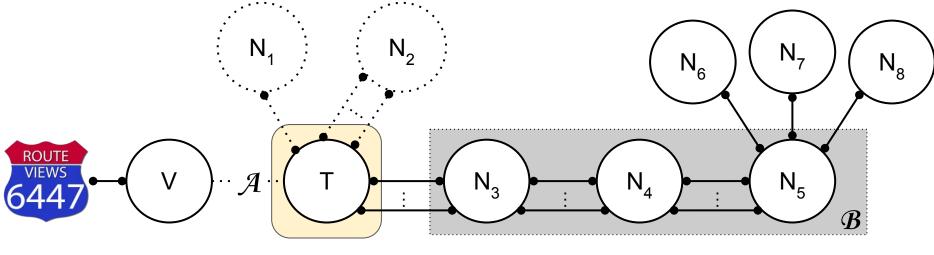


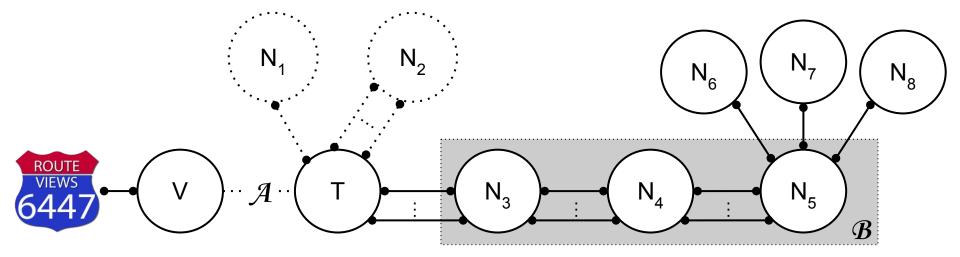


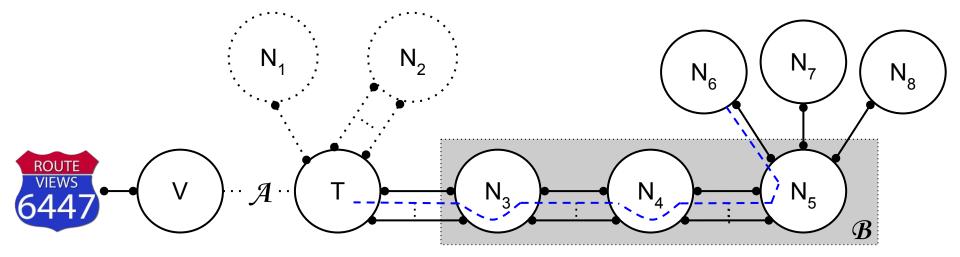




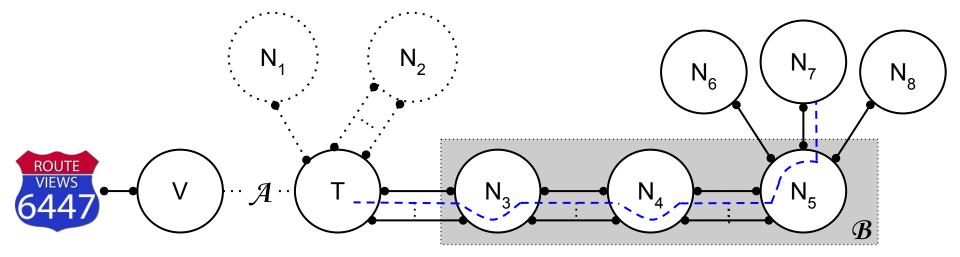


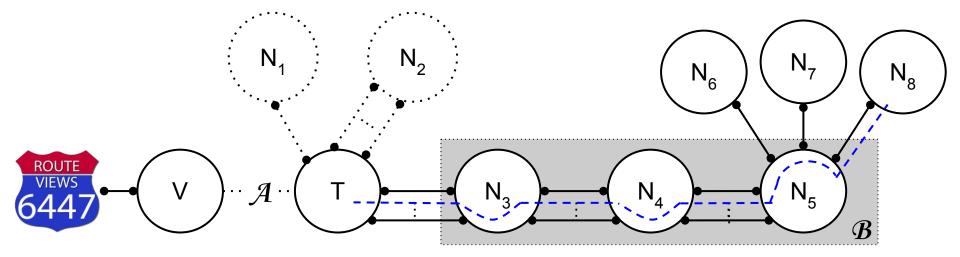


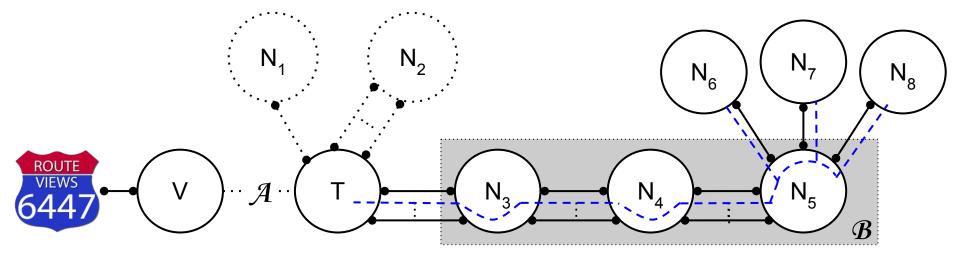


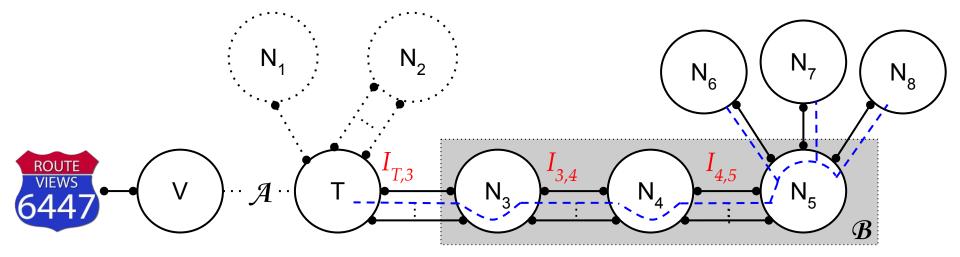


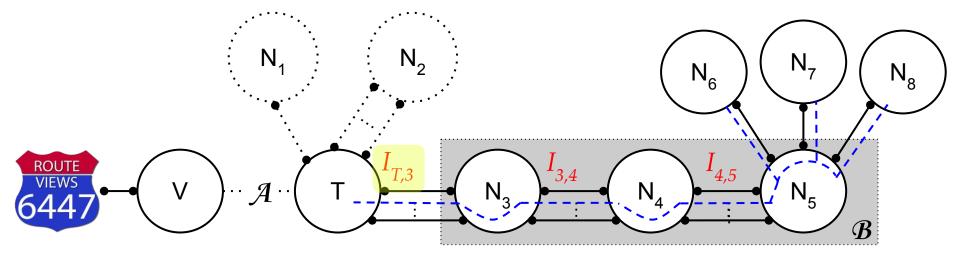
target AS T

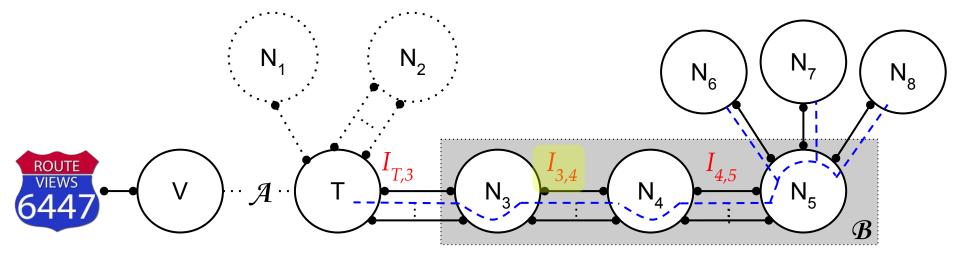


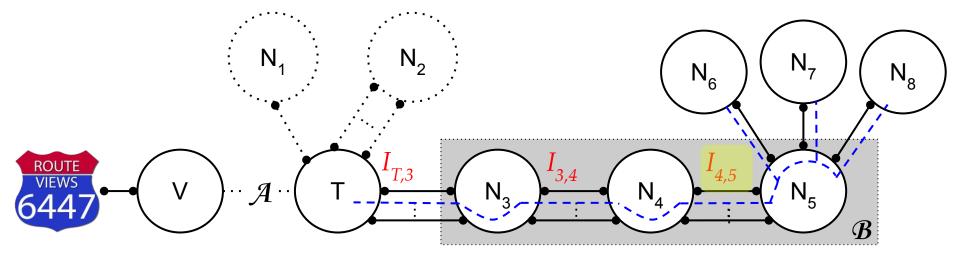


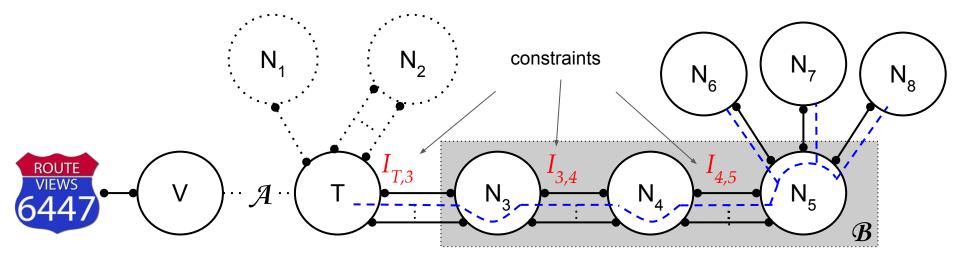


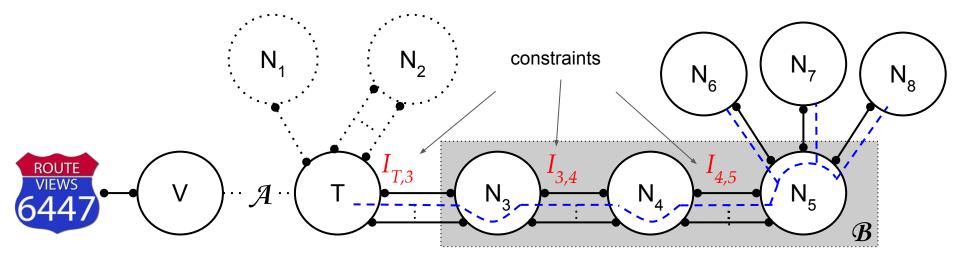












Evaluate Location Communities (limitation)

Evaluate Location Communities (summary)

Results and Dataset

		Commun	ity Type		CAIDA
Network (AS)	Geo	Dev/link	RELATION	ACTION	
Verizon (701)	0	0	0	11	0
NTT (2914)	93	0	2	44	39
GTT (3257)	10,000*	$11,\!000*$	1,783*	13,023*	68
Deutsche Telekom (3320)	24	0	3	0	17
Level $3 (3356)$	178	0	2	5	82
PCCW Global (3491)	44	0	0	21	24
Lumen (3549)	239	239	239	87	28
Orange (5511)	46	0	0	55	11
Zayo (6461)	804*	0	6	152	0
Telecom Italia (6762)	51	0	1	133	42

		Commun	ιτή Τγρε		CAIDA
Network (AS)	Geo	Dev/link	Relation	ACTION	
Verizon (701)	0	0	0	11	0
NTT (2914)	93	0	2	44	39
GTT (3257)	10,000*	$11,\!000*$	1,783*	$13,023^{*}$	68
Deutsche Telekom (3320)	24	0	3	0	17
Level $3 (3356)$	178	0	2	5	82
PCCW Global (3491)	44	0	0	21	24
Lumen (3549)	239	239	239	87	28
Orange (5511)	46	0	0	55	11
Zayo (6461)	804*	0	6	152	0
Telecom Italia (6762)	51	0	1	133	42

		Commun	ity Type		CAIDA
Network (AS)	Geo	Dev/link	Relation	Action	
Verizon (701)	0	0	0	11	0
NTT (2914)	93	0	2	44	39
GTT (3257)	10,000*	$11,\!000*$	1,783*	13,023*	68
Deutsche Telekom (3320)	24	0	3	0	17
Level $3 (3356)$	178	0	2	5	82
PCCW Global (3491)	44	0	0	21	24
Lumen (3549)	239	239	239	87	28
Orange (5511)	46	0	0	55	11
Zayo (6461)	804*	0	6	152	0
Telecom Italia (6762)	51	0	1	133	42

		Commun	ity Type		CAIDA
Network (AS)	Geo	Dev/link	Relation	ACTION	
Verizon (701)	0	0	0	11	0
NTT (2914)	93	0	2	44	39
GTT (3257)	10,000*	$11,\!000*$	1,783*	$13,023^{*}$	68
Deutsche Telekom (3320)	24	0	3	0	17
Level $3 (3356)$	178	0	2	5	82
PCCW Global (3491)	44	0	0	21	24
Lumen (3549)	239	239	239	87	28
Orange (5511)	46	0	0	55	11
Zayo (6461)	804*	0	6	152	0
Telecom Italia (6762)	51	0	1	133	42

		Commun	ity Type		CAIDA
Network (AS)	Geo	Dev/Link	RELATION	ACTION	
Verizon (701)	0	0	0	11	0
NTT (2914)	93	0	2	44	39
GTT (3257)	10,000*	$11,\!000*$	1,783*	13,023*	68
Deutsche Telekom (3320)	24	0	3	0	17
Level $3 (3356)$	178	0	2	5	82
PCCW Global (3491)	44	0	0	21	24
Lumen (3549)	239	239	239	87	28
Orange (5511)	46	0	0	55	11
Zayo (6461)	804*	0	6	152	0
Telecom Italia (6762)	51	0	1	133	42

		Commun	ity Type		CAIDA
Network (AS)	Geo	Dev/link	RELATION	ACTION	
Verizon (701)	0	0	0	11	0
NTT (2914)	93	0	2	44	39
GTT (3257)	10,000*	$11,\!000*$	1,783*	$13,023^{*}$	68
Deutsche Telekom (3320)	24	0	3	0	17
Level $3 (3356)$	178	0	2	5	82
PCCW Global (3491)	44	0	0	21	24
Lumen (3549)	239	239	239	87	28
Orange (5511)	46	0	0	55	11
Zayo (6461)	804*	0	6	152	0
Telecom Italia (6762)	51	0	1	133	42

		Commun	ity Type		CAIDA
Network (AS)	Geo	Dev/link	Relation	ACTION	
Verizon (701)	0	0	0	11	0
NTT (2914)	93	0	2	44	39
GTT (3257)	10,000*	$11,\!000*$	1,783*	$13,023^{*}$	68
Deutsche Telekom (3320)	24	0	3	0	17
Level $3 (3356)$	178	0	2	5	82
PCCW Global (3491)	44	0	0	21	24
Lumen (3549)	239	239	239	87	28
Orange (5511)	46	0	0	55	11
Zayo (6461)	804*	0	6	152	0
Telecom Italia (6762)	51	0	1	133	42

		Commun	ity Type		CAIDA
Network (AS)	Geo	Dev/link	Relation	ACTION	
Verizon (701)	0	0	0	11	0
NTT (2914)	93	0	2	44	39
GTT (3257)	10,000*	$11,\!000^*$	1,783*	$13,023^{*}$	68
Deutsche Telekom (3320)	24	0	3	0	17
Level 3 (3356)	178	0	2	5	82
PCCW Global (3491)	44	0	0	21	24
Lumen (3549)	239	239	239	87	28
Orange (5511)	46	0	0	55	11
Zayo (6461)	804*	0	6	152	0
Telecom Italia (6762)	51	0	1	133	42

		Commun	ity Type		CAIDA
Network (AS)	Geo	Dev/link	Relation	ACTION	
Verizon (701)	0	0	0	11	0
NTT (2914)	93	0	2	44	39
GTT (3257)	10,000*	$11,\!000*$	1,783*	13,023*	68
Deutsche Telekom (3320)	24	0	3	0	17
Level $3 (3356)$	178	0	2	5	82
PCCW Global (3491)	44	0	0	21	24
Lumen (3549)	239	239	239	87	28
Orange (5511)	46	0	0	55	11
Zayo (6461)	804*	0	6	152	0
Telecom Italia (6762)	51	0	1	133	42

Our data set is built with:

□ BGP feeds from RouteViews, RIPE RIS and Isolario.

Project	Project Collectors		V	VPs		Total ASes (thousands)		$\begin{array}{c} \text{Routes} \\ \text{(millions)} \end{array}$	
Year	2017	2020	2017	2020	2017	2020	2017	2020	
RV	17	20	192	232	61	72	96	184	
RIPE	20	20	330	510	61	72	115	311	
Isolario	4	5	83	145	60	72	66	209	
Total (uniq)	41	45	529	738	61	73	277	704	

Our data set are built with:

- BGP feeds from RouteViews, RIPE RIS and Isolario.
- □ The first available route table dump (RIB) from each BGP route collector on December 2017, 2018, 2019, and 2020.

Project	ct Collectors		Collectors VPs		Total ASes (thousands)		$\begin{array}{c} \text{Routes} \\ \text{(millions)} \end{array}$	
Year	2017	2020	2017	2020	2017	2020	2017	2020
RV	17	20	192	232	61	72	96	184
RIPE	20	20	330	510	61	72	115	311
Isolario	4	5	83	145	60	72	66	209
Total (uniq)	41	45	529	738	61	73	277	704

Our data set are built with:

- □ BGP feeds from RouteViews, RIPE RIS and Isolario.
- □ The first available route table dump (RIB) from each BGP route collector on December 2017, 2018, 2019, and 2020.

Project			t Collectors VPs		Total ASes (thousands)		$\begin{array}{c} \text{Routes} \\ \text{(millions)} \end{array}$	
Year			2017	2020	2017	2020	2017	2020 184
RV	17	20	192	232	61	72	96	184
RIPE	20	20	330	510	61	72	115	311
Isolario	4	5	83	145	60	72	66	209
Total (uniq)	41	45	529	738	61	73	277	704

Our data set are built with:

- BGP feeds from RouteViews, RIPE RIS and Isolario.
- □ The first available route table dump (RIB) from each BGP route collector on December 2017, 2018, 2019, and 2020.

Project	Collectors		VPs		Total ASes (thousands)		Routes (millions)	
Year	2017	2020	2017	2020	2017	2020	2017	2020
RV	17	20	192	232	61	72	96	184
RIPE	20	20	330	510	61	72	115	311
Isolario	4	5	83	145	60	72	66	209
Total (uniq)	41	45	529	738	61	73	277	704

Our data set are built with:

- BGP feeds from RouteViews, RIPE RIS and Isolario.
- □ The first available route table dump (RIB) from each BGP route collector on December 2017, 2018, 2019, and 2020.

Project	Collectors		VPs		Total ASes (thousands)		$egin{array}{c} { m Routes} \ { m (millions)} \end{array}$	
Year	2017	2020	2017	2020	2017	2020	2017	2020
RV	17	20	192	232	61	72	96	184
RIPE	20	20	330	510	61	72	115	311
Isolario	4	5	83	145	60	72	66	209
Total (uniq)	41	45	529	738	61	73	277	704

Our data set are built with:

- BGP feeds from RouteViews, RIPE RIS and Isolario.
- □ The first available route table dump (RIB) from each BGP route collector on December 2017, 2018, 2019, and 2020.

Project	Collectors		VPs		Total ASes (thousands)		$\begin{array}{c} \text{Routes} \\ \text{(millions)} \end{array}$	
Year	2017	2020	2017	2020	2017	2020	2017	2020
RV	17	20	192	232	61	72	96	184
RIPE	20	20	330	510	61	72	115	311
Isolario	4	5	83	145	60	72	66	209
Total (uniq)	41	45	529	738	61	73	277	704

			Inf.
CONFIGURATION	Precision	Recall	Recall
Prioritize precision	0.93	0.72	0.89
Default configuration	0.91	0.80	0.87
Prioritize recall	0.87	0.81	0.89

			Inf.
CONFIGURATION	PRECISION	Recall	Recall
Prioritize precision	0.93	0.72	0.89
Default configuration	0.91	0.80	0.87
Prioritize recall	0.87	0.81	0.89

			Inf.
Configuration	PRECISION	Recall	Recall
Prioritize precision	0.93	0.72	0.89
Default configuration	0.91	0.80	0.87
Prioritize recall	0.87	0.81	0.89

			Inf.
CONFIGURATION	PRECISION	Recall	Recall
Prioritize precision	0.93	0.72	0.89
Default configuration	0.91	0.80	0.87
Prioritize recall	0.87	0.81	0.89

			Inf.
CONFIGURATION	PRECISION	Recall	Recall
Prioritize precision	0.93	0.72	0.89
Default configuration	0.91	0.80	0.87
Prioritize recall	0.87	0.81	0.89

Automatic Inference vs CAIDA

Community				Comm	IUNITIES
Type	DATABASE	RECALL	PRECISION	Total	Correct
Geolocation	CAIDA	0.21	0.86	303	261
	Inferences	0.77			
Location	Inferences	0.80	0.91	1081	983

Automatic Inference vs CAIDA

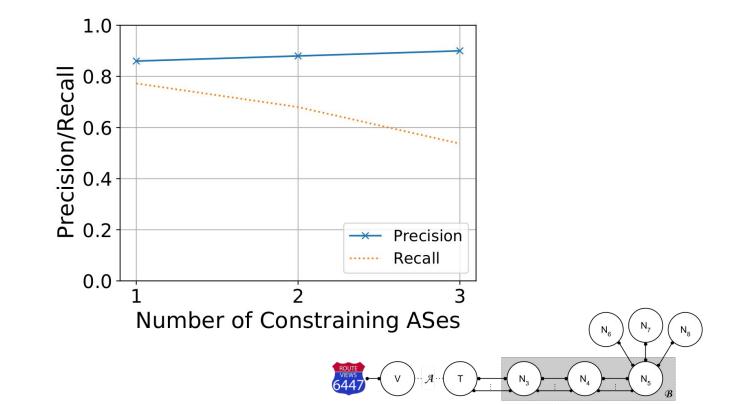
Community				Comm	IUNITIES
Type	DATABASE	RECALL	PRECISION	Total	Correct
Geolocation	CAIDA	0.21	0.86	303	261
	Inferences	0.77			
Location	Inferences	0.80	0.91	1081	983

Community			Communities		
Type	DATABASE	RECALL	PRECISION	Total	Correct
Geolocation	CAIDA	0.21	0.86	303	261
	Inferences	0.77			
Location	Inferences	0.80	0.91	1081	983

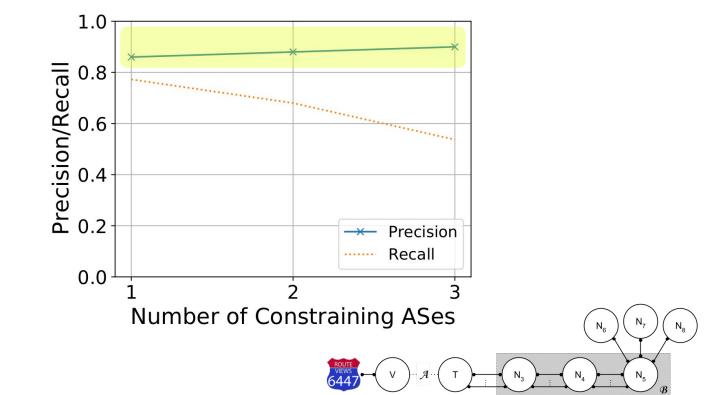
Community		Communities			
Type	DATABASE	RECALL	PRECISION	Total	Correct
Geolocation	CAIDA	0.21	0.86	303	261
	Inferences	0.77			
Location	Inferences	0.80	0.91	1081	983

Community		Communities			
Type	DATABASE	RECALL	PRECISION	Total	Correct
Geolocation	CAIDA	0.21	0.86	303	261
	Inferences	0.77	_		
Location	Inferences	0.80	0.91	1081	983

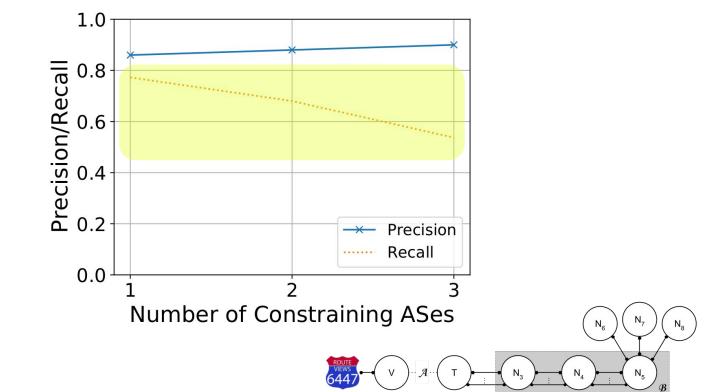
Community		Communities			
Type	DATABASE	RECALL	PRECISION	Total	Correct
Geolocation	CAIDA	0.21	0.86	303	261
	Inferences	0.77			
Location	Inferences	0.80	0.91	1081	983

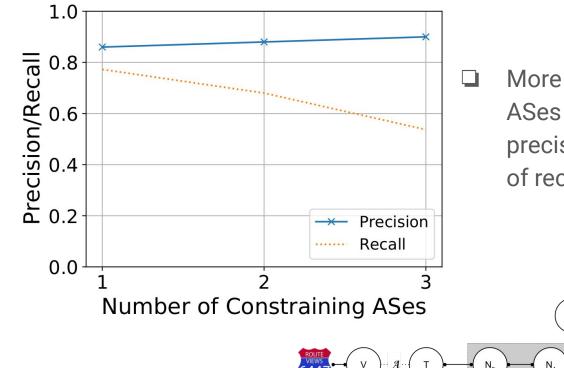


Community		Communities			
Type	DATABASE	RECALL	PRECISION	Total	Correct
Geolocation	CAIDA	0.21	0.86	303	261
	Inferences	0.77			
Location	Inferences	0.80	0.91	1081	983


COLUMBIA UNIVERSITY

U F *M* C


COLUMBIA UNIVERSITY

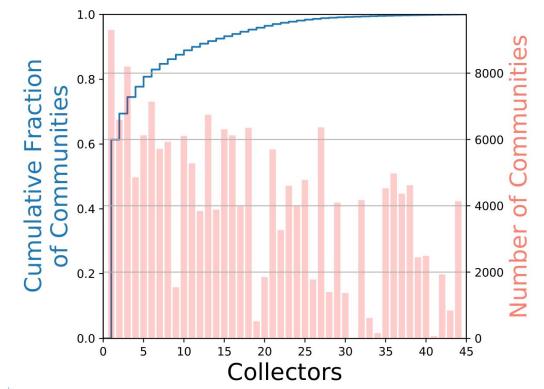

U F *M* C

COLUMBIA UNIVERSITY

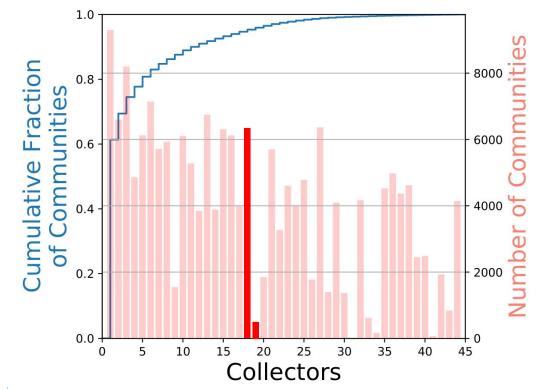
UF*M*C

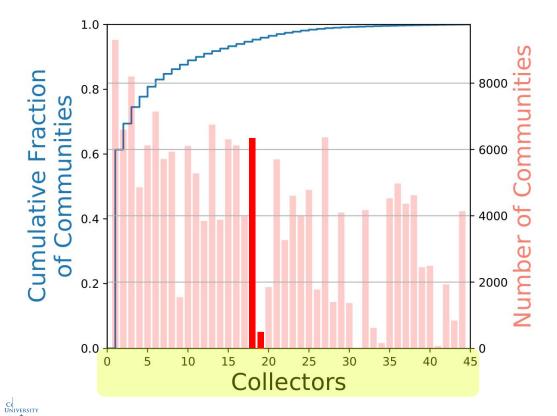
More constraining ASes lead to higher precision at the cost of recall.

N_


N.

N_c


N₈


Contribution on Inference per Collector

Contribution on Inference per Collector

Contribution on Inference per Collector

UF*M*

Additional collectors would support more inferences.

□ In recent years, the use of BGP communities has increased significantly.

□ In recent years, the use of BGP communities has increased significantly.

Our work is the first we are aware of to use routing announcements to infer the semantics of BGP communities.

- □ In recent years, the use of BGP communities has increased significantly.
- Our work is the first we are aware of to use routing announcements to infer the semantics of BGP communities.
- Our algorithm automatically infers location communities and achieves high precision (93%) and recall (81%).

- □ In recent years, the use of BGP communities has increased significantly.
- Our work is the first we are aware of to use routing announcements to infer the semantics of BGP communities.
- Our algorithm automatically infers location communities and achieves high precision (93%) and recall (81%).
- Our manually-built ground truth DB, as well as the code to generate the location DB are publicly available.

Thank you!