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Abstract

Autonomic Computing and related research communities have drawn attention from re-
searchers and industry practitioners who seek techniques and tools to build large-scale,
reliable self-adaptive systems. However, building autonomic solutions remains a chal-
lenge: i) the upfront effort to develop such systems is very high, making them costly to
implement; ii) only specialised parts of the system are made adaptive, limiting its flexi-
bility in handling unknown operating conditions; and iii) state-of-the-art approaches still
heavily rely on design-time predictions of operating conditions, making systems execu-
tion uncertain when predictions are wrong. To address these challenges, the concept of
Emergent Software Systems has been proposed. The Emergent Software approach aims to
reduce the upfront effort to create autonomic solutions, and it supports fully adaptive sys-
tems able to autonomously learn about the system’s structure and operating environment
with no predefined knowledge or predictions. This chapter aims to disseminate Emergent
Software Systems, presenting the central concept and tools to realise the approach.

1.1. Introduction
Over the last two decades, systems researchers have acknowledged the increasing com-
plexity in developing and managing software systems and the need for new and dynamic
solutions [6, 24, 26, 47]. According to Blair [6], this complexity stems from two main
reasons: i) the increasing heterogeneity of modern systems, and ii) the increasing volatil-
ity ever more present in the operating environment of such systems. In addition, systems
have become larger, with millions of lines of code divided into software modules running
over distributed infrastructures across the globe (e.g., YouTube), making them difficult to
manage and evolve to accommodate new business and user demands.

This makes systems increasingly difficult to manage. In particular, the volatility of
the operating environment resulting from the frequent changes that occur in the system is
a crucial challenge to overcome. These changes happen across the entire system, and they
impact different layers: infrastructure, platform and application. In the infrastructure, the



addition and removal of nodes and adjustments in a node’s resource capabilities (e.g.,
due to costs or system demands) in modern elastic environments, such as the cloud, are
very common. These changes in the infrastructure may impact the software modules
running on the impacted nodes, which sometimes need to be tuned accordingly. For
instance, nodes being removed from the infrastructure due to faults require changes in
the software to cope with such situations (e.g., adopting fault-tolerance mechanisms).
Likewise, an evolution of the software features may demand changes in the system’s
overall architecture to improve efficiency as well as in its infrastructure to provide more
resources. For instance, the addition of video streaming as a feature in a web-based
application may require an increase in network resources and computing resources from
the infrastructure.

These are examples of common changes, and given the characteristics of current
systems (large scale and heterogeneity), these situations are difficult to handle. Never-
theless, it is not hard to imagine that it is possible to anticipate such scenarios. That
gives time for engineers to prepare the system for such changes and make sure that the
proper mechanisms are in place when these changes occur. Nowadays, however, due to
the scale these systems operate, these examples of changes are often accompanied by
difficult-to-predict situations. For instance, content provided by a system may go viral,
which suddenly increases user access, demanding more resources and, sometimes, a more
optimised version of the system to better handle the new workload. In other cases, due
to the complex interaction among the distributed modules of a system, a predefined fault-
tolerance mechanism may be ineffective because it simply did not anticipate a series of
successive failures throughout the system.

The above examples make evident that it is crucial to address the volatility (i.e.,
the frequent changes) of modern operating environments in contemporary systems. The
illustrated situations demand fast and accurate decision making that may affect many dif-
ferent layers of the system. In the literature [26, 40, 47], the self-adaptive and autonomic
computing communities have argued that pushing the responsibility of decision making
to adapt systems when facing changes to the machine itself is the best way forward.

Self-adaptive and autonomic systems are software systems able to change their be-
haviour or structure to accommodate changes with minimum or no human interference in
the process [10]. These systems require the definition of an adaptation logic, responsible
for deciding how and when adaptation occurs, and an adaptation mechanism responsible
for reifying changes to the system. As the volatility of modern systems increases, the
demand for self-adaptive systems follows suit. Moreover, considering that the decisions
on how adaptation should be performed must be fast and accurate, relying on engineers
to manually analyse the current system status and design the new system behaviour to
cope with changes is a slow and unsuitable process. Self-adaptation solutions, in turn,
are a perfect fit to address the increasing volatility of modern operating environments.
That is because they take over the responsibility to make decisions at runtime and quickly
perform online adaptations with no human interference.

However, the development of such adaptive systems presents its own challenges.
First, the upfront effort of creating such systems is high. This, in turn, makes the develop-
ment of self-adaptive systems costly. The effort is put into capturing the adaptation logic



and ensuring that the system will not enter a malfunctioning state as a result of adap-
tation. Also, the adaptation mechanisms should encompass all adaptation possibilities,
and support seamless runtime adaption with minimum impact on system’s performance.
Second, given that it is costly to create self-adaptive systems, a common strategy is to
make only specialised parts of the system self-adaptive. This vastly limits the flexibility
of the systems in handling changes, particularly the unexpected ones. Lastly, current ap-
proaches heavily rely on design-time prediction to build such systems. This inevitably
leaves the system incapable of handling unforeseen/uncertain conditions and often un-
derperforming when these predictions are inaccurate. As a response to that, the con-
cept of Emergent Software Systems have been proposed and investigated in the literature
[37, 42, 43, 44, 45].

Emergent Software Systems is an approach to facilitate the development of self-
adaptive systems. It applies lightweight component-based models (e.g., [7, 11, 36]) in tan-
dem with reinforcement learning [49] algorithms to support the creation of self-adaptive
systems. The component-based models enable the composition of software from a collec-
tion of small (e.g., the size of a class in a Java program) and highly reusable components.
These models also enable seamless runtime adaptation of the system by replacing a set of
components with others. Considering that the system is entirely composed of these small
components, the entire system is made to adapt. The reinforcement learning algorithm, in
turn, enables the system to start with no predefined domain-specific knowledge and learn
as it executes which software composition (defined by the set of small components) is
the most suitable composition for the operating environment on which the system is cur-
rently operating. Thus, the reinforcement learning algorithm allows Emergent Software
Systems to autonomously build their own understanding of the system structure and their
operating environment, eliminating the need for predictions.

This chapter presents an approach that aims to facilitate the creation of self-
adaptive systems, named Emergent Software Systems. The goal is to motivate the adop-
tion of the Emergent Software System approach to build self-adaptive software able to
cope with the demands of contemporary systems. To achieve this, we introduce the main
concepts of self-adaptive and autonomic computing systems, as well as the state-of-the-
art in the field, along with the shortcomings of current approaches (Sec. 1.2). Then, based
on the flaws of current approaches, we motivate and introduce the concept of Emergent
Software Systems (Sec. 1.3). We introduce the concept along with the challenges involved
in realising it. Next, we introduce our implementation of the concept and a framework
that supports the creation of Emergent Software Systems (Sec. 1.5). We discuss the ap-
plication of the concept to build microservices able to evolve their internal architectural
composition and to cope with the dynamism of current operating environments (Sec. 1.6).
We make available a collection of practical exercises and code examples for the reader to
gain hands-on experience with the development of Emergent Software Systems. Finally,
we conclude the chapter by inviting researchers and industry practitioners to join the ef-
fort to further develop the concept and contribute to create self-adaptive solutions that are
able to cope with the demands of contemporary systems (Sec.1.7).



1.2. Related Work and Background
This section introduces the main concept in self-adaptive, autonomic computing systems.
It also presents some of the most relevant and seminal papers in the area. We discuss the
current state-of-the-art techniques used to implement self-adaptive systems. We also fo-
cus on reinforcement learning algorithms to support runtime learning of the self-adaptive
systems adaptation logic. This focus on the learning algorithms is essential for under-
standing our proposed Emergent Software Systems approach. We conclude the section
by presenting the shortcomings of current self-adaptive techniques.

1.2.1. Autonomic Computing

Motivated by the increasing complexity in contemporary systems, IBM introduced the
concept of Autonomic Computing [26] in a manifesto in 2001. Their motivation were
their vision of future systems being characterised by their large size, their interconnec-
tivity with other large systems, the heterogeneity level and the constant demands to cope
with changes. These type of systems require skilled software engineers to install, con-
figure, tune and maintain them. In [26], Kephart and Chess argue that contemporary
systems were reaching the limit of the human capacity to manage systems adequately and
to timely react to unexpected events. Thus, inspired by the autonomic nervous system in
human beings, the Autonomic Computing vision aims to enable systems to self-manage
based on goals defined by administrators with minimum human interference.

The realisation of the concept of Autonomic Computing requires systems to im-
plement autonomous behaviour towards a specific system aspect (e.g., security, perfor-
mance, fault-tolerance). These systems aim to autonomously maintain specific properties.
These are known as self-* properties. These properties are dimensions of autonomous
behaviour incorporated in a system to address a particular system aspect. Autonomous
systems may implement the following self-* properties: self-protecting, self-optimising,
self-healing and self-configuring.

Self-protecting systems (e.g., [52]) are capable of identifying possible security
threats and operating risks for the system well functioning. Furthermore, these sys-
tems can adequately handle and prevent malicious users from exploiting possible security
threats by, for example, autonomously changing their internal structure. Self-optimising
systems (e.g., [22]) are systems that can change their structure to improve some aspects
of their performance autonomously, for example, by reducing the systems response time.
Self-configuring systems (e.g., [25]) can autonomously set up when introduced to a dis-
tributed system or change their configuration to accommodate the insertion of new sys-
tems. Self-healing systems (e.g., [1]) is capable of maintaining a level of reliability by
discovering faults in the system’s behaviour and deciding on a course of action to maintain
system execution.

The area of autonomic computing brought a variety of scientific and engineering
challenges to be addressed. Many of these challenges were introduced and discussed in
seminal paper ‘The Vision of Autonomic Computing’ [26]. The main challenges involve
the life-cycle of autonomous systems, which comprehends systems design, test, man-
agement, monitoring and upgrading systems. The management of interactions among
autonomous systems includes defining services provided and required by autonomous



systems, services discovery and negotiation of providing services to multiple autonomous
entities. Another challenge is the definition and representation of the global system’s
goals, representing the interface between humans and autonomous systems. These chal-
lenges are still in debate in the related research communities with promising solutions and
future directions.

1.2.2. Self-adaptive Systems/Self-organising Systems

The term ‘self-adaptive systems’ is usually used as an umbrella term by different re-
search communities to refer to the systems ability to change its structure to accommo-
date changes. Whereas in distributed environments, the term ‘self-organising systems’ is
frequently used to refer to systems capable of reorganising their distributed architecture
to cope with changes and achieve global system goals. In order to build systems that
are capable of self-organising and self-adapting, the system requires the definition of an
adaptation logic to guide software adaptation, the implementation of adaptation mech-
anisms to propagate changes to the actual system structure, and coordination among the
system nodes to ensure a coherent change and convergence towards global system goals.

The adaptation logic is responsible for capturing the knowledge that allows the
system to detect events of interest and decide its next course of actions, which include
the decision to maintain the system in its current state or to adapt to another config-
uration. The adaptation logic can be represented in different forms: the policy-based
approaches, which represent adaptation logic using expertly-crafted rules defined in the
design phase; model-driven approaches, which apply models representing system prop-
erties, QoS traits, system architectures, system goals and equations that support runtime
reasoning and adaptation; and bio-inspired algorithms are used to encode adaptation logic
imitating behaviours found in nature, e.g. ant-colony.

The adaptation mechanisms are responsible for propagating changes in the ex-
isting software. These mechanisms are classified either as parametric or architectural
approaches. Parametric approaches consider the system as a black box, having only
dial buttons to influence the system behaviour. This approach is limited compared to
architectural-based approaches because it can only change the system within a predefined
range of parametric values. The architectural adaptation approach allows the system to
change its structure by replacing components or changing its architecture pattern to main-
tain system properties (e.g., using a load balancer architecture to maintain the perfor-
mance or replicate services to cope with system failures). The architectural adaptation
allows profound changes in the system, making it more flexible to cope with changes in
the operating environment.

In a distributed scenario, it is essential to create mechanisms to ensure that the sys-
tem achieves its global goals whilst maintaining non-functional requirements. This is im-
perative, particularly in situations where multiple autonomous single-goal entities make
their own adaptation decisions and interact with each other. In this context, the coordi-
nation of software adaptation is critical to ensure a coherent adaptation of distributed
systems and convergence towards a common global system goal. Many approaches for
coordinating adaptation were investigated in the multi-agent research community where
the autonomous entities (agents) sought cooperation and consensus to make decisions to



converge the system towards the global desired behaviour. Some approaches use voting
schemes, action predictions, and other consensus schemes.

Typical activities of a self-adaptive and self-organising system involve monitor-
ing the system execution, analysing the monitored data, deciding on and executing the
course of action the system needs to maintain its desired properties. The feedback loop
conceptual framework was widely adopted to implement self-adaptive systems for cap-
turing these essential activities to equip systems with autonomous adaptation ability. The
most famous feedback loop conceptual framework in self-adaptive systems and auto-
nomic computing field is the MAPE-K loop [3], which stands for Monitoring, Analysing,
Planning, Executing. The framework actions are guided by the knowledge (the K in the
MAPE-K) defined by experts at the design phase. This knowledge is also expanded by
the results of the previous system’s actions. In today’s autonomous systems, the activities
defined in the MAPE-K feedback loop are imperative to realise self-adaptive systems.
Even if the classic MAPE-K feedback loop is not applied, some form of it is always used
to support reliable adaptation.

1.2.3. Organic Computing

The Organic Computing research initiative started in Germany with the focus to address
and explore the self-organisation concept in technical software systems, inspired by neu-
roscience and molecular biology principles and software engineering [35, 47, 51]. Orig-
inated around the same time as the Autonomic Computing paradigm, the Organic Com-
puting initiative also focused on the problem of having multiple instances of interacting
autonomous systems, which may lead to conflicts and undesired emergent behaviour af-
fecting the resulting system [47].

In detail, autonomous systems with multiple goals might spontaneously interact
with other autonomous systems to achieve and maintain global systems goals. The inter-
action among autonomous system instances is not a far-fetched futuristic idea. A concrete
example given in [47] draws attention to the modern cars and the multiple interacting de-
vices that are required to support the basic cars functions. In this example, devices require
data from other devices to provide their functionality, and the orchestration of such de-
vices results in the car and all its available functions. Problems with the interactions
among these systems, such as delaying the delivery of information to devices, may lead
to miscalculations and compromise service execution. The problems with orchestration
and synchronisation that may occur in such scenarios are not the only problem. Another
fundamental problem is the emergent undesired behaviours resulted from unpredicted in-
teractions among systems devices.

Given this scenario of interacting autonomous systems, several studies were con-
ducted to validate multiple controlling mechanisms that could be used to prevent unde-
sired emergent behaviour in a variety of scenarios [41, 33] as well as to address further
aspects (self-* properties) of autonomous systems [8, 19].

1.2.4. Reinforcement Learning (RL) for Adaptive Systems

Reinforcement Learning is a learning paradigm in which an agent learns to correlate a set
of actions to reward values [49, 46]. An agent, in this context, can be defined as software



capable of executing actions and collecting rewards as a consequence of the performed
actions. This learning paradigm allows software systems to learn, at runtime, whilst the
system interacts with the environment, which actions and order will yield maximum re-
ward values. This characteristic of this learning paradigm applied to self-adaptive systems
enables the system to learn the adaptation logic as it executes, driving software adaptation
at runtime, and evolving its adaptation logic as the system encounters new, unforeseen
situations [2, 27].

Several papers on self-adaptive systems that apply reinforcement learning algo-
rithms in the adaptation process, such as [2], or any machine learning algorithm for that
matter [54, 30, 16], focuses on parametric adaptation. Parametric adaptation consists of
changes in software parameters as if the system were a black box with dials. In this
context, the system can only adapt within a predefined set of values/actions, limiting the
capacity of reinforcement learning algorithms to learn beyond the actions that experts
established in the design phase.

This limitation of parametric tuning approaches also affects some architectural-
based approaches such a [27, 32, 18], because, in these approaches, the system can only
change its architecture based on a predefined range of architectural configurations, and
that expanding this fixed range of architectural options requires the system and the learn-
ing algorithm to be re-evaluated and re-defined.

In [27], Kim and Park demonstrate the application of Q-learning, a well-known
and widely used reinforcement learning algorithm, to architectural change robots in a
simulation case study. This is one of the earlier and most representative examples of
the direct application of reinforcement learning to build and evolve adaptation logic in
self-adaptive systems. The paper describes how to create learning tables with actions
and systems states, detailing a method to apply Q-learning to self-adaptive systems. The
paper ends with evaluating the application of reinforcement learning to robot simulations,
showing that a robot that applies such an approach can successfully learn and evolve its
adaptation logic.

The main limitation of applying reinforcement learning to self-adaptive systems in
the literature is the lack of abstraction of actions and states for the machine learning algo-
rithm. As papers such as [2, 27] illustrate, reinforcement learning algorithms are applied
to self-adaptive systems to optimise software in specific domains, with a predefined set of
actions observable in specific case studies. This shows high levels of human dependency
to define, for each application domain, the set of actions and states on which the learning
algorithm will be developed, limiting the potential and generalisation of reinforcement
learning approaches in self-adaptive systems.

We argue that in order to fully enable learning and evolution of the adaptation
logic of software systems, it is required to i) apply reinforcement learning to the com-
position process of systems and ii) ‘abstract’/remodel the system to be easily handled by
machine learning algorithms. The proposed Emergent Systems concept demonstrates how
these two points can be realised by unifying component-based models and reinforcement
learning algorithms.



1.2.5. Critique of Existing Approaches

Although the main concepts and research areas that focus on self-adaptive software so-
lutions have been introduced, we have not pinpointed the shortcomings of the most rel-
evant work that describes the different existing techniques to create self-adaptive solu-
tions. In this section, we present these studies, dividing them into different categories.
The self-adaptive systems research area is vast and multi-disciplinary, having multiple re-
search communities proposing different solutions with different terminologies. To address
this issue and present a more complete picture of the state-of-the-art of such techniques,
we attempt to group these relevant works based on the similarities of their proposed ap-
proach. As a result, we created the following categories: i) rule-based and policy-driven
approaches, ii) mathematical models, and iii) bio-inspired approaches. Note that these
categories do not contain all relevant approaches. For a better attempt at a complete pic-
ture of the different approaches, refer to [42].

Rule-based and policy-driven approaches implement the simplest and most straight-
forward method to represent the systems adaptation logic. Due to their simplicity, these
were the most used methods in designing early self-adaptive systems. The approach con-
sists of manually writing static rules in the design phase to describe software state or
operating conditions and make the system aware of what software configuration it should
change into in case those conditions are detected. Some approaches implement very
straightforward and static rules, not leaving room for autonomous reasoning and decision
making in the process, as described in [23], and other approaches, such as in [28], the
software engineers describe adaptation rules in terms of logic expressions, which allow a
small level of reasoning in the adaptation process.

These policy-driven approaches are very effective when all system states are well
known before and the deployment environment is fairly static. For that reason, these ap-
proaches were used in early examples of self-adaptive solutions. Due to the high levels of
dynamism in the operating environment of contemporary applications, the static policy-
driven approach is not adequate to support the required levels of flexibility in the software
adaptation process. Suppose the system suffers from fluctuations in the workload or un-
expected failures in the underlying structure. In that case, these systems cannot react
accordingly and accommodate the changes on time, leading the system to a malfunction-
ing state or degraded performance.

Mathematical models consists of approaches that capture their adaptation logic in the
form of mathematical functions. Sometimes differential equations are used to establish
a relation between input and output. This input-output mapping is used to capture the
systems state and connect it to a particular action that changes the systems state and
therefore controls the adaptation process. An example of such approach is described in
[31]. Lu et al. present mathematical models that guide the assignment of classes of
HTTP requests to threads responsible for handling these requests in a web server. The
goal is to enable an adaptive assignment of requests to threads to guarantee delays below
a predefined value as workload characteristic changes. Although this approach supports
a dynamic request-to-thread assignment according to workload variation, its adaptation



logic is determined by a predefined set of fix equations, which are highly complex to
elaborate and does not evolve to accommodate unexpected events.

A slightly different and better approach to this is shown in [18]. Elkhodary et al.
propose a learning approach to generate mathematical functions that correlate the pres-
ence of software features in the system with the satisfaction levels of the system’s goals.
These mathematical functions are autonomously created as a result of offline training by
running the system and exposing it to a set of operating conditions the system is expected
to find in production. After the system’s deployment, as it is exposed to new operating
conditions, it is capable of fine-tuning the functions coefficients to incorporate new op-
erating conditions. Although this approach reduces the complexity of defining equations
to guide adaptation by generating the model autonomously, it only tunes the model to ac-
commodate new conditions. If new software modules are added, or completely different
conditions are encountered, the system will require offline re-training.

Bio-inspired approaches encode behaviours found in nature into algorithms to solve
optimisation problems. A very popular example of this approach is the ant colony, where
agents imitate ant behaviour in finding food by leaving a trail of pheromone that other
ants can sense [15]. A great variety of papers explored the application of such methods
in a variety of problems such as vehicle routing [20], graph colouring [12] and project
scheduling [34]. Another popular example of this approach is evolutionary computing
[17]. This concept applies the basic idea of biological evolution to solve problems. This
approach defines a population of individuals, then randomly insert genetic variations into
the population and submit them through a selective process eliminating some individuals
and leaving the fittest according to a selection function. The remaining individuals are
used to build the next generation of individuals that go through the process again.

Bio-inspired approaches are used to directly provide systems with self-adaptive
capabilities. For example, Ding et al. [14] describe an algorithm that encodes the be-
haviour of Neuroendocrine Immune System to support autonomous composition and
adaptation of web services. Another example is described in [40], where Ramirez et
al. used evolutionary computing to predict operating conditions the system will be facing
and how the diverse available software configurations would best suit different condi-
tions maintaining desired QoS levels. These approaches are complementary to Emergent
Software Systems, as they can be used in online learning to find optimal architectural
compositions.

1.3. The Concept of Emergent Software Systems
This section introduces the concept of Emergent Software Systems and discusses the main
challenges of realising the approach. First, we motivate the need for Emergent Software
Systems, then we introduce and described the concept in detail. We conclude the section
by presenting the main challenges inherent in the concept regardless of current technol-
ogy’s limitations. Note that we do not discuss the implementation of the concept in this
section. That is to allow the reader to focus on the ideas behind the concept rather than
implementation details. We present an implementation of the concept in Sec. 1.5.



1.3.1. Motivation

The main motivation for considering the advancement of self-adaptive solutions is the
increasing dynamism of current operating environments. As previously described, this
dynamism requires systems capable to react fast and accurately to new and often un-
expected operating conditions. This scenario makes the advancement of self-adaptive
systems crucial when considering the development and management of future systems.

An analysis of the start-of-the-art approaches to realise self-adaptive systems (Sec.
1.2) shows that current approaches share one or more of the following characteristics that
prevent the advancement of self-adaptation systems: i) significant human-dependency in
their design; ii) inability to autonomously evolve their adaptation logic in face of unex-
pected conditions; and iii) adaptation mechanisms are only applied to very specific parts
of the systems. The Emergent Software System concept is introduced to enable the cre-
ation of self-adaptive system that addresses these three main concerns.

As previously described, the realisation of self-adaptive solutions requires the de-
velopment of an adaptation logic, adaptation mechanisms and often a coordination strat-
egy (in distributed contexts) to ensure seamless runtime adaptation. Analysing the most
relevant work in this domain with regards to adaptation logic creation and evolution, a re-
search gap was identified [42]. There is a lack of work addressing the entirely autonomous
creation and evolution of adaptation logic, which would enable the development of solu-
tions capable of addressing the high levels of uncertainty commonly presented in devel-
oping adaptive solutions (as described in [10]). Furthermore, the creation of systems able
to autonomously develop their adaptation logic would reduce the engineering efforts of
developing autonomous solutions, facilitating the development of self-adaptive systems.

Considering the adaptation logic, the state-of-the-art approaches implement dif-
ferent techniques including policy-driven (e.g., Grace, et al. [23]), system representative
models (e.g., SASSY [32]) and mathematical models (e.g., Netkv [53]). Most of the
approaches require the definition of adaptation information in the design time. Some
techniques allow the adaptation logic to evolve as new events occur in the operating envi-
ronment, enabling a limited evolution of its adaptation logic to accommodate new events
from the operating environment (e.g., FUSION [18]). This approach, however, can not
evolve its adaptation logic if new software is added, requiring a re-execution of its offline
training approach to generate the new adaptation logic. Finally, Georgé et al. [21], have a
complete autonomous multi-agent approach, that is constantly trying to optimise towards
a goal, but never builds nor evolves an adaptation logic. This approach is not able to ‘re-
member’ optimal solutions for previously seen situations, having to search for solutions
even when previously seen conditions occur.

Therefore, the concept of Emergent Software Systems is a response to the iden-
tified gap in the literature considering the development of self-adaptive systems. The
concept facilitates the development of self-adaptive systems because it does not require
predictions or domain-specific knowledge. The resulting system is entirely adaptive with
no extra effort than writing code (e.g., matching code to a feature model). Lastly, the
emergent system can learn and evolve its adaptation logic as it executes and new condi-
tions arise.



1.3.2. Definition

Emergent Software Systems is an approach to facilitate the development of self-adaptive
systems. In detail, this novel concept consists of autonomously composing systems from
small reusable software components, according to metrics and events (numbers and labels
that represent the system’s health status and its operating condition) and user-provided
goals. This process ensures that software is autonomously composed as a response to ex-
ternal stimuli and user-desired goals. Next we present a definition of Emergent Software
System as it was first introduced in [42].

The realisation of Emergent Software Systems requires the existence of a system
goal G and a finite set of small software units SU . The goal G defines the main purpose of
the system (comprehending both functional and non-functional requirements) and SU is
composed of a variety of software units u. For some u ∈ SU , there exist implementation
variations of u, meaning that unit variants provide the same functionality in different
forms. For example, if the functionality is to compress a stream of bytes, there should
exist software units implementing variations of compression algorithms (e.g., gzip, zlib,
etc.). The functionalities are defined in the form of interfaces that define the available
functions the software unit offer or require, as well as the kind of data that can be passed
in or out of those functions. The software units are connected to each other through their
interfaces, connecting the units that require a specific interface to the units that provide
the same interface. This process of connecting software units is the result of software
architectural composition, forming a single instance of software in a single node.

The presence of variations of software units enables a variety of architectural com-
positions. This happens locally, in individual machines, but the same process can also be
used to compose distributed systems with emergent software running on a distributed in-
frastructure. In this distributed setting, each resulting software assembly influences how
an executing software on a given node interacts with others. The interaction of multiple
emergent systems running on distinct nodes constitutes the global system architectural
composition. In other words, there are no predefined specifications of the system topol-
ogy, protocols or data semantics; these are determined by local architectural composition.

Furthermore, the existence of unit variants allows the resulting system to be as-
sembled to achieve G in different ways, enabling the system to maintain the required QoS
in diverse operating conditions. Furthermore, some of the software units are required to
emit a stream of metrics and events. Metrics are numeric values that represent the health
status (e.g., performance) of the system and are also used as indicators of the satisfaction
levels of G. On the other hand, the events are used to classify the operating environment,
representing systems inputs and deployment characteristics such as CPU and memory
percentage usage. The classification of the environment is essential to enable a fair com-
parison among the metrics of multiple existing compositions, ensuring that the perception
of the system health of a given composition is compared to that of another composition in
a fair way, given that both were exposed to the same operating conditions.

Problem Statement: The problem that emergent systems have to solve is to learn the
composition of software units to best satisfy G at runtime. The system identifies its G
satisfaction levels by analysing the collected metrics, choosing the most suitable com-



position by analysing metrics within the same operating condition, characterised by the
collected events. The problem is aggravated by the need to involve multiple nodes to ac-
complish G. In a distributed scenario, the system must find the best global composition
to satisfy G coordinating local composition across the available nodes.

To conclude, the Emergent Software System paradigm differentiates itself from
other approaches to self-adaptive systems by incorporating an online learning approach to
compose software systems. This strategy is a step beyond current approaches. It reduces
the effort of creating the system, enabling the system to build its own understanding of its
components and operating conditions (i.e., its adaptation logic). Furthermore, the main
focus of Emergent Software solutions is in self-composition instead of self-adaptation. As
a consequence of this change of focus, the Emergent Systems paradigm is expected to cre-
ate software solutions capable of handling the increasing complexity of software systems
by postponing decisions that are commonly made in the systems design phase, pushing
software composition and design decisions to be made at runtime whilst the system is
exposed to operating conditions.

1.3.3. Emergent Software Systems Challenges

The definition of the Emergent Software Systems concept imposes some challenges when
implementing it. This section discusses the main challenges and their impact on the reali-
sation of Emergent Software Systems and their adoption to create large-scale self-adaptive
systems. These challenges were first introduced in [38].

Combinatorial Explosion: The Emergent Software vision is fundamentally based on
a combinatorial learning process. These systems are built from combining smaller com-
ponents into architectures and testing these architectures at runtime. As components are
added to the repository, the number of possible architectural assemblies increase exponen-
tially. This scenario becomes considerably worse when considering distributed systems,
where the global system architecture results from combining a set of individual software
architectures. Considering that adding one component to the repository exponentially in-
creases the number of possible architectures, this property has a cascading effect in the
distributed scenario when considering the amount of participating nodes in the system.
The global system architecture is the overall combination of the micro-architectures of all
participating nodes. To illustrate how quickly the search space grows in a distributed sce-
nario, consider the following example: Two identical web servers with 50 compositions
each running on two distinct nodes, and one load balancer with ten valid compositions
running on another node. The load balancer is responsible for forwarding requests to both
web servers. This system has 25,000 valid compositions (50∗50∗10). If we add another
web server node with 50 compositions, the number of global compositions increases to
1,250,000 (50∗50∗50∗10). This is an inherent property of emergent systems and a fun-
damental problem to be addressed in order to show the feasibility of the emergent systems
paradigm and guarantee its consolidation.

Coordination: Emergent systems are responsible for i) composing the system using
software units, ii) collecting perception data generated by the components at runtime and



iii) learning about the collected information. In a distributed setting, these systems can
operate in different locations with different “personalities”. The system can operate by
controlling arbitrary groups of nodes in the system. They can control the operation of
either individual nodes, in a completely decentralised fashion, or groups of any number of
nodes, up to all system nodes, thus providing degrees of centralised control. Additionally,
emergent systems can adopt different personalities, for example, by acting in an entirely
selfish manner according to a group’s local interests and ignoring the rest of the system, or
by acting in an altruistic way, making local decisions to benefit global system’s interests.

Behavioural Mismatch: In a distributed systems scenario, systems hosted in different
nodes might implement behaviours that do not match other interacting nodes. For ex-
ample, one system might encode different schemes of encryption algorithms, making the
nodes incompatible with each other. A trivial solution for this problem is to manually de-
fine rules or impose constraints regarding aspects of the system behaviour. As discussed
before, such a solution would be against the philosophy of emergent systems due to its
restraining nature, limiting the reinforcement learning process. Emergent systems should
have the freedom to explore and learn autonomously whilst simultaneously maintaining
the system in a globally valid composition.

Relative Fitness Landscape: In emergent systems, fitness landscapes are graphs rep-
resenting the fitness values of the available architectures executing on an operating en-
vironment. These graphs have an oscillatory shape where the highest peak represents
the architectural composition with the highest fitness value, meaning that it is the opti-
mal available architectural composition for the observed operating environment. Other
valid architectural compositions are formed with lower fitness values as components are
removed or replaced from the architecture with the highest fitness value. In the context
of an emergent software system, for different operating conditions (external stimuli), the
fitness landscape of the system changes, meaning that the fitness values of the available
compositions change, including the choice of a new composition as the most suitable one
when the environment changes. This scenario characterises emergent software systems
as having dynamic fitness landscapes. In [8], Cakar et al. define two types of dynamic
fitness landscapes, one influenced by external stimuli and the other influenced by the
system’s constituent components. Cakar et al. refer to changes in the fitness landscape
caused by the system’s internal elements as self-referential fitness landscapes.

Emergent software system’s fitness landscapes suffer from external stimuli and
the interaction of the components that form the system’s architecture. The fitness value
of a specific architecture is determined by the metrics and events generated by the sys-
tem’s components. Thus the perceived conditions are directly influenced by the executing
composition itself. This scenario makes it difficult for the system to differentiate real
changes from a distorted perception of the environment. The dynamic fitness landscapes
of emergent systems in tandem with the distortion perception problem represent a crucial
challenge to realise emergent systems.



Monitoring Data Quality: The poor quality of the metrics and events collected from
the system’s components may give the system a false perception of its performance and
operating conditions, misleading the system to accumulate false knowledge, which may
in turn trigger unnecessary adaptation or the selection of suboptimal architectures. In
addition, as a related challenge, the absence of important perception data hides trends in
the operating environment from the system. For example, the system may find its per-
formance degrading over time with no apparent change in the operating condition. This
scenario occurs when selected events do not match all essential aspects of the environment
that impact the system’s performance or when event averages are miscalculated, hiding
fluctuations in the environment. This apparent mismatch between how the system per-
ceives its environment and the actual environment directly impacts the emergent system’s
ability to locate an optimal architectural composition. Ideally, emergent systems should
detect such blind spots so that the appropriate adjustments can be made to give the system
a more precise perception of its environment.

1.4. Successful Projects
As a result of realising the Emergent Software System concept, we built a number of real-
world systems to evaluate our approach. In this section, we provide an overall description
of the three main projects developed to this date. These projects are open-source and
available for download. All instructions to replicate the results are also provided with the
code. We also provide references to previous publications where we detail the design,
implementation and evaluation of each of these systems, and analyse how they realise
the Emergent Software Systems concepts. The tools used to develop these projects are
described in Sec. 1.5.

1.4.1. Emergent Web Server

The Emergent Web Server is a fully functional Web server that implements the HTTP 1.0
protocol and appropriately handles HTTP requests. The Web server was entirely devel-
oped according to the concept of Emergent Software Systems. It can adapt and evolve its
internal composition to better handle requests according to the observed workload char-
acteristics. Its design and implementation are fully described in [37, 38, 45], where it is
used as a case study to explore and evaluate the concept. The emergent Web server is also
presented in a publicly available video1 that demonstrates its execution and performance.

The emergent Web server was initially explored with 42 unique ways to com-
pose its internal architecture and was exposed to various workload patterns. The results
show that the emergent Web server can converge towards the appropriate composition in
a timely manner and learn the best performing composition for different classified work-
load patterns, being able to recompose its internal architecture to the best performing
composition as soon as a previously seen workload pattern is recognised.

Later in this chapter (Sec. 1.5.4.1), the emergent Web server will be used as a
target system for the reader to experiment and practice with the concept and tools to
create Emergent Software Systems.

1To access the video, please visit: https://youtu.be/BBNvbC6w_3Y



1.4.2. Distributed Emergent Web Server

The Distributed Emergent Web Server is an extension of the emergent Web server. It also
consists of a fully functional Web server that implements the HTTP 1.0 protocol and can
serve content on the Web. The difference between this project and the emergent Web
server is that it can delineate parts of its architecture and relocate them to other machines
in a distributed infrastructure.

This project was used to explore learning in a distributed setting. The description
of the project and the results are described and presented in [39]. The paper also presents
the open-source code of the project to enable replication of its results. Besides the learning
approach evaluated in the context of a distributed emergent Web server, this project also
explores the potential of abstracting distributed compositions as actions to adapt the Web
server into different architectural compositions to be learned at runtime.

The distributed emergent Web server can learn, at runtime, and with no predefined
domain-specific knowledge, which Web server composition is the most suitable for the
observed operating environment. Besides that, the distributed emergent Web server can
also learn whether or not it requires running on multiple machines to handle the incoming
workload volume.

1.4.3. Emergent Microservices

The Emergent Microservices project introduces a novel approach for the implementation
of microservices using the concept of Emergent Software Systems. The project describes
the use of the approach to create a fully functional real-world microservice that can ap-
propriately handle incoming requests in a self-adaptive fashion.

The creation of Emergent Microservices aims at enabling microservices to adapt
and evolve their internal architectural composition to autonomously cope with workload
volume changes and workload pattern changes. The emergent microservice can evolve its
internal architectural composition to better handle incoming requests at runtime, with no
human interference.

The results of implementing and evaluating the approach are described in [43].
Rodrigues Filho et al. show that an emergent microservice can detect and adequately
adjust its composition to accommodate changes in the operating environment. The paper
also discusses the roles of engineers and machines in the design and evolution of future
microservice-based systems. A more detailed description of the emergent microservice is
presented later in this chapter (Sec. 1.5). We also use this project as a practical exercise to
familiarise the reader with the Emergent Microservices concept and the use of Emergent
Software Systems tools to build autonomic systems.

1.5. Perception, Assembly, Learning (PAL) Framework
This section discusses the realisation of the Emergent Software Systems concept. We
present a framework that facilitates and supports the creation of emergent systems fol-
lowing the definition given in Sec. 1.3. This framework was introduced in [42].

Emergent Software Systems can autonomously compose software architectures
from small and reusable software components according to the observed operating envi-



Figure 1.1. The PAL framework architecture [42].

ronment. To realise this concept, we built a framework with three main modules: Percep-
tion, Assembly and Learning (Fig 1.1).

The Assembly module searches for components in a repository, creates an in-
memory representation of all available architectural compositions the system can be as-
sembled into, and supports seamless adaptation from one composition to another at run-
time. The Perception module, in turn, generates and adds proxy components to the sys-
tem’s architecture to monitor the system’s health status and operating environment. Fi-
nally, the Learning module leads the entire autonomous software composition process
through reinforcement learning approaches.

The interaction among the three modules is depicted in Fig. 1.1. The framework
is organised in a multi-tier architecture in which the upper layers use the functions of the
lower-level layers to implement their own functions and provide higher-level functional-
ities. The multi-tier modular architecture ensures that each participating module imple-
ments a well-defined set of functionalities to the upper level. Although the main modules
are designed to be generic and useful in any application domain, this modular structure
allows each module to be replaced by a variant, when applicable, to explore the specifici-
ties of particular domains. This characteristic makes the framework flexible, facilitating,
for example, the experimentation and comparison of a variety of learning algorithms in
the Learning module.

The three modules have well-defined roles in the realisation of the Emergent Soft-
ware System concept. Their interaction results in a feedback loop that keeps the system
constantly observing its health status and operating conditions and learning the optimal
available system’s composition for the observed environment. The following sections fo-
cus on the implementation details and the functionalities provided by the PAL framework.

1.5.1. Assembly Module

This section provides details on the Assembly module, covering the component-based
model used to enable the concept of Emergent Software Systems and the functionalities



provided to the upper layers. The definition of Emergent Software Systems is based on
the composition of fully functional software architectures from small components. To
assemble components into functioning local architectures, the Assembly module searches
for components in the repository, gathers information about them (and their variants) and
assembles them into a fully functional system with composition options. The Assembly
module uses functions provided by a component-based runtime to execute component
replacement and composition at run time whilst abstracting the processes that support
software architecture composition and (re)composition used by the Learning module to
realise the reinforcement learning process. The following sections present the API func-
tions provided by the Assembly module and describe the role of a component-based model
in the autonomous composition process enabling architectural adaptation by component
replacement.

Component-based models are essential to support the concept of Emergent Software
Systems, mainly because they provide the necessary information about components to re-
alise autonomous software composition. The information provided supports autonomous
component connections to form functioning software architectures, avoiding random com-
ponent compositions and offline testing to find compositions that work. Furthermore,
since component models allow developers to express features through interfaces that are
explicitly defined when coding components, the component-based model eliminates the
need to use extra models to label the system code and define which parts of the system
are adaptive and how to adapt them (e.g. what features could be replaced and how to
replace them). For example, feature models (such as in [18]) are often used to represent
how pieces of code interact with each other, and how they could be replaced to support
adaptation. Such feature models force developers to detail the relationship between dif-
ferent parts of the system after implementing the system itself, increasing development
effort. On the other hand, the component-based model is a way to eliminate that need,
integrating essential information for component adaptation directly in the component’s
code. This characteristic reduces development effort during system design, facilitating
software adaptation throughout the entire system rather than limiting it to specific parts
that were previously modelled.

This work uses the Dana2 component model described in [36]. Dana is a general-
purpose programming language that inherently provides a component-based model and
runtime support for component adaptation in fine-grained complex modular structures.
Component-based models require the definition of interfaces and components. Interfaces
define function signatures (i.e., function names, return types and the list of parameters
with their respective data types). Each interface expects at least one component that im-
plements all functions defined in it. Components can provide implementation for multiple
interfaces and may require other interfaces to support their own implementation. Also,
multiple components might implement the same interface using different approaches.
Those are often referred to as component variants, and it is by means of replacing those
variants in an executing software that the adaptation process occurs. This “provides-
requires” policy is a central part of a component-based model, allowing the language

2Please refer to http://www.projectdana.com for more practical information on the language, its
component-based model and its online adaptation mechanism.



Figure 1.2. Example of interfaces and components. Note that Multiplication re-
quires an external interface (Addition) to complete its implementation. The code
is written using the Dana programming language syntax [42].

runtime to connect different components to create fully functional software. Software
evolution or adaptation is realised by replacing components in the resulting software ar-
chitecture at runtime without interrupting the system’s services. Moreover, as part of the
online replacement of a component, the system needs to examine the component’s depen-
dencies (i.e., its “requires” declaration) and perform further changes in its architecture to
add any components that are required to support the new one.

An example of the Dana language syntax and its component-based model is show
in Fig. 1.2. The figure shows two interfaces: Addition and Multiplication. Each inter-
face may comprise a number of function definitions, where each function is defined by
its name, return type, and a list of parameters with their types. The figure also shows two
components that provide the implementation for the two interfaces. The Multiplication
component is a simple example that illustrates a component implementation depending
on another interface. In this case, the Multiplication component relies on the interface
Addition to support its implementation. Therefore, whenever the Multiplication compo-
nent is used, any component providing Addition is required to be connected to it. Con-
sidering the use of these interfaces and components to create a Calculator program, if
multiple components provide the Addition interface, then any of those components can
be connected to the Multiplication component to make it work. Furthermore, we could
also assume the existence of a Multiplication component variant that, for example, does
not require the Addition interface, thus implementing the Multiplication interface in a
different way. Therefore, in this example, there exists a variety of architectural options to
realise the Calculator program, each option implementing the operation Multiplication
differently, by either connecting Multiplication with a variety of Addition components or
replacing Multiplication with a variant that does not require the Addition interface.

The Dana runtime provides basic functions to abstract the online architectural
composition and adaptation process. The abstractions provided by the language sup-
port, through single function calls, the realisation of software adaptation or composition,
involving: loading new components into memory, pausing an old component’s ex-



ecution, transferring component states (when applicable – i.e. replacing statefull
components) and connecting a new component with its required components. Dana
transparently executes the tasks mentioned above without further actions from the de-
veloper. The Assembly module supports these functions with low-level operations to
determine and control the composition and adaptation process at runtime. A list of the
functions provided by the Assembly module is detailed below.

The Assembly Module API:

• bool setMain(char compName[]): This function is responsible for start-
ing the assembly of the target system’s architecture. The Assembly module is ca-
pable of assembling an entire system’s architecture and its variations from a main
component.

• String[] getConfigs(): This function returns a list of the available archi-
tectural descriptions. These descriptions are string-based representations of archi-
tectures, containing a list of components and how these components are connected
in the architecture. Furthermore, these descriptions are used by the Learning mod-
ule to reason and learn about architectural compositions.

• bool setConfig(char configDesc[]): This function is used to change
the executing architectural composition to another at runtime. This function re-
ceives as parameter the architectural description of the new composition.

• char[] getConfig(): This function returns the currently executing software
composition.

• bool removeComp(char compName[]): This function removes a specific
component from the list of components being used by the Assembly module to
form the available software compositions. As a result, there is a decrease in the
number of available software compositions. This function expects the name of the
component to be removed.

• bool addComp(char compName[]): This function adds a component to the
list of available components. As a result, there is an increase in the number of possi-
ble architectural compositions. This function receives the name of the component,
searches for it in the repository and loads it into the Assembly module to create
future architectural compositions.

The setMain() function sets the procedure to compose the software architec-
ture and variations of it from a root component. The root component implements the main
function, i.e., the point where the program starts its execution. From that component, the
Assembly module extracts the name of the required interfaces. For each required inter-
face, the Assembly module searches the repository for components that provide it. Sup-
pose the Assembly module locates multiple components providing the same interface. In
that case, it gathers the component variants (i.e., the multiple components providing the
same interface). It attaches them to the interface creating an adaptation point, i.e., a point



Figure 1.3. An example of a generic architecture represented by the Assembly
module. This results from executing the Assembly module function setMain [42].

where there are multiple components to choose from. These adaptation points are repre-
sented in a tree, as shown in Fig. 1.3 for hypothetical interfaces A, B and C. After loading
all components that provide the interfaces required by the main component, the Assembly
module repeats the same steps for each of the loaded components. It continues with load-
ing components and their variants for the required interfaces until the entire architectural
tree is complete with the necessary components to realise at least one working software
composition, i.e., having at least one component providing every required interface.

A working composition consists in the selection of one component in each re-
quired interface on the tree (an example is shown in Fig. 1.3). The components marked
in blue in the figure are part of the currently executing composition. After loading com-
ponents and their variants, the Assembly module selects and runs a random architectural
composition. The example in Fig. 1.3 presents a total of 14 available architectural com-
positions. As show above, the Assembly also module provides functions to add new
components (which were not in the repository when setMain was first executed) and
to remove components as candidates to provide a specific interface, not allowing the re-
moval of components that have no variants. These two functions influence the number of
available architectural compositions. Furthermore, the Assembly module provides func-
tions to return a list of architectural descriptions of the available compositions, a function
to return the description of the currently executing composition, and a function to change
from one composition to another. These functions work by acting on information about
the available components, as structured in a tree (as exemplified in Fig. 1.3) and stored in
the Assembly module.

The Assembly module provides architectural descriptions to enable external mod-
ules to reason about the running software structure and change the running composition.
This text-based description provides information about the components that make up a
specific composition, along with their relationships, i.e., how the components are con-
nected. The architectural descriptions are helpful to the PAL framework for two main



reasons: i) they enable external modules to interact with the architecture variations built
by the Assembly module; and ii) they enable external modules to infer and reason about
information on the architectures. Thus, architectural descriptions facilitate the interac-
tions between the other framework modules (mainly Perception and Learning) and the
Assembly module. Since a description contains all the details to reassemble any archi-
tectural composition, they enable, for example, the Learning module to reason about the
available architectural compositions to understand the impact of specific components in
the architecture. Furthermore, the descriptions support the creation of different imple-
mentation versions of the Assembly module, in case a domain-specific version of the
Assembly module may perform faster in special scenarios, enabling these different ver-
sions to internally represent compositions in different data structures whilst maintaining
a consistent format for referencing valid software compositions.

An example of the architectural description is presented bellow:

|MainComp,CAb,CBa,CCa|MainComp : A : CAb,CAb : B : CBa,CAb : C : CCa|

This is the architectural description of the executing composition illustrated in
Fig. 1.3. The description has two main parts: the list of components and the compo-
nents relationships. On the left-hand side of the description, there is a list of all par-
ticipating components in the architecture. In the example, the list of components is
MainComp,CAa,CBA,CCa. The component relationships part of the description (on the
right-hand side) describes how the participating components are connected. The first re-
lationship, MainComp : A : CAb, tells that MainComp is connected to CAb through the
interface A.

1.5.2. Perception Module

The Perception module uses the Assembly module functions to enable the system to moni-
tor its health status and collect information about the operating environment. Furthermore,
the Perception module provides, through a RESTful API, both its own functions and the
Assembly module functions to external modules interacting with Perception. This facili-
tates access to functions that support the learning process, such as functions to change to
a new software composition, to get a list of possible software compositions, to add new
components or remove components, and to get the executing composition description
(i.e., Assembly functions), as well as functions to allow insertion, removal of monitoring
components (proxies) to extract monitoring information from the executing system (i.e.,
Perception functions). This section is divided into two subsections: the first one describes
the perception data (events and metrics), which represent the system’s health status and
classify operating environments. The second subsection describes a particular type of
component (proxies) that are autonomously generated and inserted into the software ar-
chitecture to collect metrics and events from executing compositions.

1.5.2.1. Perception Data (Events and Metrics)

The perception data (Events and Metrics) are data types through which the system rep-
resents its health status and operating conditions, which is essential information for the



Figure 1.4. Metric and Event data types in the Dana programming language [42].

system to learn about its internal composition and execution environment. The learning
algorithm uses these data to classify environments and determine the level of satisfaction
of the system’s goal, serving as the base for the system to learn and make design choices.
The metrics are used to represent aspects of system health status (e.g., performance, secu-
rity level, and so on), while events are created to store the values of environment features
(e.g., input patterns, hardware characteristics). In tandem, the Learning module uses both
events and metrics to realise its reinforcement learning approach. As an essential charac-
teristic, both data types (see Fig. 1.4) were designed to capture information regardless of
the application domain, enabling the PAL framework to learn about any target system by
setting the appropriate event types and metrics to ensure a satisfying learning outcome.

The metric data type is composed of the name, value and preferHighValue
attributes. The name attribute represents the aspect of the system that is being mon-
itored. This field may be set as ‘response time’ or ‘the number of active threads’ or
any other string that represents aspects of the system that can be quantitatively mea-
sured and monitored. The value attribute stores the corresponding value associated
with the metric. For example, for ‘response time’ the system may store a value in mil-
liseconds representing the time that the system takes to process incoming requests. Addi-
tionally, metrics are used to represent system status and express the system’s goals. The
preferHighValue, when set to true, tells the system to find the architectural compo-
sition that maximises the value attribute. Contrarily, when preferHighValue is set
to false, the system searches for the composition with the lowest value attribute. name
and preferHighValue are often manually defined by a domain expert, and the system
obtains the value as it executes. Note that it is possible to create multi-goal Emergent
Systems using the concept of metrics. However, we focus on showing the feasibility of
the Emergent Software Systems approach and not to explore the autonomous optimisation
of multi-goal systems.

Events are used to represent different features of the operating environment. The
event data type represents features with the following attributes: name, type, and value.
The name attribute stores the name of the feature; for example, in cases where it is im-



portant to characterise request patterns, a possible event type could be named as ‘request
type’. The attribute type defines the data type of the environment feature. In our request
pattern example, this attribute could be set to ‘text’ when the system received requests to
retrieve text files, or ‘image’ to represent different labels of the same ‘request type’. Fi-
nally, the attribute value quantifies the observed attribute. For example, it stores the size
(e.g., in bytes) of the requested files. This allows the system to understand the operating
environment it is running on, in this example, by understanding how differences in the file
size of certain request types affect system operation. The name values are often manu-
ally defined at design time, while the type and value are collected from the executing
target system.

After collecting events and metrics from the executing system, other important
attributes can be inferred: the number of times a certain attributed was perceived (e.g.,
number of requests for text files). This could be essential information that assists the
system in determining whether an event is recurring or not, which might be an essential
aspect to characterise the operating environment. Another critical piece of information
is the time when the metrics and events were collected. Time-stamped data enables the
system to establish a timeline with information on how the system and the operating
environment behave in a time frame. The collection of events and metrics is done by
proxies, which are components that are autonomously generated to collect (and time-
stamp) information about the system.

1.5.2.2. Proxy Components

Proxy Components are essential elements in the Perception module. They are responsible
for extracting events and metrics from the system and operating environment. A proxy
component complies with the same policy of other components in a component-based
model. Thus, with regards to the Assembly module, it is indistinguishable from other
components in terms of code structure, syntax, and connection to other components. The
only difference is that proxies are annotated to allow the Assembly module to locate them
and extract the collected metrics and events and to avoid connecting two or more proxy
components.

A special characteristic of proxies is that they need to provide and require, at the
same time, the interface the proxy is supposed to monitor. By requiring and providing
the same interface, the proxy component can be inserted between two components; one
that requires the interface (e.g. component A) and another that provides the interface
(e.g. component B). Then the proxy can intercept function calls from A to B and extract
information from their interaction. Fig. 1.5 illustrates a proxy component inserted in the
system.



Figure 1.5. Proxy component inserted in the system’s architecture [42].

The Perception module was designed to support a proxy-based monitoring solu-
tion, mainly because proxies are non-intrusive, i.e., they do not require code to be inserted
into the monitored component to extract information for the system. Thus, it is possible
to separate the code responsible for monitoring a specific component from the component
itself, not requiring component developers to code functions to monitor the component,
avoiding it becoming incompatible with the applied learning algorithm. Furthermore, this
separation of concerns (component code and monitoring code) also makes the compo-
nent development process more flexible, eliminating the need for a model to dictate how
components should be coded to enable their monitoring.

This proxy-based approach implemented by the Perception module also enables
the autonomous generation of proxy components at runtime, according to the necessity
and goals of the Learning module. Proxy generation is further detailed next. Furthermore,
considering that a Proxy component is generated to monitor target interfaces rather than
components, and that multiple components might require the same interface throughout
the system, a Proxy Expression Language was designed to allow the Learning module to
express precisely what interface to place the proxies in the system structure. The Proxy
Expression Language is also described in detail in what follows.

The Proxy Generation Process gives the system flexibility by autonomously generat-
ing the appropriate proxy components for the goals of the Learning module, regardless
of the system, the application domain or the components to be monitored. The Learning
module triggers the proxy generation process. Once it obtains the system goals and the
available architectural compositions, the Learning module triggers the proxy component
generation process. This generation process requires as input the target interface and com-
ponents responsible for generating the metrics and events to be collected from the target



interface components.

The Perception module provides a range of components that implement the col-
lection of specific metrics and events and allow the creation of new metric/event-collector
components. For example, to collect the response time in milliseconds, component Res-
ponseTime offers the code necessary to collect such metric. This component provides
a timer that is triggered right before the function is invoked and stopped right after the
function finishes processing, returning the calculated time the function took to execute.
The same applies to collecting event information. An example event is, in the context of
a system that handles HTTP requests, the collection of MIME types from incoming re-
quests. The component MimeType is also implemented and provided. This component
provides a function that receives the request in a raw-text format and returns the extracted
mime-type of the requested resource. Both components described above are provided by
the Perception module. As new components of this kind are implemented, the Perception
module makes them available to be used in the generation of proxy components.

The metrics and events generated in the proxy are timestamped once created and
stored in an object named Container. This object is responsible for averaging the
metrics and events of the same type, updating the ‘count’ variable to express the number
of occurrences of a specific event or metric, and making them available to the Perception
module, which, in turn, formats them into a JSON string as perception data to send to the
Learning module upon request. Note that averaging event and metric values is essential
to reduce the amount of data stored in the proxy component.

Proxy Expression Language: Proxy components focus on monitoring interfaces rather
than particular components. The reason is that a proxy designed to monitor an interface
monitors a standardised feature and thus can monitor all component variants that pro-
vide such feature, independent of individual component implementations. Furthermore,
suppose that the system adapts its architectural composition, from an implementation of
the monitored component to one of its variants. In that case, the Perception module can
replace the component without replacing the proxy, reducing the number of changes per-
formed by the Assembly module. The main problem of monitoring interfaces rather than
components is that an interface can be required by multiple components in the software
architecture. As a result, when placing a proxy to monitor an interface, the Perception
module actually needs to place multiple proxies to monitor every component that requires
that interface throughout the architecture, thus impacting the performance of the system.
The Proxy Expression Language was designed to provide fine-grained control over the
process of proxy placement, while avoiding the need for the Learning module to indicate
what component (instead of interface) should be monitored every time an architectural
change occurs.

The Proxy Expression Language (PEL) is a tool to precisely express where to
place proxy components in the architectural composition. The Learning module uses this
language to ensure that the generated proxy components are kept in place, monitoring
the intended interface even as the software compositions are constantly changing. The
Perception module is responsible for interpreting the expression and making a list of ar-
chitectural compositions without proxy components, associating these compositions with



their equivalent compositions with proxy components added at the right places (interfaces
or components) according to the expression created by the Learning module. Therefore,
whenever the Learning module requests the software composition to be changed, the Per-
ception module compares the new architecture description with the list of equivalent com-
positions and decides. Suppose the new composition matches one of the compositions in
the list. In that case, the Perception module changes the software composition to the
corresponding new composition with the proxy component in the right place according
to the expression. This strategy enables the Learning module to work with architectural
descriptions with no added proxy components. The Perception module is responsible for
applying the PEL expression provided by the Learning module once (before it starts the
experimentation process) and transparently adding proxy components to the appropriate
places in the software architectural composition.

The language provides levels of control to the Learning module when placing
proxy components in the system, allowing it to place proxies for only one specific com-
ponent, or for all components that require an interface, or any level between the two, for
example, by placing a proxy component to monitor an interface but only if a specific com-
ponent requires that interface (as opposed to every component that requires that interface).
The Learning module can thus create expressions as generic or as specific as needed, hav-
ing the Perception module to use that expression against the architectural description to
determine the place to add the proxy components in the software architecture. Adding
multiple proxy components to different software architecture parts gives a clearer per-
spective of the system status and its operating environment. However, it adds overhead
to the processing and collection of events and metrics, impacting system performance.
Thus, an essential challenge in adding proxies to the software architecture is identifying
the number of proxy components and their optimal placement to reduce the number of
proxies whilst maximising the quality of collected data. Considering that, in an Emergent
Software Systems architecture, a component calls functions on lower-level components
(as shown in the component graph of Fig. 1.3), by placing proxies at the highest possible
level, the monitoring proxy can calculate the time a stack of function calls takes to exe-
cute. This is not a general rule and may vary according to the architecture. An exception
to this scenario is when, at some point in the function call stack, a function is called to be
executed in a different thread.

1.5.2.3. The Perception Module API

The Perception Module API is presented below:

• void addProxy(char exp[]): This function receives as parameters an ex-
pression in the Proxy Expression Language (PEL) format that determines where
the proxy should be inserted into the software architecture. At the end of this func-
tion’s execution, the user should expect the monitoring proxy to be inserted into the
systems architecture;

• void removeProxy(char exp[]): This function removes inserted moni-
toring proxies. The function receives as parameters the same expression used to
add the proxy in the system and uses it to remove the proxy;



• char[] getPerceptionData(): This function returns the collected metrics
and events from the executing system in a JSON format;

These are the main functions provided by the Perception module. Note that, due
to the dependency of the Perception module from the Assembly module (the Perception
modules uses the Assembly module functions to implement their own), any component
that interacts with the Perception module will have access to both the Perception module
functions and the Assembly module functions.

1.5.3. Learning Module

The Learning module is responsible for guiding the learning process, which is crucial to
the realisation of Emergent Software Systems. This module uses the lower level modules
(Perception and Assembly modules) to trigger the deployment and composition process
and to request Proxy generation by selecting Metrics and Events generators according
to the system goals. It controls the entire online learning process, triggering the ex-
ploration and exploitation phases, classifying the operating environment and identifying
the most suitable architectural composition. This section describes the learning process
(exploration and exploitation phases), showing three learning strategies: i) the Baseline
approach, ii) the Feature-based approach, and iii) two Multi-armed bandit approaches.
Furthermore, this section also describes an environment classification algorithm.

The learning process executes with no prior knowledge about the target system nor
any information about the operating conditions to which the system will be exposed. The
main task of the Learning module is to understand the correlations between the assembled
collection of components (the system’s behaviour) and the system’s perception of its per-
formance in each identified operating condition. The Learning module executes its main
task by requesting the Assembly module to change the system’s architectural composition
in order to experiment with the identified changes in the operating environment. It then
observes its performance and the operating conditions through the Perception module.

1.5.3.1. Learning Algorithms for Emergent Software Systems

The generic approach to realise learning in Emergent Software Systems involves three
main tasks. Firstly, the system must be able to characterise and classify features in its op-
erating environment (derived from the stream of events being emitted) so that the perfor-
mance of different compositions can be compared in equivalent environments and so that
the learning module can “remember” which compositions work best in each environment
(i.e., to save re-learning each time a recurring environment is encountered). Secondly,
after finding the most suitable architectural composition for the perceived environment,
the system exploits the optimal composition whilst observing the environment and the
its own performance to detect any changes and trigger learning again, in case it detects
unforeseen changes. Finally, as in any online learning system, the learning module must
balance the trade-off between exploring options for which there is insufficient information
and exploiting options already known to be good [49]. This third task is essential because
the emergent software framework operates on live software, and sub-optimal performance
has real consequences.



Performing online reinforcement learning is highly challenging. The software is
not in control of its operating environment and cannot know in advance when it may
reliably compare any two software compositions against the same operating condition.
Moreover, there are complex interactions between the exploration process itself and the
environment, as selecting a “good” composition may impact the system performance and
change the perceived environment. The explored learning approaches are reinforcement
learning [49] algorithms tailored to our particular problem space. The learning approaches
presented in this section continually discover optimal assemblies by exploring the search
space while simultaneously classifying observed features of the operating condition into
labelled environments. The Baseline approach explores all available compositions before
opting for the best performing option. This approach is presented as a baseline to com-
pare with other learning strategies because it is guaranteed (when operating conditions
are maintained during exploration) to find the optimal global composition. The Feature-
based approach, on the other hand, explores the search space analysing features instead of
individual compositions. Thus it reduces the search space by focusing on representative
compositions of available features. This approach relies on domain-specific assumptions
and is scalable to support learning in large search spaces (i.e., with a large number of
system composition options). Finally, the Multi-armed bandit approaches differ from the
above strategies by adopting better strategies to balance the exploration and exploitation
phases. They also consider fluctuations in the performance metrics collected from the live
system, making these approaches more robust. If a drastic fluctuation on a performance
metric of the system occurs, the baseline and the feature-based approaches may converge
towards a suboptimal system composition.

The Baseline Algorithm applies a standard “exploration activity” to both characterise
the current environment and identify the best composition for that environment. The sys-
tem triggers exploration whenever it encounters high uncertainty in its decision-making
process – where this uncertainty comes either from (i) having no information at all (i.e.,
after system startup), (ii) the current environment characteristics deviating outside the
expected ranges from existing experience, or (iii) current system performance deviating
beyond its expected range.

The exploration activity tries every possible composition for a fixed-length “ob-
servation window” wt , such that the total time spent exploring is:

wt∗ length(getConfigs())

The observation window wt is defined according to the application domain. A reason-
able time frame value (wt), based on previous investigation, is 10 seconds for high quality
learning results. The getConfigs() function is provided by the Assembly module and
returns all available software compositions. After trying every composition, the learning
module then characterises the data collected over the entire exploration process to deter-
mine the best course of action.

Specifically, after an exploration activity, the learning module selects the best-
performing composition for use and enters its exploitation phase. The selected action
continues to be monitored and analysed for its suitability every wt time units. A change



in the operating environment is detected if either (i) perceived events during wt show
that this is a different event pattern or (ii) perceived metrics during wt show degraded
performance. This detected change in the operating environment also triggers a change in
the learning behaviour, forcing it to start exploring again. The algorithm waits for wt ∗3
of consistently observed behaviour to avoid frequent oscillation between exploitation and
exploration phases before changing its current course. In case (i), if the detected event
pattern has been previously seen, the best matching composition is simply selected. In all
other cases, new exploration activity is triggered. This process of exploration/exploitation
repeats continually, where the amount of exploration reduces as fewer new environmental
conditions are seen. Note that this learning algorithm, based on an exhaustive exploration
phase, is not designed to scale up to large systems with thousands of compositions but
rather serves as a proof-of-concept and useful baseline against which to compare more
sophisticated algorithms.

The Feature-based learning strategy is an alternative solution for the Learning module.
Instead of experimenting with all available architectural compositions, the system exper-
iments with representative architectures for a specific feature. A feature is a functionality
defined by an interface and, therefore, in this context, the words feature and interface are
used interchangeably. A variety of components can be created to provide a single feature
by implementing the same functionality differently, requiring, for example, other features
(sub-features) in their implementation. The algorithm exploits that property by choosing
the component variant for a specific feature F considering the sub-features required by
the component variants of F .

Furthermore, the algorithm does not try all variants of all features (interfaces) in
the system’s architecture. Instead, it only tries component variants for the most suitable
features, testing only one component variant for features that were not suitable for the
operating environment. Therefore, this approach reduces the search space and supports a
faster learning process, providing a more scalable solution. However, this approach relies
on the assumption that the worst component variant for the best feature is better than any
component of the other features, which might not be true for every application.

This strategy maintains the essence of the reinforcement learning algorithm, i.e.,
the entire process described in the baseline strategy still applies. The only part of the
algorithm that the feature-based strategy changes is the selection of the next composition
to be tested. In the baseline approach, the algorithm tests them all. The feature-based
approach navigates through the software architecture from top to bottom, deciding on the
component variants it encounters for each feature (interface) with multiple component
variants. Once it determines the best component variant for a feature, it traverses the
tree downwards considering only the chosen component variant, eliminating the branches
that correspond to the remaining (not selected) variants. This process continues until
the algorithm decides on every component variant of every feature it considers relevant,
resulting in the optimal discovered architecture. The rest of the algorithm, including the
environment classification and the details of the exploitation phase, are the same as in the
baseline approach.

The description of the Feature-based approach as well as an evaluation of its per-



formance is detailed in [42]. The algorithm considers a tree-like structure that represents
all architectural compositions for the software, as illustrated in Fig. 1.3. Considering a
tree-like structure representing the available architectural compositions, the algorithm se-
lects the first interface (down from the root) with component variants. Note that Emergent
Systems only have composition options if and only if there exist component vari-
ants for at least one required interface. The system has no option for required interfaces
with only one component implementing their functionalities. Therefore, the algorithm
navigates the tree from top to bottom, determining the best component variant only for
the required interfaces with more than two alternative components implementing them.
The algorithm tests all interfaces (that have component variants) required by a selected
component at a higher level, ignoring the interfaces required by components that were
not selected at any level of the tree. The selection of component variants in each required
interface is carried out by executing architectural compositions containing the component
variants and selecting the variant in the best performing architecture. Once a component
variant is selected, it becomes part of the “optimal” composition. Then the algorithm
moves on to the next interface with component variants, following the branch defined
by the selected component. This process is repeated until there are no more interfaces
with component variants, making the composition containing all selected components the
“optimal” composition.

A quick performance comparison between the baseline and feature-based algo-
rithms shows that the feature-based strategy converges much faster. Considering the ab-
stract architectural compositions of Fig. 1.3, the baseline approach takes wt ∗14 time (2.3
min for wt = 10 secs) to explore all possible compositions. For the Feature-based strat-
egy, considering the worst case scenario, the algorithm explores compositions in wt ∗ 11
time (1.8 min for wt = 10 secs). Considering the best case scenario, the Feature-based
approach takes wt ∗ 5 time (50 secs for wt = 10 secs), in case the best feature is B (com-
ponent CAa) rather than B+C (component CAb). The average case, in this example, is
when the best feature is C (component CAc), resulting in an execution of wt ∗7 (1.16 min
for wt = 10 secs). In this particular example, the best case scenario for the feature-based
approach has a significant advantage over the baseline approach. The worst case scenario,
however, is not as significant, having a difference of only 30 secs (and not guaranteeing
global optimality). However, if we consider that, for every exploration phase the baseline
approach always executes in 2.3 secs (considering wt = 10 secs), the feature-based search
is still very advantageous. A more expressive scenario, using a real system as example,
is described and explored in [42], showing the advantages of the Feature-based search
approach.

So far, the presented algorithms were specifically developed to realise the Emer-
gent Software Systems concept. Next, we present two pre-existing algorithms, describing
their use to build Emergent Software Systems.

Multi-armed Bandit is a well-known problem in statistics with many proposed algo-
rithms to solve it [5, 9, 48, 50]. The solutions consist in balancing the exploration and
exploitation phases. This balance is widely studied and very important in reinforcement
learning strategies. In the multi-armed bandit problem, we consider multiple slot ma-



chines, just like those found in casinos, that give a particular reward whenever their arms
are pulled. Each machine has a probability distribution function over the presented re-
ward, meaning that each time an arm is pulled, a different reward may be presented. Some
machines may be more inclined to have a higher probability of presenting high rewards.
The problem consists in discovering which machine is most likely to yield the highest
average reward. The probability distribution function of each machine is not previously
known. The solution should explore the available machines to get their rewards and learn
their probability distribution functions. However, as the solution gathers information on
the rewards of some machines, it should also exploit the machine (or set of machines)
which are known to yield high rewards up to that point.

Modelling the Emergent Software Systems learning problem using the multi-
armed bandit model is useful for two main reasons. Firstly, it allows the use of well-
studied algorithms known to provide the solution. The advantage of using such algo-
rithms is that they have theoretical guarantees regarding convergence towards the optimal
solution. Although the theoretical convergence occurs in infinite time, it is guaranteed
that the algorithm will eventually converge towards an optimal solution. Secondly, the
fluctuations over the reward signal match the fluctuations of collected metric values from
running systems that are never fixed on a specific value but rather slightly fluctuates over
a range. That means that when an executing system is queried for its execution metrics
(the metrics that allow the evaluation of its performance) the metric readings are never a
fixed number, it always varies slightly as it is queried.

In the context of emergent software systems, pulling an arm means that an action
is being performed on the running system to change its architecture from one composition
to another. The bandit algorithms explore the available systems compositions at runtime
to find the composition that yields the best performance. Considering that the system is
in production, the algorithm must carefully balance the exploration (i.e., finding the best-
performing composition) and exploitation (i.e., taking advantage of the best-performing
composition) phases. This balance is crucial to avoid overly affecting the performance of
the running system while it handles incoming user requests.

The two main bandit algorithms used to realise Emergent Software Systems are
Upper Confidence Bound (UCB1) [4] and Thompson Sampling [9]. This section de-
scribes the working mechanisms of these two solutions and how they are used in the
context of realising emergent systems.

Upper Confidence Bound (UCB1) is a well-known and widely used algorithm
to solve the multi-armed bandit problem. The algorithm works as follows: it starts by
taking action (i.e., pulling an arm), then it waits until it receives a reward, it normalises
the reward, and then it calculates what action should be taken next based on its equation,
for every single available action. The action that yields the highest value as a result
of calculating the equation becomes the following action to be taken. The equation is
described and shown below:

rk +
√

2lnn
nk

The variable k indicates a certain action. It ranges from 0 < k ≤ total number of



actions, each action in an emergent systems context is a unique architecture composition.
The variable n indicates the total number of times the algorithm performed actions (i.e.,
selected any architecture composition). The nk term indicates the number of times action
k was selected. The first part of the equation defined by rk represents the average reward
of choosing action k. The squared root part of the equation determines the algorithm’s
confidence level on a certain action k. The algorithm calculates the result of the equation
for every single available action. The action that yields the highest value from the equation
becomes the algorithm’s next action. This process repeats while the system is executing,
and at some point in time, when the algorithm converges, the action that yields the highest
average reward will always be chosen from that point on. After convergence, the average
reward value for every action becomes too large, and the squared root part of the equation
(i.e., the confidence level of the algorithm on each action) becomes too small that it cannot
force the algorithm to take any other action, expect the best one.

The confidence level is inversely proportional to the squared root part of the algo-
rithms’ equation. That means that as the algorithm gains confidence in a specific action,
that second part of the equation yields a minimal value, and therefore it interferes less
on the action that will be chosen. On the other hand, if actions are neglected (i.e., not
chosen for a long while), the confidence level of the algorithm to take such actions drops,
meaning that the resulting value of the squared root part of the equation increases, forc-
ing the algorithm to choose the action. In this particular regard, the equation dictates the
primary mechanism on which each UCB1 algorithm operates, making it balance between
exploring and exploiting the available actions as it increases the algorithm’s confidence in
the returned reward of a specific action.

We refer the reader to [39] for further detail on the approach, including an example
and the evaluation results of its use in the Learning module of the PAL framework.

Thompson sampling is another algorithm that solves the multi-armed bandit prob-
lem. The difference between this algorithm and UCB1 is in the mechanism of balancing
the exploration and exploitation phases. Instead of being guided by the UCB1 equation,
each action in the Thompson sampling approach is selected with the probability of it being
the best action given the history of the algorithm’s actions selection.

In detail, the algorithm considers a probability distribution over the reward of each
action with densities given by bell curves. That means that the centre of the bell curve
is history of the average reward on that action, and the spread of the curve is the level
of uncertainty (i.e., high uncertainty is a result of few attempts at a specific action). For
an action to be selected with Thompson sampling, the random sample from its bell curve
must be higher than the corresponding samples from all other actions. This is true if
either the centre point is high or if the spread is large, corresponding respectively to the
high average observed rewards or high uncertainty.

As a result, the algorithm selects the most likely actions or actions that are likely
to perform well, but the algorithm has less information (i.e., the algorithm is less confident
about). The rest of the algorithm is very similar to the UCB1; the algorithm selects an
action, observes its reward, normalises its reward, determines which action should be
taken next according to its probability of yielding high rewards, then selects the next
action and repeats. At some point, as the system executes, the algorithm gathers enough



information on the probability distribution of each action, so that it knows with a high
degree of certainty which action will yield the highest reward.

For an example of the use of this approach to create an emergent web server,
please see [37].

1.5.3.2. Environment Classification

Environment classification is an important part of the learning process. The Learning
module classifies operating environments for two main reasons: i) to compare architec-
tural compositions exposed to equivalent external stimuli to guarantee fair comparisons,
and ii) to ‘remember’ the best software composition for previously seen conditions to
avoid unnecessary re-learning. The process to classify environments is very challenging.
That is mainly because the executing architectural composition may distort the perceived
conditions. These distortions create the illusion of changes in the environment. For ex-
ample, the system may perceive a workload volume increase, when in reality, it is the
running architecture that can process more requests in less time. This phenomenon is de-
scribed in Sec. 1.3 and it is referenced as self-referential fitness landscapes. This section
describes the environment classification algorithm used in tandem with the Baseline and
Feature-based learning approaches.

After collecting information about the explored architectural compositions, the
Learning module receives a list of Events and Metrics attached to each executed compo-
sition. Based on that information, the system classifies the operating environment. This
approach minimises the effects of environment distortion by classifying environments
using ranges. The algorithm creates ranges for each collected Event and Metric, with
minimum values defined by the lowest perceived values for the event or metric and max-
imum values defined by the highest value registered by the compositions, as illustrated in
Fig. 1.6.

Fig. 1.6 illustrates the classification of two operating environments obtained from
the tests with the emergent Web server; these results are detailed in [45]. Consider a Web
server program and the operating environment as the patterns of requests handled by the
server. The first environment consists of large-size text file requests with low variations,
i.e., the majority of text files requested were repeated files. The second environment,
on the right hand side of the figure, consists of large-size image file requests with low
variation (i.e., large volumes of requests to repeated files).

During the exploitation phase, the system has already selected the best option to
execute under the perceived operating environment and only observes metrics and events
collected from the executing architectural composition. If the collected values are within
the ranges established by the environment class, and if there is no extra event type and
value (e.g., within a pattern of text-only requests, a few video requests start appearing),
then the system understands that the environment has not changed. On the other hand, if
the collected values are outside the range of any event type or metric (e.g., the system has
a significant performance decrease), then after three iterations (the threshold to trigger
exploration or architectural changes), the system compares the values it perceives with
previously defined environments, in case these values are within all the ranges established



Figure 1.6. Example of classified environments using ranges of collected Event
and Metric values. The first environment consists of requests of large-size text
files with low variation. The second environment consists of large-size image
files with low variation [45].

in classified environments, the system changes to the composition attached to the new
environment. Otherwise, the system triggers exploration.

This range-based classification approach has some limitations. For a more accu-
rate classification of environments, for instance, this approach works best when there are
no changes in the environment during exploration, as it is demonstrated in [45]. Also,
it is difficult to “remember” environments when there are overlaps among their defined
ranges, preventing the system to accurately determine the operating environment based
only on data collected from a single architecture (which is often the case to trigger ex-
ploration or composition changes during exploitation phase). Furthermore, as with any
current machine learning approach, this approach suffers when essential features of the
environment are not defined as Events, leaving, for example, two or more distinct en-
vironments to be classified as the same. As previously mentioned, the implementation
of the Emergent Software Systems learning approach is very challenging, with several
open issues to be addressed. Therefore, further research is required to better explore and
overcome the range-based environment classification issues.

1.5.4. Practical: Using the PAL Framework

This section covers the main ideas and concepts of a set of practical exercises that aim to
familiarise the reader with the presented framework. Note that all the details of the practi-
cal exercises along with the code for the PAL framework and the detailed instructions on
how to install all the necessary software to run the exercises are available on Github3. The
framework and the target system were developed using the Dana programming language.
All code presented in this section is written in the Dana programming language4.

3https://github.com/robertovrf/sbrc21_minicurso
4https://projectdana.com



Figure 1.7. Emergent web server architecture.

The practicals presented in this section aim at providing hands-on experience to
the reader on creating emergent systems. We begin by describing the target system on
which practical will be based. We introduce the components used throughout the practical
and describe the module that allows the target system to learn to self-adapt without human
interference or predefined domain-specific knowledge.

1.5.4.1. Emergent Web Server

This section focuses on the emergent Web server as the target system. The Web server is
developed using the Dana programming language following its component-based model.
The Web server consists of four primary interfaces that define its main functionalities.
There are component variants for some of these four interfaces, i.e., components that im-
plement the same interface but in a slightly different manner. These component variants
enable the recomposition of the web server architecture, maintaining its main functionali-
ties but behaving in a way that may impact the Web server’s performance when subjected
to different request patterns.

Fig. 1.7 shows the Web server architecture. The outer dotted boxes represent the
interfaces, while the inner boxes represent the components that implement the respective
interface. The main interfaces are the RequestHandler, HT T PHandler, Compressor and
Cache. The RequestHandler interface defines how the Web server handles TCP requests.
For that particular interface, there are two components that implement that functional-



ity. The first component, also named RequestHandler, creates a thread to handle each
TCP request. The component variant, named RequestHandlerPT , maintains a pool of
threads instead and assigns incoming TCP connections to an existing thread to handle the
incoming request.

The interface HT T PHandler defines the functions necessary to handle HTTP re-
quests. For that interface, there are four component variants: HT T PHandler, which
implements the functions to handle HTTP requests with no additional optimisations;
HT T PHandlerCMP, which compresses the response before sending it to the client;
HT T PHandlerCH, which caches the response after sending it to the client; HT T PHand−
lerCHCMP, which compresses the response before sending it to the client and caches the
compressed response in memory.

The remaining interfaces, Compressor and Cache, define the functionality of both
compression and caching. Both interfaces are used by the components that implement
the HT T PHandler interface and require compression and/or caching. For the compres-
sor interface, the GZip component implements the gzip compression algorithm. For the
cache interface, in turn, each component variant implements a different cache replace-
ment algorithm (to replace cached items when the cache is full and a new item needs to
be cached). The cache implementations are: Least-Frequently Used (LFU), Least Re-
cently Used (LRU), Most Recently Used (MRU) and Random Replacement (RR).

The set of components illustrated in Fig. 1.7 are used to compose a functioning
Web server capable of serving files located in the htdocs folder. To compose a fully
functional Web server, one component for each of the interfaces must be part of the appli-
cation architecture. The adaptation of the Web server consists of swapping at runtime one
component to a variant component that implements the same interface. For instance, we
enable the adaptation of a Web server composition that uses the HT T PHandler compo-
nent variant that implements the HT T PHandler interface to the HT T PHandlerCH that
caches the response after sending the response to the client. In the new composition, the
Web server performs better when the workload pattern has many repeated requests that
result in the same response.

In the Github repository that hosts the code for the practicals, the reader will find
the Web server code in the repository folder and the instructions to run it with a specific
fixed composition. In the next section, we describe a component that enables the reader
to interact with the Web server and its various compositions.

1.5.4.2. Interactive Emergent System (IES)

The Interactive Emergent System (IES) is a command-line tool that provides access to
the PAL framework. Its goal is to allow the user to interact with the framework modules
through the command line to inspect and control a running emergent system. In this part
of the practical, we expect the reader to run IES and use it to compose the emergent Web
server (explored in Sec. 1.5.4.1), change it from one composition architecture to another
as it executes, and collect response time information from the executing Web server.

To execute IES, it is necessary to provide, as parameters, the path to the root com-



ponent of the Web server. A detailed description of how to execute IES to start the web
server is provided in the companion Github repository. Once the IES starts, it calls the
Assembly module function setMain(), which triggers the Assembly module to search for
the components to compose the Web server, including its several architectural composi-
tions. After the Web server is loaded and one of its compositions is executing, the IES
presents a command prompt that enables interaction with the framework functions.

The user can call any function of the ESS framework modules through the IES
command prompt. For instance, the user can list all Web server compositions found
by the Assembly module (through the Assembly function getAllConfigs()) and change
the executing Web server architecture to any of the available compositions in the list
(setConfig(config)). The user is also able to query the running Web server (getConfig())
and collect information on the performance of its current composition (by calling the
Perception function getPerceptionData()). Note that the Web server executes normally
during the IES execution, and clients can issue HTTP requests to it at any time. Requests
to the Web server can be issued from a regular web browser or through a client program
that is also available in the repository.

We expect the reader to explore all functions provided by the PAL framework
modules and familiarise themselves with the capabilities provided by the framework.
Next, we explore the execution of the PAL framework to realise the emergent Web server,
showing the potential of the emergent software systems framework to autonomously com-
pose systems and learn the most suitable composition for different operating conditions.

1.5.4.3. Emergent Web Server

This section presents the third and practical exercise, which provides hands-on experience
executing the emergent Web server. This exercise consists in executing the PAL frame-
work targeting the Web server and experimenting with different operating conditions for
the target system as it learns the best composition for each operating condition. We ex-
pect the reader to execute the framework and observe how it operates. We welcome the
reader to develop different operating conditions (by creating different clients for the Web
server) or to create new components to allow for further architecture variants. After such
additions to the experiment, we expect the reader to test the framework to see if it locates
the best composition for the new setting.

In this practical, the reader should execute the emergent Web server using the
Interactive Emergent System tool. After the Web server is loaded, the reader should start
a client program that generates a workload for the server. As the web server handles
the requests, the reader should start the learning process and observe the system as it
learns the optimal composition with no predefined domain-specific knowledge or human
interference. Once the learning converges, the reader can choose a different client that
generates a different workload pattern, in order to see if the learning can detect the change
and converge to the new optimal composition.

We also encourage the reader to interact with the IES tool and manually find the
optimal best composition for a given workload pattern generated by an available client
program. This will give the reader an idea of how challenging it is for the learning al-



gorithm to perform the same task. We also encourage the reader to think of different
learning approaches that could be used to make the learning module converge faster to
an optimal composition by writing and experimenting with new learning strategies. A
detailed description to execute this practical is in the Github companion repository.

1.6. Emergent Microservices
This section introduces the concept of Emergent Microservices [43]. This concept stems
from the direct application of the Emergent Software Systems concept to build microser-
vices able to autonomously evolve their internal architecture to accommodate changes in
the workload pattern. We present the concept of microservices and motivate the need
for emergent microservices. We then explore the concept in the domain of smart cities,
which is known for having highly volatile execution environments. We conclude the sec-
tion by presenting a set of hands-on exercises to familiarise the reader with the Emergent
Microservice concept. The code for this practical is also available in the GitHub compan-
ion repository5, along with detailed instructions to run the example. In the practical, we
also expect the reader to extend the example by creating new emergent microservices and
testing the concept in different domains and operating conditions.

1.6.1. Microservices

Before we dive into the concept of Emergent Microservices, we first introduce the gen-
eral concept of microservices. Microservices has gained popularity in the industry and
has been used as building blocks to create large-scale and flexible systems. Due to its
increasing popularity, the concept has become very important in modern distributed sys-
tems and has been extensively used to build systems in various domains (e.g., Web-based
systems, video streaming services, supporting platforms for IoT-based systems).

In short, microservices can be defined as self-contained small services that imple-
ment a single functionality of a larger system [29]. As a result, instead of implementing
a system as a massive, highly interconnected monolith, the system can be broken down
into smaller self-contained, easier-to-manage and highly reusable services. These charac-
teristics make microservice-based systems highly maintainable, easier to evolve, highly
reusable and adaptive, which are essential characteristics to create modern systems.

Each microservice is self-contained, which means that they can be deployed and
run independently of other parts of the system. A microservice provides a RESTful API,
with its endpoint URI, HTTP method, expected parameters, and expected result. We show
an example of a microservice API function documentation below:

HTTP Method: GET
URI: https://189.234.22.12:80/collector/get_data
HTTP status code: (200) OK,

(400) Bad Request or
(500) Internal Server Error

Response description: Collected data (JSON format)
Response example:

5https://github.com/robertovrf/sbrc21_minicurso



{"resources": [ {
"uuid": "ae9cf502-5ed2-47d4-914c-c1caec1c41c4",
"capabilities": {

"environment_monitoring": [{
"temperature": "38.313",
"humidity": "38.313",
"date": "2016-06-21T23:27:35.000Z"}]

}}]}

Microservices are often deployed on cloud-based infrastructures, packaged in-
side containers that are managed by container-orchestration systems. The container-
orchestration systems are fundamental to manage microservices in real deployments.
They offer support for elasticity both horizontal and vertical, and system recovery when
the container fails, triggering the creation of a new instance. These are important ac-
tions to cope with the dynamism of the system’s operating environment, which constantly
changes and demands the system to adapt.

1.6.2. Emergent Microservices

Microservice supporting tools, such as container orchestration systems, are well equipped
to handle workload volume variation. To cope with the increasing user demands, they may
create new replicas of the microservices, or increase the amount of computing resources
available to the container running the microservice. However, they are not able to effi-
ciently cope with variations that also involve changes in the workload pattern.

Changes in the workload are common in current systems. In general, these changes
may affect the workload volume (e.g., the number of requests issued in a time frame),
which may increase or decrease according to user demand, and the workload pattern
(e.g., from requests for text-based data to requests for image-based data). Changes in
the workload pattern often impact microservice performance depending on the type of
functionality or data being returned. In that sense, some workload patterns require the
evolution of the microservice’s internal implementation to better accommodate the new
pattern. For instance, if there is an increase in the size of text-based data returned by the
requests to a microservice, compression of the returned data may be an effective way to
improve the service’s performance, enabling it to better accommodate the new workload.

Such improvements in the service implementation required by a change in the
workload pattern are often conducted by the developer. The process typically consists in
having an expert analyse the service logs to determine the characteristics of the new work-
load pattern and how they impact the service’s current implementation. Then, developers
are required to implement, test and deploy a new version of the service. This process is
entirely human-dependent and often inefficient. Emergent Microservice [43] is a concept
that aims to support the autonomous evolution of a microservice’s internal composition
as a response to workload pattern changes. It represents a more efficient way to evolve a
microservice’s internal architecture at runtime, automating the process described above.
We argue that this is not only convenient but crucial to support the development of future
distributed systems.



The Emergent Microservice concept is realised by applying the Emergent Soft-
ware Systems framework to a component-based implementation of microservices. To
facilitate microservice implementation, we developed an emergent microservice frame-
work on top of components that implement the Web server. The framework is illustrated
in Fig. 1.8 and is composed of a set of components that implement the business logic
of the microservice, along with utility components that assist their implementation. Ex-
amples of utility components are implementations of common data structures (e.g., hash
map, lists, queue, trees) and database drivers (e.g., MongoDB, MySQL).

Figure 1.8. Internal architecture of an emergent microservice, showing the main
components and how they connect. (Figure adapted from [43]).

.

Apart from the business logic and utility components, interceptor components
comprise an essential part of the emergent microservice’s framework. They intercept
the requests sent to the business logic components and alter their processing to change a
specific non-functional concern. For instance, a microservice that constantly accesses a
database to return historical unchanged data can improve its performance by caching the
data in memory. In that context, a cache interceptor can be transparently inserted into the
microservices internal composition to boost its performance when needed.

Interceptors are thus a transparent method of adding variants to the microservice’s
internal composition. This allows the development of dynamically adaptive microser-
vices without extra effort from the developers. They are only required to provide the core
implementation of the microservice by implementing their business logic components,
possibly making use of the utility components. A set of predefined interceptors are pro-
vided, adding standard variants to the microservice’s internal composition. The emergent
software systems framework uses these variants to compose the microservice and learn at
runtime the most appropriate composition for it.

Interceptors, however, are not the only way to add variation to the emergent mi-
croservice’s internal architecture. Any component variant added to the framework might
be picked up by the PAL framework and used to generate different internal architectural



compositions for the microservice. If there are different ways to implement the microser-
vice’s business logic, implementing the microservices functions differently is also a way
to create different microservice architectural variants.

Once the components and their variants are implemented, the deployment process
of an emergent microservice is similar to the process of deploying regular microservices.
Often these microservices are deployed on a cloud computing environment, using contain-
ers and container-orchestration technologies. The process often involves containerising
the microservices components and their variants as well as the PAL framework. As the
container starts, the PAL framework assembles the first microservice composition and
starts learning, as incoming user requests are handled by the microservice, the best com-
position for the observed request pattern. As a regular container deployment managed
by a container-orchestrator, the microservice is also susceptible to be replicated as the
volume of workload increases and the service performance hits a predefined threshold.
This process of configuring container-orchestration systems to manage the microservice
container is better described in the practicals (Sec. 1.6.4).

1.6.3. Case Study: Emergent Microservices in the InterSCity Platform

The Smart Cities domain was chosen as a use case to illustrate the Emergent Microser-
vice concept due to the highly volatile execution environments that it entails. In particular,
we focus on the InterSCity platform [13]. It is an open-source microservice-based plat-
form to support smart cities applications. The platform aims at abstracting the interaction
between applications and city resources, providing a layer capable of scaling to handle
the application and data processing demands of large cities. The platform architecture is
composed of six microservices, as shown in Fig. 1.9.

Figure 1.9. InterSCity platform microservices (https://interscity.org).



Each of the InterSCity microservices has a specific role. Resource Adaptor is the
microservice responsible for receiving incoming requests from devices, redirecting those
requests to the appropriate microservice. Resource Catalog is responsible for storing in-
formation about all devices available in the city. Resource Discovery provides information
about specific devices. Data Collector is responsible for providing applications with ac-
cess to all data collected from city devices, as well as providing the devices with a gateway
to push their collected data. Actuator Controller is the microservice that provides access
to the city actuator devices. Finally, Resource Viewer is responsible for showing visual
representations of available city resources.

We selected the Data Collector (DC) microservice to redesign it as an emergent
microservice for this case study. DC was chosen for being a crucial microservice in the
platform, responsible for handling all data access generated by city applications. Thus, it
plays a crucial role in the global performance and scalability of the system.

The functionality of the DC microservice is provided in terms of four operations:

• Retrieve all historical data in the database;

• Retrieve all historical data collected from a specific city resource (e.g., a bus line
information);

• Retrieve the most recent data collected;

• Retrieve the most recent data collected from a specific city resource (e.g., the latest
location of a specific bus);

To realise the emergent DC, we implement these operations on the business logic
components of the emergent microservice framework (described in Sec. 1.6.2). The
MySQL drive component is used as a utility component to provide the microservice with
access to a database. As interceptors, we make available components that implement
caching, compression, and both caching and compression (in the same component). They
are used to generate the DC internal composition variants.

The architecture of the DC microservice, with all its components and variants is
shown in Fig 1.10. The Dispatcher component forwards incoming HTTP requests to
the DataCollector component for processing. This component is responsible for imple-
menting the core functionality of the DC microservice. The interceptors, in turn, are the
components that add variants to the DC microservice and enable it to have its behaviour
optimised according to the pattern of incoming requests.

In total, the interceptors enable the creation of four unique microservice inter-
nal architectural compositions. In the default composition of the DC microservice, the
Dispatcher is directly connected to DataCollector, and the microservice performs as in
its original, non-emergent implementation. The second composition is obtained when the
Cache interceptor is plugged between the Dispatcher and DataCollector components.
This interceptor caches all responses sent back to clients. It increases the microservice
performance when clients frequently request the same sets of data – caching the response
in memory increases the microservices performance because it prevents the service from



Figure 1.10. Data Collector Emergent Microservice. (Figure adapted from [43]).

connecting and retrieving data from a remote database. The compression composition,
in turn, is obtained by placing the Compression interceptor in between the Dispatcher
and DataCollector components. This interceptor compresses all responses before send-
ing them back to the client. This composition may increase the microservice’s perfor-
mance when the returned data is large and highly compressible. Under these conditions,
response compression may dramatically decrease the network transmission time of the
response. Finally, the CacheCompression interceptor caches the compressed returned
response. This composition improves the microservice performance in scenarios where
clients request repeated data that are large and highly compressible.

We experimented with the emergent DC in a cloud-based environment to validate
the concept. The result is illustrated in Fig. 1.11. We executed the emergent DC and two
other implementation of DC: Default and Cache-Compression. The Default composition
consists of a regular implementation of the DC microservice with no extra components
to improve its performance. On the other hand, the Cache-Compression implementation
consists of adding both a Cache and Compression components to the DC microservice.
This last implementation compresses every response before sending it back to the client,
and after sending the response, it caches the compressed response in memory. We sub-
jected all three microservices to two different workloads, Workload A and Workload B.
These workloads have distinct characteristics. Workload A consists of repeated requests to
a specific small set of data (i.e., a workload where the cache composition would increase
the performance of the system). In contrast, Workload B consists of requests to completely
new data (i.e., a workload that would make cache-based compositions perform badly).

Fig. 1.11 shows that the Default composition has the worst performance when
subjected to Workload A, but it has the best performance when subjected to Workload B.
The graph also shows that Cache-Compression performs significantly better than Defult
when subjected to Workload A, but it performs worse when subjected to Workload B. This
result is expected due to the characteristics of the experimented workloads and the imple-



Workload A Workload B Workload A

Figure 1.11. Average response time for three versions of the same microservice
when subjected to two distinct workloads (A and B). EM learns and converges to
the best performing composition for both Workload A (cache-compression) and
Workload B (default). At 30s, EM identifies a previously seen workload pattern
and is able to immediately adapt its composition.

mentation details of both microservices. The graph also demonstrates the ability of the
emergent DC (the EM yellow square-dotted line) that after the learning phase (represented
by the spikes on the yellow line) converges towards the best performing composition for
both Workloa A and B. The graph finally shows that when the emergent DC is subjected
to an already seen workload (from time 30s onwards on the graph – Workload A is exe-
cuted again), emergent DC ‘remembers’ what the best composition is for Workload A and
quickly changes its composition to Cache-Compression without the exploration phase.

As a result of creating and evaluating an emergent version of the DC microser-
vice, we demonstrate that a microservice can react and evolve its internal composition
when the incoming request pattern changes. Based on the application of the Emergent
Software Systems concept and framework to realise Emergent Microservices, we can cre-
ate microservice-based systems that are not only capable of coping with changes in the
workload volume (through the use of supporting tools such as autoscalers on a cloud-
based infrastructure), but are also capable of quickly and autonomously reacting in the
face of workload pattern changes. Next, we describe a practical exercise that shows the
necessary steps to execute the emergent DC microservice and subject it to various work-
load patterns in order to observe its dynamic self-adaptability.

1.6.4. Practical: Using PAL to Realise Emergent Microservices

After reading the previous sections (Sec. 1.6.2 and Sec. 1.6.3), where we introduce the
concept and framework of Emergent Microservices (EM), along with its realisation us-
ing the PAL framework, we invite the reader to access the companion repository6 and
download the code and instructions to execute the emergent DC.

In the repository, the reader will find the emergent DC source code, along with

6https://github.com/robertovrf/sbrc21_minicurso.



the code for the PAL and emergent microservices frameworks, with instructions to run
the system both on the cloud and on a local machine. If choosing to run it on a cloud-
based infrastructure, the reader will find a set of scripts and a detailed tutorial to generate
the emergent microservice Docker image, as well as the Kubernetes7 scripts (YAML) to
deploy emergent microservices. Otherwise, if the reader chooses to execute the microser-
vices on a local machine, we make available an image of a virtual machine that comes
configured with all necessary software. We also make available a set of client programs
that simulate user behaviour and define different workload patterns for the reader to ob-
serve how the emergent DC learns at runtime, and without human interference, which
microservice composition has the best performance.

If the reader has access to a cloud infrastructure, they will also find the instruc-
tions to run their emergent microservice in tandem with the Horizontal Pod Autoscaler
(HPA). HPA is a supporting tool that observes the execution of a container and, in case
the container’s resource consumption increases above a predefined threshold, creates fur-
ther replicas of the executing container. This is the state-of-the-art technique that has been
widely used in production to autonomously handle sudden increases in workload volume.

The use of HPA in tandem with emergent microservices offers the potential to deal
with both workload volume increase and workload pattern fluctuations. As the workload
changes in pattern, the emergent microservice can learn, at runtime, the best performing
composition for the detected workload pattern before HPA trigger any creation of repli-
cas. As the workload volume increases, HPA can increase replicas to cope with the new
volume. In tandem, emergent microservices can keep all replicas to their best performing
composition according to the observed pattern. This, in turn, may lead to a decrease in
the number of necessary replicas (i.e., resources usage) to cope with the new volume.
Although this is a promising idea, it has not been fully explored in the literature.

The code available in the repository enables the reader to experiment and create
their very own microservice. We encourage the reader to write different microservices and
different component variants for their own microservices, as well as for the DC microser-
vice, to familiarise with the concept. We also motivate the reader to use our available
code to build on our work and solve the challenges that remain to be solved when realis-
ing the concept of emergent software systems in general and emergent microservices in
particular. We list a set of research challenges and directions that the reader may consider
in case they are interested in further exploring this research topic:

• Exploration of new learning approaches to better classify operating environments;

• Exploration of new learning approaches that enable better interaction among emer-
gent microservices and other supporting tools that exist in the industrial microser-
vice ecosystem (e.g., horizontal and vertical autoscalers);

• Explore the composition of large-scale systems using emergent microservices. Build-
ing systems with thousands or more emergent microservices;

We hope the community joins us in developing this novel technology that has
7https://kubernetes.io.



much potential to support the creation of future Internet systems. We believe that applying
the PAL framework to build microservice architecture-based systems is a promising way
to support the creation of large-scale self-adaptive systems that can handle the increasing
dynamism of modern systems.

1.7. Conclusion
This chapter aimed to disseminate the concept of Emergent Software Systems, motivate
the approach and advertise the tools to realise the concept. This chapter also presents
the case for applying the concept to create real-world, fully functioning adaptive-systems.
In particular, we presented an emergent web server and an emergent microservice. We
also presented practical exercises to familiarise the reader with the concept and with the
creation of real-world emergent software applications.

We have presented the concept of Emergent Software Systems as an approach
to facilitate the development of autonomic computing systems. The concept consists in
applying lightweight component-based models and reinforcement learning algorithms to
create systems able to learn, at runtime, the most suitable available composition for the
observed environment. Using these two technologies to build such systems enables the
creation of everyday software systems that are emergent and adaptive. We also enable
self-adaptive systems to cope with unknown conditions as our approach is shown to learn
at runtime with no predefined domain-specific information.

This concept was successfully used to create real-world systems. It was explored
in data centre-based applications such as the emergent Web server, the distributed Web
server and emergent microservices. All information about the concept and these projects
have been published elsewhere by the authors, as referenced throughout the chapter.

The chapter also presented the challenges and potential research directions to de-
velop the concept further, hoping for a more significant adoption by the self-adaptive/
autonomic systems research community and industry practitioners. We finish the chapter
by inviting everyone interested in developing future systems to join the effort to further
develop and explore the main ideas that define the concept of Emergent Software Systems
and their potential in supporting the creation and management of future systems.
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