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ABSTRACT

The Internet of Things with support to mobility is already transforming many application domains, such as smart
cities and homes, environmental monitoring, health care, manufacturing, logistics, public security etc. in that
it allows to collect and analyze data from the environment, people and machines, and to implement some form
of digital control or steering on these elements of the physical world. But in order to speed the development of
applications for the Internet of Mobile Things (IoMT), some middleware is required. This paper summarizes seven
years of research and development on the ContextNet middleware aimed at IoMT, discusses what we achieved and
what we have learned so far. We also share our vision of possible future challenges and developments in the Internet
of Mobile Things.
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1 INTRODUCTION

The past decades of research in distributed mobile and
pervasive computing has witnessed a significant change.
First, the field got a new concept and new challenges:
the Internet of Things, which assumes a wider scope
than only localized smart environments, handles a much
larger numbers of interconnected nodes/devices (mil-
lions or even billion), and where virtually any object of
the physical world may interact with other things and
humans. Secondly, unlike in ”vintage Distributed Sys-
tems”, IoT has to cope with a huge variety and hetero-
geneity of nodes, including embedded devices with very
limited processing and storage capability, limited energy
supply, as well as heterogeneous wireless technologies
that have much different coverage, connectivity manage-

ment, data rates, transmission latencies, reliability, and
interference robustness, etc. This is worsened by the fact
that several WLAN and WPAN technologies operate in
the same frequency bands (ISM is 2.4GHz and 5GHz),
and thus might potentially interfere with each other. In
particular, many smart things use low power wireless
technologies and thus have short communication range -
just a few meters - such as Bluetooth Low Energy (BLE),
ZigBee, NFC, WiFi, LoRa, SIGFOX, WitelessHART,
which thus require some other device (hub) that is
connected to the Internet. Thirdly, many of these smart
devices will also have actuators, so that they will be
able to act on their environment, either individually or
in a pre-scheduled/ or coordinated way, and may thus
indirectly influence other smart devices. And finally,
a very high proportion of these nodes will be mobile,
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ranging from ordinary smartphone users to sensors or
actuators in cars, trucks, cargo packets, parcels, drones,
robots, wearables, implants in pets and humans.

Thus, there are many ”challenge dimensions” and
”tons of problems” that can be addressed when designing
and developing a middleware for IoT. In any case, the
main purpose is always to provide services and protocols
that hide from the application developer the system
component’s heterogeneity, distribution, and mobility
behind simple and intuitive Application Programming
Interfaces (API).

Since in LAC1 we were always interested in middle-
ware support for mobile communications and context-
awareness, we decided to focus on the Internet of Mobile
Things (IoMT) that subsumes conventional IoT, where
usually most smart things are stationary. In IoMT
any smart thing, and even part of the communication
infrastructure - the hubs at the Edge- may be moved or
can move autonomously, and yet remain remotely ac-
cessible and controllable from anywhere in the Internet.
Therefore, we called these smart things Mobile Objects
(M-OBJs). Mobile Objects may have very different
sizes, movement patterns, movement autonomy, uses and
complexity - they may range from terrestrial vehicles of
any type (cars, busses, etc.), over mobile domestic or
industrial robots, aerial robots (UAVs), to very tiny and
light-weight wearable devices, badges or sensor tags. In
fact, a M-OBJ may be any movable object that carries
sensors and/or actuators and provides some means of
wireless connectivity.

1.1 Example of a IoMT Application

The Internet of (Mobile) Things is already having strong
impact in several application domains, such as smart
cities and homes, environmental monitoring, public se-
curity, health care, energy management, asset moni-
toring, logistics, etc. As an example, consider the
delivery of goods or products that require specific ideal
transportation and storage conditions on their routes
from producer to consumer. For example, meat, fruits,
vegetables, or vaccines require ambient temperatures
that stay in small ranges (range of 3 to 5 degrees
Celsius), or else, special flowers and plants must stay
in environments without light and with air humidity
above a certain level. By placing some M-OBJs with
temperature and humidity sensors close to such goods,
and having the sensor values probed regularly, in all
stages of transportation and intermediate storage, it is
possible to monitor in real time the environment and
transportation conditions of these goods along all their
transport way. Moreover it is possible to send alerts to
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the transportation company or the consumer (e.g. the
hospital) whenever the safe transportation or storage
conditions are starting to be violated. This early alert
service can prevent the discarding of such valuable goods
and hence the consequent waste of money or endanger-
ing of the consumption of spoiled products.

With the goal of supporting development of mobile
and IoT applications we started to build a distributed
and mobile middleware named ContextNet. This project
started exactly seven years ago (2011), initially with little
ambition and no idea that it would be later extended
to handle IoMT. In this paper, we give a summary of
the evolution of the ContextNet, from its birth and the
development of early services (Section 2), along its
support for discovery and connection with BLE-enabled
mobile objects (Section 3), to its current stage, as a
micro-service architecture with a rich set of powerful
services and tools (Section 3.2) Then, in Section 7 we
also present the new research branches in IoMT that we
have started in 2017, and the main lessons learned so far
(Section 8). Then we shortly present research work that
has a similar approach and discuss the main differences
to ContextNet (Section 9). We close the paper with the
conclusion about the new challenges in managing the
code base of this growing project. (Section 10).

2 GENESIS AND EARLY PHASE

The ContextNet project began in mid 2011 as a contract
with the InfoPAE group of TecGraf Institute of PUC-Rio,
with the goal to develop a fully decentralized commu-
nication software infrastructure to handle geo-location
data traffic generated by a large number of trucks, as
an alternative to the centralized log-based collection
and processing of the InfoPAE system at that time.
Based on our previous experience, we decided to use
OMG’s Data Distribution Service standard (DDS)[22],
with its decentralized P2P architecture and its Real-Time
Publish/Subscribe (RTPS) protocol as the basis for inter-
node message exchange, but soon realized that it would
be unfeasible to have also mobile nodes, i.e. the trucks,
as DDS nodes. Therefore, we decided to adopt a two-tier
cluster-mobile architecture, where we would use DDS
only among the stationary nodes in the cluster or cloud,
and use some other IP-based communication protocol to
make them interact with the mobile nodes.

So, in the next six months Lincoln David developed
the MR-UDP [26], a light-weight connection-oriented
communication protocol based on R-UDP. MR-UDP is
a protocol implemented in Java that extends the original
protocol by adding mobile node identification orthog-
onal to the IP-Address, gracefully handling of short-
lived wireless disconnections by selective retransmis-
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sions, using Protocol Buffers2 to serialise objects and
using mobile-side generated heartbeats to keep MR-UDP
connections open behind firewalls. This later feature
was essential for enabling connections to mobile devices
(mobile phones) of different 3G/4G mobile operators.

Almost during the same time, Rafael Vasconcelos
implemented the first version of the Gateway, that was
designed to be, on one side, a DDS node, and on the other
side, the MR-UDP connection point of mobile nodes
with the stationary nodes interconnected through DDS.
The main design principle of the Gateway was to be
simple, be lightweight, just handle the protocol trans-
lation (RTPS to MR-UDP and vice-versa) and publish
(to other DDS nodes) connection or disconnection events
from any of the mobile nodes connected to it.

Soon after this, Rafael also designed and implemented
the PoA-Manager, another DDS node that monitors the
connection load of all deployed Gateways in a DDS
domain and sometimes distributes lists of IP-Addresses
of alternative Gateways for connection to each mobile
node, that could then spontaneously switch the Gateway
(i.e. the Point of Attachment - PoA) with impacting the
data and the heartbeat flow of MR-UDP. A mobile node
may also be ”requested” to change the PoA Gateway by
the PoA-Manager whenever this one detects an unbal-
ance among the Gateways (mandatory handover). Both
kinds of PoA-switching are agnostic to the app executing
on the mobile node, because they are handled by the
ClientLib which also handles all the events and control
signals of MR-UDP and exports a quite simple API to
the application program. Because we were so confident
about our careful and optimized implementation of all
these initial components and the well-acknowledged
scalability of DDS’ P2P architecture, we named it the
Scalable Data Distribution Layer (SDDL).

Notwithstanding our rather basic development
achievements by the end of 2011, we already felt
the ambition to design and develop new services
and protocols that could facilitate the development
of large scale mobile pervasive systems in which
location and other context data (i.e. sensor data) should
be collected and processed by nodes in a cluster or
cloud. This envisioned architecture made of several
functional layers was presented in 2011 as a poster in
the Middleware conference[11].

The first running version of SDDL was showcased in
a demo session of SBRC [28]. And to our relief and
satisfaction, worked very well, even in the ”inhospitable
environment” of conference WiFi APs and in front of the
gaze of interested students and professors.

2https://developers.google.com/protocol-buffers/docs/javatutorial

2.1 Tests and Extensions

For subsequent publications[27] we then did several
performance tests using simulated mobile nodes flooding
a simple SDDL core configuration. These showed that
SDDL with just two Gateways supported well the mo-
bile tracking communication and management of several
(102−3) thousands mobile nodes, each node producing a
geolocation every 30 seconds.

During 2012-2013 we extended ContextNet with ad-
ditional SDDL-based communication services, such as:

The GroupDefiner (GrD) [32] is used to define
groups of mobile nodes according to some data sent to
SDDL core, such as its context information (e.g. its
current geolocation), and then to allow to send a group
message to all group members. The GrD is generic
in that it accepts group-selection plugins, where each
plugin defines the processing functions to map a node’s
context data to a grouID. Hence, each application can
define its specific way to tell when some mobile node
are in a group. For example, a common use is to set the
vertices of a geographic area - for example the limits of a
town - and define the group of users that are ”within this
town”. With this, it is then easy to route a same message
to all group members just by specifying GroupID in
the DDS message, as the Gateways are kept updated of
which node belongs to which group.

The Mobile Temporary Disconnection (MTD) ser-
vice is yet another SDDL Core service that aimed at
storage and replay of messages directed to mobile nodes,
and that could not be delivered to it because of a
temporary disconnection. Thus, whenever a Gateway
announces that a mobile node is not responding, MTD
will hear this announcement and start hoarding the mes-
sages addressed to the unreachable node. Then, at a
later point, the same node may reappear and connect to
a new Gateway, that will then announce that the node is
available again. The MTD also hears this announcement,
and starts to replay the stored messages. In order
to avoid overflow its memory, of course, MTD does
garbage collection of the messages, whose policy has
to be provided by the application developer, in a similar
way than the GroupDefiner plugin.

2.2 SDDL Services

Until the end of 2013 ContextNet regarded only phones
and tablets as possible smart things, and it consisted
only of SDDL Core services and the ClientLib. Figure
1 shows the SDDL core components - Gateway, PoA-
Manager, GroupDefiner and Controller (this latter is the
interface to web browsers), all running in a cluster/cloud,
and the Android -based software: the ClientLib, as driver
and wrapper of the client-side MR-UDP. All components
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Figure 1: SDDL Components Pre-IoMT

of the SDDL Core use a Pub/Sub interface provided by
the Universal DDS Interface (UDI) to interact with each
other. The UDI exports an uniform Pub/Sub API similar
to the one of DDS, but which hides the idiosyncrasies
of the specific DDS product being used, such as Open-
Splice, Open DDS, RTI Connext DDS, etc.

At dawn of 2013 ContextNet was then extended with
Data Stream Processing capability aimed at the real-time
analysis of the streams of context/sensor data produced
by the mobile nodes. And among the many existing
stream processing systems and languages, e.g. Spark,
Flink, Storm-1, StreamIt, etc. we adopted Complex
Event Processing (CEP) [20], and in particular the Esper
system3 due to its high expressiveness and flexibility for
describing patterns of events, and the ability to build
higher level (complex) events from the simpler events
of an identified pattern. With the goal of supporting
parallel and scalable CEP in ContextNet, Gustavo Bap-
tista, designed and developed the Dynamic Distributed
Data-centric CEP ( D3CEP) service [2] environment for
easy deployment of Event Processing Networks (EPNs)
on Processing nodes of the SDDL core, that defined
a set of mutually dependent Event Processing Agents
cooperating in a complex event detection task.

Also in 2013, Marcos Roriz, that had recently joined
LAC, revisited the MR-UDP communication protocol.
He fixed some minor bugs, improved and optimized
the handling of concurrent client requests, and added
the protocolbuffers format into MR-UDP, to enable
the interoperability between clients written in different
languages[25]. This was necessary, as at the same time
we developed a Lua4 version of MR-UDP and ClientLib,
already aiming at mobile embedded systems.

3Esper Tech, http://www.espertech.com/esper/
4www.lua.org

3 EMBRACING IOMT

When Márcio Maia, from the Federal Univerity of Ceará,
who was also working on IoT middleware visited our lab
in early 2014, Luis Eduardo Talavera Rios, Márcio and
us started to discuss about how our middleware could
be extended for IoT. So far, ContextNet allowed only
to probe the embedded sensors of smartphones, but we
knew that for future IoT applications we would need to
connect with sensors and actuators embedded in the en-
vironment and everyday objects, and that many of them
would have only a low power wireless (LoP-WPAN)
interfaces as they run on batteries. We then identified
that a promising and fast spreading LoP-WPAN was
Bluetooth Low Energy (BLE), that had been specially
designed for IoT, and that it would soon become standard
feature in most smartphones.

All these facts made us consider that smartphones
(with turned-on BLE) would be very affordable and
convenient communication intermediates between BLE-
enabled smart objects and data analytics services running
in the SDDL core. And by supporting unrestricted
mobility of the things (i.e. Mobile Objects) and the hubs,
we would be able to address a yet unexplored set of
IoMT applications of three sorts:

• applications where the Mobile Hub is fixed and
the M-OBJ is moving (e.g tracking of packets and
goods);

• those where M-OBJs are stationary and the Mobile
Hub is passing by, (e.g. in participatory sensing
where users contribute to the collection of ambient
data) or

• applications where both the smart objects and the
hub are in movement, and the Mobile-Hub is
constantly relaying sensor data about the M-OBJs
while both close together, in co-movement [29]
(e.g. the smartphones of passengers in a bus are
connected to a BLE beacon or sensor and send data
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about trip, for example, which is the temperature in
the bus).

Of course, our decision to go with the smartphone, as
the Mobile Hub, was also driven by our desire to use
the well-tested and efficient SDDL services and the MR-
UDP as the ”backbone” of a scalable IoT infrastructure,
and we already had the ClientLib and some experience
with energy-saving geo-location data probing. Although
our initial focus was on implementing LoP-WPAN sup-
port for BLE to access M-OBJs, we envisioned that in
future the M-Hub might also be extended to other LoP-
WPAN. This made Luiz Talavera pore a lot to design
S2PA, an uniform, yet flexible service for interacting
with the M-OBJs.

3.1 S2PA

The Short-range Sensing, Presence & Actuation (S2PA)
API was designed to be a protocol for short-range com-
munication with M-OBJs, which possess an interface
that can be directly mapped to the capabilities of the sup-
ported short-range wireless communication technologies
(WPAN). To this end, it defines some basic methods and
interfaces that all these technologies should implement:

• Discovery of, and connection with M-OBJs;

• Discovery of services provided by each M-OBJ;

• Read and write of service attributes (e.g., sensor
values, and actuator commands);

• Notifications about disconnection of M-OBJs.

For this, S2PA defines the Technology Interface,
shown in Figure 2. The Technology interface includes
an ID, defined at programming time, to uniquely identify
each technology (e.g. BLE, ANT+, Classic Bluetooth,
etc), and a set of required methods that are sufficient for
handling a variety of short-range protocols. For example,
methods readSensorValue(), and writeSensorValue(),
request a read or write of a sensor, respectively, and
serviceName represents the sensor name (e.g., ”Temper-
ature”, ”Humidity” ). All relevant information regarding
M-OBJ’s discovery, connectivity, and sensor values ob-
tained from the specific WPAN technology is captured
through the TechnologyListener which is implemented
by the S2PA service, and is either cached or directly
forwarded to the SDDL Core.

In its first version we implemented S2PA for BLE
and for Classic Bluetooth. Classic Bluetooth was im-
plemented because of the wide spectrum of peripheral
devices that use this WPAN technology, and because
it is the only means by which M-Hubs can interact
directly with each other (without employing Gateways)

Figure 2: Main two interfaces of the S2PA

for handing over discovered nearby M-OBJs. In a later
addition, the students of LSDi/UFMA added a new
Technology Interface, now for the sensors embedded
into the smartphones, By this, both device local and
device remote sensor data can be probed and processed
in a uniform way.

3.2 Adding new Services to the Mobile Hub

By the end of 2014 we then finished and included into the
Mobile Hub also the Mobile EPA (M-EPA) service. This
service holds a full-fledged CEP engine (Asper, a port
of Esper to Android), and thus allows to load, discard,
activate and de-activate EPL rules in the Mobile Hub,
so that sensor data from the M-OBJs and delivered by
S2PA could be promptly analyzed and pre-processed by
the CEP engine. This functionality is of great advantage
when the IoMT application needs to process data at
the edges so that may substantially reduce the data
traffic over the wireless link (WiFi/3G/4G) towards the
cloud/cluster-based backend services, and also already
detect interesting patterns of local events and convey
only higher-level events (instead of the simpler data
probes) to the backend data analytics services. In March
2015 we officially presented - and ran a demo - of the
Mobile Hub in a IEEE PerCom workshop and demo
track [29].

Then, in 2015, Luiz E. Talavera did another very
important re-engineering on the Mobile Hub: he intro-
duced the EventBus Publish/Subscribe5 for local, intra-
Android communication, instead of the inefficient In-
tents and Broadcasts of pre-Android 4.0. This turned
the Mobile Hub architecture into a truly micro-services
architecture, where several services (except the Con-
nection Service and the S2PA) can be deployed or not,

5http://greenrobot.org/eventbus/
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depending on the requirements of the IoT Application
using the Mobile Hubs.

3.3 Current Mobile Hub Components

The M-Hub is multi-threaded and consists of the fol-
lowing Android services and managers, all executing in
background, i.e. independent of the user apps. Figure
3 depicts these components. The LocationService is
responsible for sampling the M-Hub’s current position
and attaching it to whatever message is sent to the Gate-
way (GW), which can be either a static, manually entered
geo-point, or the latest geo-coordinate obtained from the
smart phone’s embedded GPS sensor. The S2PA Service
implements the TechnologyListener and interacts with
all nearby M-OBJs that ”talk” the supported WPAN
technologies. This service is responsible of the dis-
covery, monitoring and registration of nearby M-OBJs,
by periodically doing scans for each supported WPAN.
Depending on the kind of interaction (and the WPAN
technology capabilities) a communication link may be
established with some M-OBJ, over which the M-Hub
will interact in a request-reply mode. Data packets and
messages from/to M-OBJs may have different formats
and encodings, so it will also transcode sensor data and
commands from the specific M-OBJ-specific data format
to serialized Java objects, for transmission to the GW,
and vice versa. Internet messages are received from - and
sent to - the Gateway by the ConnectionService, which
runs the ClientLib for communication with the SDDL
Core and, in order to optimize communication over the
Internet link, the M-Hub may group several pieces of
sensor data or commands assembled by the S2PA Service
into a single ”bulk message” for transmission. It is
also important to mention that some messages (e.g. M-
OBJ connection/ disconnection) have a high delivery
priority so that they will be relayed directly to the SDDL
core, instead of being buffered for further bulk Internet
transmission. The periodicity and duration of all of
these three services’ actions, is influenced by the device’s
current energy level (LOW, MEDIUM, HIGH). This will
be set by the Energy Manager, which from time to
time samples the device’s battery level and checks if it
is connected to a power source.

3.4 Further Extensions

The Mobile-Hub is evolving continuously as new func-
tionalities are demanded. In 2015 we started to inves-
tigate the support for quality parameters related to the
context data collected from M-OBJs and the distribution
service. The term QoC (Quality of Context) has been
usually defined as the set of parameters that express qual-
ity requirements and properties for context data (e.g.,

Figure 3: Current Mobile-Hub architecture with
services interacting with two M-OBJs through BLE
and Classic Bluetooth

precision, freshness, trustworthiness, etc.) [6]. In the
last years, much research has recognized the approach of
introducing the quality of the context data distribution
(e.g., data delivery time, reliability, etc.) in order to
ensure the availability of the context data with the right
quality, in the right place, and at the right time. In this
broader view, QoC has to consider the quality of both
the exchanged context data and the distribution process
to ensure user satisfaction[4].

The quality of context has a significant impact on the
behavior of context-aware applications and the efficiency
of the services offered and can greatly influence the user
experience [7]. Therefore, satisfying the requirements
of QoC for IoT/IoMT applications is a very important
step to ensure a correct execution of the applications
and the satisfaction of their users. As an example, one
can consider a remote patient monitoring application,
where it is crucial to ensure the required data precision,
freshness, reliability and data delivery time for correct
application execution.

In 2015 Berto de Tácio started the investigation of how
to provide a comprehensive QoC support for ContextNet.
He developed CDDL [15], a Context Data Distribution
Layer at the top of M-Hub. The proposed solution com-
bines a mobile gateway (the M-Hub) for the acquisition
of raw data from heterogeneous physical sensors with
the CDDL, responsible for registering and discovering
the available context services, as well as for provisioning
and monitoring context information and for ensuring the
context data and distribution service quality.

The CDDL provides an extensive support for both,
quality of data (QoI) and quality of service (QoS)
parameters. Concerning QoI, the available parameters
are: Accuracy, Source Location, Measurement Time,
Arrival Time, Expiration Time, Age, Measurement In-
terval, Available Attributes, Completeness, and Numeric
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Resolution. In respect to QoS, it provides: Deadline, Re-
fresh Rate, Latency Budget, History, Destination Order,
Lifespan, Retention, Vivacity, Reliability, and Session.

The CDDL also provides a M-OBJs discovery service,
allowing the applications to issue two types of discovery
queries: instantaneous and continuous. The instan-
taneous query returns the available service providers
that meet a given criteria at that moment the query
was issued. The continuous query not only returns
the service providers meeting the specified criteria at
the time it was issued, but also instantiates the query
in the Monitor component, which causes the middle-
ware to continuously evaluate the query as new services
providers are discovered. This latter type of discovery
query is particularly useful in the mobility scenarios
that characterize IoMT. As part of the discovery criteria,
applications can request service providers that meet
specific QoC requirements, such as the ones providing
a given accuracy.

Since several QoC parameters exhibit dynamic vari-
ability (they oscillate over time), the CDDL provides a
Monitor component for analyzing context data streams
in order to detect the occurrence of certain events that
are of interest to the application, such as a variation of a
given QoC parameter (e.g. accuracy). CDDL also offers
a Filter component, that filters information based on the
content of its attributes, including the QoI metadata.

4 HORYS

In 2017 we realized that recording the encounters be-
tween smart M-OBJs and Mobile Hubs could be the
cornerstone for many IoT applications what need to track
persons, vehicles or machines. For example, tracking
packets and carts for logistics, employees and assets in
industries, patients and health professionals in hospitals,
etc. In all cases, either BLE sensors/beacons are carried
around, with (not so quite Mobile)-Hubs executing in
RaspberryPi boards or other computer boards being
attached to rooms or halls, or the other way round,
Mobile Hubs being carried and detecting beacons in each
relevant place.

This use of IoMT required a middleware service
that is able to collect and store a large volume/stream
of these encounters (Rendezvous, for IoMT applica-
tions with many mobile entities. HORYS (Hub-Object-
Rendezvous RegistrY Service) is thus ContextNet’s reg-
istry service responsible for storing and querying Ren-
dezvous events. It provides several options for querying
which M-OBJs a certain M-Hub met, or which M-Hubs
received a beacon from a particular M-OBJ. Moreover
it allows to query and classify Rendezvous events by
location, by WPAN RF signal quality, and elapsed time

of the encounter. HORYS executes at a SDDL Process-
ing Node and uses the NoSQL MongoDB technology to
store the Rendezvous data and perform highly optimized
and parallel searches on this data store.

However, HORYS is completely generic and agnostic
to the semantics of the holder or place with M-OBJs
and H-Hubs, and thus can be used for many IoMT
applications. It is only focused on very fast, parallel,
data insertion and retrieval of encounters, and how to do
this for several Gigabytes/second. On the other hand,
HORYS does not associate semantics to Rendezvous
events, for instance, it does not know that a beacon
B is assigned to a particular patient rather than to a
nurse. This association is made by the Hospital 4.0
Semantics service, which maps the beacons to specific
users. Furthermore, it also maps the location of such
events to the hospital rooms and facilities. HORYS has
been developed by Marcos Roriz Jr (in mid 2017) and
is the core service of the Hospital 4.0 data analytics
application.

5 IOTRADE

Similar to current commodity trade markets, where buy-
ers don’t need to know - and directly interact with -
sellers/producers we believe that something similar may
also happen for IoT services (data, actuators, connectiv-
ity and analytics). Instead of engaging in a direct service
contract the IoT client, a user interested in information
about - or the ability to actuate upon- things spread our
in the world, might just want specify some required
attributes about the needed sensors, actuators or expected
internet connectivity. Then all providers of such services
satisfying the required specification would be able to
offer and sell their service. Hence, in a possible future
IoT Marketplace, sensor data and IoT services in gen-
eral will be classified according to their location, their
level of precision, freshness, latency, scope, trustfulness,
availability, and other attributes.

Along this vision, IoTrade is ContextNet’s broker-
age service implementing an IoT Marketplace [23]. It
discovers the properties of existing sensors, actuators,
connectivity providers (e.g. owners of a smartphone
with Mobile Hub) and analytics services, performs con-
tinuous quality verifications and classifications of these
elements and services, as well as the matchmaking
between smart object (sensor/actuator) , connectivity
access and data analytics providers, on the one hand,
and IoT application clients with specific demands on
the other hand. The IoTrade consists of a mobile client
application, which is the interface for setting the IoT
application client requirements and a server component,
executing in the SDDL core where the matchmaking
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algorithm is implemented.
The matchmaking algorithm aims at selecting a com-

bination of providers (smart objects/sensor, connectiv-
ity & data analytics) that best fits the IoT application
requirements input by the client. These requirements
include the amount the customer is willing to pay, the
minimum required QoS, and the user’s current location,
since we implicitly assume that the client seeks access to
sensor/actuators which are in his/her vicinity. The client
cannot choose which exact provider will provide the ser-
vice, the algorithm alongside the data commoditization is
going to choose the combination based on QoS parame-
ters. In addition, IoTrade keeps continuously checking
the quality of all current resources and automatically
swaps resource providers if it detects a disconnection or
a drop in the quality of the offered resource/service.

6 IMPLEMENTED APPLICATIONS

Over the past years, several prototype applications using
ContextNet were developed by students as part of their
Masters or Doctoral thesis, or as a class project. The
early ones just used the mobile communication and
group communication features of ContextNet, while the
more recent ones are already IoMT applications.

Bus fleet tracking and communication: In
2012/2013 a bus fleet tracking and IM communication
application (Aplicações de Rastreamento de Frotas e
Fiscais - ARFF) [31] was developed as part of a class
project. It included a dashboard - for the Highway Con-
trol Central - with a map displaying the locations of all
buses and inspectors, the ability to dispatch inspectors,
and to follow on-line how the inspector is filling in the
check-up form.

UAV swarm coordination: A second major application
was the swarm coordination protocol for mobile flying
robots developed in 2014 as part of Bruno Olivieri’s
Master thesis [10]. It used ContextNet’s group com-
munication to distribute the robot leader’s steering com-
mands and position reliably and timely to the remaining
flying robots of the swarm. Since the main focus of the
research was to identify the necessary wireless latency
requirements so that such group steering would work
properly without causing much error in the robot’s rela-
tive positions, we did not actually build and piggyback
smartphone with the Mobile Hub on each UAV, but
only simulated and showed the animation the collective
swarm control on a map6.

Detection of reckless driving: Igor Vasconcelos did
research on correlating data from smartphone sensors
and data from the on-board sensors of cars to iden-
tify, in real-time, reckless/dangerous driving behavior

6Video on Youtube, URL https://youtu.be/3phH-5e7l9c

or drivers. And since this data analysis is quite data
intensive and has to be repeated at high frequency, it
was suitable to do it directly on the smartphone, while
only sending eventually the outcomes to a server for
sharing this information with other stakeholders (e.g.
an insurance company, or the driver’s relatives). This
application was implemented using Mobile Hub’s S2PA
service to connect with the OBDII toggle, wirelessly
receive data from the vehicle (e.g. speed and RPM, etc.)
and probe other data from the smartphone’s embedded
sensors (e.g. accelerometer) [17]. He also used M-
EPA, for a CEP processing of the combined sensor
data streams. The main contribution, though, was to
convert several batch outlier detection algorithms found
in literature to stream processing ones, and describe them
as CEP event pattern detection rules.

Pervasive RPG game: Since 2017 Pedro Igor has
been developing a mobile RolePlayingGame (RPG) that
uses BLE sensors and beacons spread across the physical
spaces and aims to enhance the gameplay through real-
world presence and interactions. Because it was primar-
ily conceived for use at the PUC campus - and inspired
by Pokemon Go - it was named PUCmon.

Figure 4: Screens of the pervasive RPG game

The implementation of this pervasive game consists
of a mobile client - that runs the game client app in
foreground, and the Mobile-Hub in background - and
also a Game Server, that runs on a SDDL core processing
node. While de former is responsible for discovering and
connecting with BLE sensors/beacons placed near to the
smartphone of the user (the gamer), the latter resolves
the conflicts of multi-player resource access, and also
manages the gameplay-specific information associated
to each of these beacons or sensors. For example, when
a player’s smartphone connects to a SensorTag with a
temperature sensor, then the actual temperature reading
may be used as the basis of calculating and displaying
some game-specific item or event on the game screen 4.

This research and game development was motivated
by our assumption that pervasive games using IoMT
may be used to support participatory sensing and may
introduce new forms of entertainment, learning, and
socialization.
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7 NEW RESEARCH BRANCHES: THE FU-
TURE

In early 2017 we started several new IoMT research
branches based on the core components of ContextNet.
These new branches, which we called R&D Divisions,
tackle several issues and innovative approaches to IoT
that so far have apparently not been given much attention
by the academic community.

7.1 Generic Actuation Support

Many IoT middleware systems have been developed
focused at supporting sensors-to-cloud communication
and processing capabilities at the edges, but surprisingly
very little has been proposed or implemented towards
IoT actuation over WPAN links. Actuators are part of
some smart things, and cause changes to occur, such as
turning on a motor, or shutting a valve.

Of the few research works that mention actuation
on a smart devices it is treated as a simple issue. In
commercial IoT systems, however, the actuation-control
logic is usually hard-coded and intertwined with the
remaining application logic. The main reason being
that IoT applications are tailored to very specific - and
proprietary - smart things with particular/proprietary
actuation protocols and low-level actuation instructions
and feedback signals. Furthermore, most of IoT systems
assume a stable wireless connection between the wire-
less gateway and the smart things, which is not the case
in the IoMT.

In this R&D Division we are investigating the prob-
lems of actuation of M-OBJs over short-range links sub-
ject to intermittent connectivity (due to relative mobility
of the M-Hub and the M-OBJs) and have proposed
and prototyped a ContextNet service and protocol that
supports such generic actuation. For this, two new
ContextNet components, the Mobile-Actuator (M-Act),
a micro-service of the Mobile-Hub (for Android de-
vices), and the Smart Objects Manager (SOM), a micro-
service of the SDDL core executing in cloud/cluster were
developed.

In order to cope with the heterogeneity of actionable
M-OBJs, which can range from simple light bulbs, LEDs
or bells to complex machines or vehicles, our approach
enables that the IoT client defines actuation controls
as sequences of high-level and generic Actuation Con-
trol Commands (ACC), which are then translated to
corresponding low-level strings of byte-codes (that are
actually recognized by the specific M-OBJ’s actuation
control circuit. In our approach, this ACC-to-bytecode
translation is done by a driver that is specific for the
kind, make and model of the M-OBJ, and will be
previously downloaded, on-demand, into M-ACT. By

this uniformity of the ACC language, it will be possible
to define actuations that are largely independent of the
concrete smart things encountered, which is essential for
the success of the opportunistic interaction of M-Hubs
with M-OBJs while it roams in through the different
ambients. Moreover, it will be possible to write scripts
of ACCs defining complex and coordinated actuations
between M-OBJs.

With our current implementation of the Generic Ac-
tuation Support [30], we have managed to issue ACC
commands to control the motion and the LEDs of the
mobile toy robot BB-8 from Sphero7.

7.2 Stream Reasoning

The goal in this R&D Division is to investigate the
problems and advantages of providing the capability of
a IoT application to reason about the environment, the
people and the system, and how this can be supported
by distributed middleware services and APIs. The
main requirement is that such reasoning and deduction
of new information should be performed in real-time,
and should be based both on the event stream (raw or
processed data stream from sensors) and on Deduction
Logic over semantic/ontological model about the phys-
ical world. Ontologies provide a means of knowledge
representation; they capture a domain of interest by
formally defining the relevant concepts in the domain,
and the relationships between these concepts.

Hence, we look for a stream reasoning process that
is able to deduce new events that have not actually
been monitored, but which can be inferred from the
relationships between concepts and events, described
in an ontology. These may be spatial relationships
(e.g. if objects O1 and O2 are stacked and the lower
object O1 is removed, then O2 will fall); temporal
relationships (e.g. if a tire is rapidly loosing pressure
at instant t1, then in t2 < t1 + 5 min the car of the
tire will have to stop); or else, contention relationships
(e.g. if batteryTypeB can ignite, and batteryTypeB is a
component in all smartphoneModelsS , then all items of
smartphoneModelsS may become damaged).

After defining the general architecture for stream
reasoning [12], we have implemented our first prototype
of ContextNet’s Stream Reasoning Service (SRS), which
utilizes Esper for transforming the stream of raw sensor
data into a stream of RDF triples, that are processed by a
CSAPQL reasoner, that receives the RDF ontology with
the knowledge base. In our preliminary tests, we noticed
that the performance of the continuous reasoning process
(i.e. its throughput) is much dependent on the size and
complexity of the ontology. Therefore, to make feasible

7www.sphero.com/starwars/bb8
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real-time inferences, the knowledge base should contain
only few instances (e.g a moderately small A-Box), and
the model of the physical world should be straight and
avoid unnecessary generic concept types.

As next steps, we plan to construct more stream
reasoning scenarios, investigate more about which are
suitable ontology structures, and how we can decompose
the ontology into sub-ontologies, so that reasoning may
be performed in a decentralized way, maybe enhancing
the power of the CEP processing stage.

7.3 Smart City Support

Figure 5: MUSANet: Multi-domain InterSCity-
ContextNet pairs

As a participant of the National Institute of Science
and Technology on Smart Cities (INCT InterSCity)8,
we are working towards the integration of ContextNet
with the InterSCity platform and a city-wide use of
ContextNet at a universal communication infra-structure
for connecting mobile phones with wireless sensors and
actuators spread in streets, parks, bus stops, city malls,
etc. The initial technical challenge is to guarantee scala-
bility and deployment over multiple network domains,
and later, also administrative domains (environmental,
security, health, traffic, etc.), as well as to handle the
interoperability of many different types of sensors and
actuators.

Along this R&D line, we designed MUSANet (Mobile
Urban Sensing and Actuation Network), a distributed
hierarchical context-aware system for capturing, storing
and processing urban sensor data, sending data to actu-
ators, and receiving and publishing information through

8http://interscity.org/

publish-subscribe protocols. MUSANet uses and inte-
grates the InterSCity [3] platform and the ContextNet
IoMT middleware. The InterSCity open-source micro-
service platform is used to store in a structured way, de-
fine the city resources, and manage resources and sensor
information in an efficient way. InterSCity provides the
basic blocks for the development of applications related
to smart cities through REST APIs. Of ContextNet
the SDDL core components are used, specifically the
GroupDefiner and the POAManager, and of course, the
Mobile Hub.

MUSANet uses various distributed ContextNet sites
that are connected through IP tunnels using the Internet
infrastructure to create one ContextNet infrastructure.
Several network topologies can be used, including star,
hierarchical or full-mesh format, with or without path re-
dundancy. Sensor Data is captured using the Mobile-hub
- by making participatory sensing campaigns - and are
analyzed in real time through Complex Event Processing
at the Mobile Hub and D3CEP. In MUSANet approach,
the city is divided into groups or regions based on sensor
distribution and not just neighborhood or zones. These
regions can (and should) have intersections, and there is
also the possibility that regions encompass entirely more
than one region. Each region must have a set consisting
of at least one Gateway, a GroupDefiner, a Processing
Node, and an InterSCity instance connected through a
local area network, as shown in Figure 5.

7.4 Edge Computing Security Architecture

Security is a very important issue for IoT, and any
middleware should implement secure protocols to access
smart things[19]. While there are many and well-known
means to control and secure the mobile-to-cloud access
and communication, there are only few works that tackle
the last meter secure access, between the WPAN/WLAN
gateway (i.e. the Mobile Hub) and the smart mobile
thing M-OBJ, in our case, over the BLE link.

Since the Mobile Hub is the intermediate of the
communication between the SDDL Core service and
the smart mobile things (M-OBJs) it is also the place
where credentials must be checked and access must
be controlled. And with this in mind, we designed
EdgeSec, the Edge security architecture for ContextNet
[13]. In this architecture, the Mobile Hub has two
basic application services to enforce the security of IoT
applications: (i) smart thing control service; and (ii) the
access control service. The first one operates as a firewall
proxy by intermediating the communication between the
cloud and the M-OBJs, being able to inspect the protocol
messages in order to detect and block malformed ones
that could harm the smart things. The access control
service aims to offer a robust access control service to
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validate authentication credentials and restrict access to
authorized users.

Another element of EdgeSec architecture is the re-
quirement that the M-OBJs should provide distinct op-
erating modes: (i) configuration mode; and (ii) service
mode. The first one allows configuration actions such
as the modification of operating parameters (e.g. signal
strength, cryptographic keys, network address, authen-
tication method) and updating of the firmware, among
others. The latter one is the common operating mode in
which the smart thing do what it is intended to do and
allows data to be collected. As a security measure, the
smart thing shall use an access control method before
switching modes, such as validating a PIN (Personal
Identification Number).

We are now in the process of implementing the smart
thing control service and the access control service into
the Mobile Hub. In parallel we are studying Bluetooth
LE and looking for the best way to incorporate the
configuration mode of M-OBJs into the BLE stack, so
that it becomes transparent to the code on the M-OBJ.
After this, we will develop a toy distributed application
example to show the end-to-end interaction between a
M-OBJ and a remote client that will consume sensor data
and is able to configure M-OBjs.

8 LESSONS LEARNED

Sometimes it is good to take a step back, look at a long
process - in our case, 7 years of R&D (cf. Figure 6)
- from a broader perspective, and try to distill what we
have learned. After some reflection, we identified that
following technical and organizational issues contributed
to the success of ContextNet.

Micro-service Architecture: Since IoT has so many
and diverse applications, it is clearly impossible to
predict which middleware services and protocols
will be required in the next few years or the next
case study. Therefore it is very important to de-
sign from the beginning a flexible and extensible
software architecture constituted of independent
services that interact with each other in loosely-
coupled way, preferably through an asynchronous
communication mechanism (e.g. an event bus, tuple
space, or Publish/Subscribe). In ContextNet this is
done by the DDS Pub/Sup communication, and in
the Mobile Hub by the EventBus, allowing to plug-
and-play with micro services so as to satisfy the
needs of the IoMT application.

Careful choice of communication technologies:
Choose the underlying communication protocols
and technologies based on their suitability to IoT

traffic, their general adoption, and the expected
market penetration . In ContextNet we bet on that
a connectionless protocol over IP is preferable for
mobile nodes, we used DDS as it is a well-proven
standard for scalable communication with many
QoS parameters (but only effective within a LAN
or datacenter/cluster communication matrix), and
on BLE, due to its efficiency and its low power
consumption.

Scalability first. From the early phases of design we
considered scalability as a non-negotiable require-
ment, and developed ContextNet?s services and
protocols accordingly. Among the many possible
types of scalability, we focused on the capacity of
handling large numbers of Mobile Hubs and their
interaction through SDDL core, since indirectly
these determine the number of smart mobile objects
that can be accessed. Although so far we have not
run any ultra-large test of ContextNet with millions
of mobile objects, we have already shown that each
Gateway can handle well up to 10.000 simultaneous
connections to (simulated) Mobile Hubs. And
since each Gateway can run on a different machine
with a public IP address in the cloud/cluster, and
because DDS can handle up to thousands of static
nodes we have, in principle, thousands of Gateways
serving a million-and-more Mobile Hubs. But the
ability to have so many Gateways working together
will largely depend on the communication infra-
structure within the SDDL Core, and of course, on
the data traffic from and to the Mobile Hubs. Ac-
cording to the BLE 4.2 specification, it is possible
to keep active up to 2000 connections between the
Mobile Hub and the Mobile Objects. However,
this will largely depend on the specific mobile plat-
form. Hence, we learned that a properly designed
decentralised architecture plus a careful choice of
the communication technologies are fundamental
for being laying the grounds for a scalable system,
but that the actual maximum number of supported
smart objects will depend on the actual software
products being used and on the application data
traffic.

Mobility second: In the same way as mobility is in-
trinsic part of live and work of humans, it will
also be the main characteristic of smart objects,
tools, machines, sensors and of course vehicles,
which together constitute the IoMT. Since mobil-
ity, intermittent (wireless) connectivity and han-
dovers are central issues in IoMT applications, all
designs and implementations in ContextNet took
these as the central challenges to be considered,
and always tried to support as best as possible
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Figure 6: ContextNet Evolution over Time

these disruptive events. This translated, for ex-
ample, into the application-agnostic reconnection/
handover of Mobile Hubs between Gateways, when
their WWAN connection breaks, or the MTD ser-
vice which buffers SDDL-outbound messages when
a Mobile-Hub is temporarily disconnected. Another
example is the option for BLE as the main WPAN
technology, which supports quick discovery of, and
connection with peripheral devices (with a handful
of services, and assuming a 1Hz high-frequency
scan ), in less than 2 seconds. Or else, the command
replay mechanism in M-ACT when mobile smart
device with actuator has not stayed connected to
Mobile for sufficiently long time.

KISS - Keep it small and simple9: For a middleware
to satisfy its clients - the application developers
- of course, it has to be stable, extensible, reli-
able, scalable, easily configurable, etc. But in
order to attract new IoT developers, it has to have
three main properties: it must be easily installable,
it should have a good online documentation and
should provide simple and intuitive APIs. While
the first two properties are fairly obvious, the
issue of simple APIs is not. We learned that
ContextNet was well accepted by new developers
because it exposed only few concepts and a small
API with few parameters and options. For ex-
ample, ClientLib provides just ”connections” (i.e.
events established connection/broken connection),
all nodes and groups have essentially the same
UUIDs, and also UDI exports just a small set of the
most utilized DDS Publish/Subscribe primitives.
With this, most development needs are satisfied,
and the user is shielded from the complex and
nasty details of processing and handshaking can be
ignored. Of course, this has the disadvantage of less
freedom to configure the system according to the
particular needs. But as ContextNet is still ”under
construction”, we happily accept these requests and
do our best to include it in the API of the next
version.

Foster Dev Community Spirit: A software can only
evolve and improve if it there is an active commu-
nity working and using it. Fortunately, since its be-
ginning in 2011 ContextNet has always been main-
tained by on a group of very helpful, cooperative
and very experienced programmers, who promptly
fixed bugs and interacted with desperate local and
remote students. But as it is well known, the main
drawback of academic software development is the
quick turnaround time of developers, which usually
leave after they graduate. Therefore, more than in
other ITC business it is imperative to cultivate the
dev community spirit around the software system,
and keep the former developers engaged in helping
and giving (remote) support to the novice develop-
ers. Of course, it is important to train also some
local students about the entire system, so that they
can act as the ”local wizards” of the system. By
this, each developer stays in touch with the group,
feels proud for his/her contribution and also acts
as an evangelist for the project and the philosophy
behind it. Fortunately, and without being aware
that this was in course, we have managed to create
a ContextNet community which now spans several
research groups in universities in Brazil and abroad.

Keep open for new technologies and approaches:
In the same way as the ContextNet project was
expanded towards IoT in 2014 by supporting
Bluetooth, it may happen that in the next
years it may incorporate a distributed ledger
implementation, WearOS, or a new wireless
technology for IoT like NB-IoT. Therefore, one
should never regard a software system as a compact,
closed product that need only be maintained, but
instead always consider and prototype new features
into the software base, keeping it a live entity,
where some parts evolve into well established and
polished services because they are felt necessary
by most users, while other parts remain only
small ”stubs of past experiments”. However,
these free experiments with a software and the
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entailed ”wasted” efforts in dev work time may
not be feasible in the corporate world. But in
academic research this is not only allowed but even
expected, as the main goal here is to innovate, test
out ideas, make experiments and train students.
And in terms of the product itself, the software
system, it will usually be designed to be simple
and easy to change/incorporate new technologies.
In ContextNet, we can see this several services of
SDDL Core and in Mobile Hub’s services S2PA
and M-ACT.

9 RELATED WORK

There are many approaches to middleware for IoT [24,
21]. Some of them concentrate more effort in specific
challenges, such as security ([9]) and interoperability
([8]), others are focused in specific domains, such as
Smart Cities applications ([5]), while others provide a
more comprehensive support for IoT application devel-
opment. However, many of them don?t consider mobile
nodes, do not consider movable smart objects, or do not
scale. We are unaware of a systematic approach and
scalable middleware architecture focused on the Internet
of Mobile Things, in which the connectable things can
be moved or can move independently, and are accessible
and controllable from anywhere intermittently.

The first reference of use of smartphones as IoT gate-
ways was a position paper by Golchay et al. [14]. But
as expected, their software architecture of the gateway
is rather high-level, uses traditional protocols (e.g., TCP,
UDP ), and does not mention any concrete short-range,
low-power WPAN or WLAN technology.

A much more concrete design of a mobile gate-
way (running on smartphones) is the work described
in Aloi et al. [1]. The software architecture supports
opportunistic discovery, control, and management of IoT
devices, along with data processing, data collection and
dissemination capabilities on a continuous basis. In
addition, it can send control messages or data streams,
such as streaming video, to neighboring IoT devices
opportunistically. The architecture presents a multi-
standard, multi-interface and multi-technology commu-
nication structure capable of integrating different com-
munication standards and radio interfaces that presents
a reduced use of hardware resources. The flexibility of
the framework presented is guaranteed by the modular
implementation that allows the possibility of extending
the framework by adding new services (NFC, BLE,
etc.), if necessary. One limitation pointed out by the
authors is the high power consumption, mainly due to
the simultaneously active radio interfaces combined with
the small battery power of smartphones, which limits the

smartphone lifetime. The authors, however, claim that
their approach is still feasible as technological advances
related to battery issues and radio interfaces will, in the
short term, make these problems irrelevant. The solution
is being used in real cases of IoT applications (Smart
Health of the INTER-IoT project and Smart Street of the
Res-Novae project).

Although the general approach presented in Aloi et
al. is similar to ContextNet’s one, the M-Hub has
some distinguished features: it overcomes the power
consumption problem through dynamic adaption of its
functionalities based on the available battery level and
also by allowing the selective activation of network
technologies and individual sensors. M-Hub also pro-
vides the support for local (in-network) data processing
through the use of application deployed CEP rules or
Java code. When combined with CDDL, ContextNet
provides an extensive support for QoC parameters and
also allows continuous and instantaneous discovery of
M-OBJs services, monitoring and filtering of context
data.

Moreover, He et al. [16] describe MODE, a mid-
dleware that can dynamically change its deployment of
function modules based on context awareness to adapt
to environment changes. The middleware architecture
is based on two layers. The Device Node Layer is
responsible for collecting, cleaning and aggregating the
data produced by the sensors, transmitting this data to
the Server Layer through the MQTT data distribution
protocol. The Server Layer is responsible for context
science. For this, Complex Event Processing (CEP) is
used. This layer is also responsible for managing the
execution of tasks at run time, which are done through
logical scripts. In this way, it is possible to dynamically
perform tasks based on context awareness to adapt to
changes in the environment. MODE provides developers
with a set of basic tasks to handle a large number of
scenarios, however, it is also allowed the developer to
customize a task, thus developing an extension of the
basic task to meet their specific requirement.

In ContextNet, the end user application can be either
local (entirely executing at the smartphone with the M-
Hub) or distributed (at the M-Hub, in the SDDL core
and/or any other end user device), while in MODE ap-
plications are always remote Web applications. The M-
Hub, as in the MODE Device Node Layer, is responsible
for collecting data and also supports the execution of
filtering and aggregating functions. A major difference
is that M-Hub allows the dynamic deployment of either
CEP rules or Java code for performing any user defined
processing, leading to a more flexible approach for in-
network, edge processing. Through CDDL, ContextNet
provides support for QoC management, filtering and
monitoring, issues that are not addressed in MODE.
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Furthermore, ContextNet also support CEP processing
in the SDDL Cloud through D3CEP, similar to what
is provided in the MODE Server Layer. However,
ContextNet does not provide a scripting language for
defining tasks that can be triggered based on context
data, as the one provided in MODE.

10 CONCLUSION

After MoCA [18], ContextNet has been our second expe-
rience in developing a middleware system developed by
several ”generations of graduate students”. ContextNet
has been used primarily for many kinds of research and
prototyping of new middleware protocols and services
considering mobility as a premise. Therefore, over
the past four years it became a large assortment of
quite different - and sometimes incompatible - extra
middleware services and IoMT applications, developed
at LAC in PUC-Rio and LSDi in UFMA. Nevertheless,
the main pillars, the SDDL Core and the Mobile Hub
mirco-service architecture, have remained unmodified
and served as a reference for all other developments.

But as the project now is spreading its influence to, and
gaining new collaborators from, several other research
groups in Brazilian universities (e.g. Federal Flumi-
nense, Federal of Goiás, Federal da Paraı́ba, Estadual do
Ceará) and even abroad (e.g. LiP6, U. Kaiserslautern),
we are now creating better communication channels
among the researchers and developers and trying to im-
prove even more the system’s documentation 10. More-
over, we will need to decide which added services are
to be incorporated into the main ”product version” of
ContextNet, so to ensure that all other users get access
to well documented, stable and reliable services.

In any case, the ContextNet project has provided very
interesting scientific, development and organizational
challenges. It has been - and hopefully will continue
being - great fun to develop and manage its evolution.
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