
A Data Integration Architecture for Smart Cities*

Murilo Borges Ribeiro1, Kelly Rosa Braghetto1

1Department of Computer Science – Institute of Mathematics and Statistics
University of São Paulo (USP)

Rua do Matão 1010, São Paulo, Brazil

{muriloribeiro,kellyrb}@ime.usp.br

Abstract. The data generated by smart cities have low integration, as the sys-
tems that produce them are usually closed and developed for specific needs.
Moreover, the large volume of data, and the semantic and structural changes in
datasets over time make the use of data to support decision-making even more
difficult. In this work, we identify the main requirements of a data integration
system to support decision-making in cities, focusing on its challenges. We an-
alyze some existing data integration solutions, to uncover their features and
limitations. Based on these results, we propose a new microservice architecture
to support the development of software platforms for integrating smart cities’
heterogeneous data and a guideline to assess their performance.

1. Introduction
The increasing availability of electronic devices with sensing capacity and computational
power, capable of receiving and sending information, causes a large amount of data from
different sources and in different structures to be continuously produced in smart cities.
Cities also accumulate data generated by government entities, citizens and systems.

The collection, cleaning, integration, transformation, and analysis of large
amounts of data generated by different sources can help us to have a better understand-
ing of the deficiencies of cities. Urban data can be used to assist the evidence-based
decision-making and the development of public policies aimed at making the best use
of the available resources and the improvement in the quality of life of the population.
For example, the crossing of records of the municipal health department with sociodemo-
graphic, meteorological, and social networks data can be used to monitor the evolution
and prevent of endemic diseases such as Dengue.

The development of solutions to explore urban data faces difficulties due to the
lack of accessibility and integration of data [Raghavan et al. 2020]. This happens be-
cause many systems are built in silos: they are closed and developed for specific needs.
Data integration systems for smart cities have already been the subject of several research
works [Psyllidis et al. 2015, Consoli et al. 2015, Cheng et al. 2015, Rathore et al. 2016,
Hashem et al. 2016, Costa and Santos 2017, Mehmood et al. 2019]. Despite these works
present some approaches for the different stages of data integration (such as ingesting,
processing, storing, analyzing, and visualizing data), there are still open issues and place
for improvement in such systems. Examples of issues are the insufficient support for

*This research is part of the INCT of the Fu-
ture Internet for Smart Cities funded by CNPq proc.
465446/2014-0, Coordenação de Aperfeiçoamento

de Pessoal de Nı́vel Superior – Brasil (CAPES) –
Finance Code 001, FAPESP proc. 14/50937-1, and
FAPESP proc. 15/24485-9.



metadata management and the lack of data query facilities for non-specialist users, which
makes the discovery and the reuse of urban data more difficult.

In this work, we analyze some of the data integration solutions for smart cities re-
ported in scientific literature, to uncover their features and limitations. Two main research
questions have guided our analyses:

1. What are the main challenges and issues identified by the researchers for data
integration in smart cities?

2. What are the functional and non-functional requirements of a software platform
for data integration in smart cities?

Based on this analysis, we propose a microservices architecture to guide the devel-
opment of software platforms for integrating smart cities’ heterogeneous data and facili-
tating its use. This architecture was designed to support all the required services (i.e. data
ingestion, metadata management, data processing, data analysis, and data visualization)
while providing scalability, availability, security, and privacy. We also present a guideline
to assess performance of systems that implement the proposed architecture. The guideline
follows the Cloud Evaluation Experiment Methodology (CEEM) [Li et al. 2013], used for
systematically evaluating cloud services’ performance through experiments.

The remainder of this paper is organized as follows. Section 2 analyzes the re-
lated works, identifying the requirements of the data integration platforms. Section 3
introduces our microservices architecture, providing details of each one of its services.
The guideline for the performance evaluation of implementations of the architecture is
presented in Section 4. Finally, Section 5 presents the concluding remarks.

2. Software Platforms for Data Integration in Smart Cities

2.1. Related Works

We have searched Google Scholar1 for works published since 2015 using the search string:
((“data integration” or “semantic data integration” or “data warehouse” or “data lake”
or “big data”) and “smart cities”). Then, we have analyzed the abstract and keywords
of each of the returned papers to filter those that present software architectures to inte-
grate heterogeneous data in smart cities. From this filtering, we reached the works of
[Psyllidis et al. 2015], [Consoli et al. 2015], [Cheng et al. 2015], [Rathore et al. 2016],
[Hashem et al. 2016], [Costa and Santos 2017], and [Mehmood et al. 2019]. Most of
them developed distributed, multi-tiered systems, capable of handling data both in batch
and real time, and supporting a large variety of services for applications and final users.

[Psyllidis et al. 2015] developed SocialGlass, a web platform that offers resources
for analysis, integration, and visualization of heterogeneous urban data in order to assist
in urban planning and decision-making. The SocialGlass architecture is divided into three
main modules: ingestion, integration and exploration. The ingestion module refers to the
acquisition, cleaning, and processing of social and sensor data. The integration module is
responsible for enabling interoperability between different data sources. To achieve that,
an ontology-based knowledge representation model was developed, which represents ur-
ban systems, the relationships between them, and the corresponding data sources. The

1https://scholar.google.com/



exploration module offers a map-based web interface for data visualization and explo-
ration, making it possible to obtain insights about spatial and temporal parameters of the
urban context. Details of the technologies used in the implementation were not provided.
The system does not support data processing and access via external platforms.

[Consoli et al. 2015] presented an ontology integration approach using Linked
Data (a set of practices for publishing and connecting data on the Web). In their work,
each dataset was converted to an RDF (Resource Description Framework) data model us-
ing custom processes. With the help of domain experts, ontologies were generated for
each dataset, to achieve conceptual interoperability. Data and ontology are accessible by
querying the SPARQL API. The ingestion, processing, and visualization of data were out
of the scope of their work.

[Cheng et al. 2015] proposed a Big Data architecture integrated with the IoT
SmartSantander experimental test environment. This architecture is divided into four
main modules: (1) data collection, (2) data storage, (3) data processing and analysis, and
(4) API for communicating with external applications. The data collection module is rep-
resented by a broker, which is responsible for receiving data from different sources. A
NoSQL database is used for data storage. Data processing and analysis are done in batch
or stream by using a distributed computing tool. The module for communicating with
external applications has a RESTful API to allow external applications to make simple
queries, complex queries, and subscriptions. A simple query might request aggregated re-
sults about the latest status of all sensors, while a complex query might request aggregated
results about historical data within a specified time frame. Subscription is the mechanism
used for apps to receive notifications with the latest results, preventing the apps from
querying the data all the time. This architecture does not feature a visualization module
for stored data and metadata, making it difficult for public managers to use it.

[Rathore et al. 2016] proposed a system for collecting, aggregating, filtering, sort-
ing, pre-processing, computing, and decision-making using the Data Lake approach com-
bined with Data Warehouse. The proposed system is divided into four layers: (1) data
generation and collection, (2) data transmission, (3) data management and processing,
and (4) data analysis. The first and second layers are responsible for collecting data
using sensors and transferring the data to the storage platform; therefore, they are in a
lower level than the services considered in this work. The third layer, data management
and processing, use a distributed file system (HDFS) and distributed computing tools for
real-time data processing. For historical data, the authors suggested the use of a tool for
Data Warehouses (Apache Hive2) and distributed databases (Apache HBase3). The fourth
layer is composed of several applications, each one for a different type of planning. The
architecture does not support metadata management and data analysis.

Similarly, the smart cities Big Data architecture proposed by [Hashem et al. 2016]
is divided into four layers. The first is composed of sources and transferring of data, while
the second is responsible for storing the data in a distributed and fault-tolerant database.
In the latter, the stored data is processed according to the queries received using a parallel
and distributed processing programming model. The third layer, intelligent analytics, was
designed to support the use of machine learning and data mining to extract patterns and

2https://hive.apache.org 3https://hbase.apache.org



knowledge from large amounts of data. The last layer is made up of applications that use
the stored data for varied purposes, such as intelligent management of public resources.

[Costa and Santos 2017] presented an approach to design and implement a Big
Data Warehouse in the context of smart cities, with a repository that stores data in raw
format. The proposed architecture is divided into four major modules responsible for data
collection, preparation and enrichment, storage and access, analysis and visualization.
Data can be collected in real-time using a broker (Apache kafka4), or in batch using an
ETL tool, e.g. Talend5 and HDFS Upload. The data collected in batch is directly stored
in files on a distributed system, prepared and enriched using a distributed computing tool
(Apache Spark6), and then stored in a Data Warehouse (Apache Hive). Data collected
in real time is also stored in a distributed file system, prepared and enriched using a
distributed computing tool, and later stored in a distributed database (Apache Cassandra7).
The stored data can be accessed by a distributed SQL query tool (Presto8) and by a data
visualization tool. The proposed model was implemented in the SusCity research project
and was used to analyze data collected in the city of Lisbon. The solution does not support
metadata management and accessing data via external platforms.

Similarly, [Mehmood et al. 2019] proposed an architecture divided into five mod-
ules responsible for data collection, ingestion, storage, exploration and analysis, and vi-
sualization. For data ingestion, they proposed the use of a stream processing tool (Apache
Flume9) with storage in a distributed file system (HDFS). Data analysis and exploration
were performed using a distributed indexing tool (Apache Solr10) and distributed com-
puting (Apache Spark). For data visualization, a SQL query web tool (Hue11) and the
Matplotlib12 library were used. The presented metadata management requires data uni-
formity, making it difficult to analyze the data from the different sectors of the city.

2.2. Requirements for Data Integration Software Platforms

2.2.1. Functional Requirements

The main goal of a platform for data integration in smart cities is to facilitate the develop-
ment of applications that use data combined from different sources. To this end, most of
the analyzed platforms implement requirements for data ingestion, processing, analysis,
visualization, and data sharing. Table 1 provides an overview of how the related works
cover these functional requirements. Each requirement is described in the sequence.

Data ingestion is the process of importing real-time or batch data into the storage
platform. Data can come from different sources, in different formats, such as CSV, TXT,
JSON, and others.

Metadata management is the process of collecting and managing information
about data stored on the platform. Metadata must contain information about the seman-
tics and structure of data collections. Metadata should also keep information about the
mappings needed to standardize data and guarantee backward compatibility, in order to

4https://kafka.apache.org
5https://www.talend.com
6https://spark.apache.org
7https://cassandra.apache.org
8https://prestodb.io

9https://flume.apache.org
10https://solr.apache.org
11https://gethue.com
12https://matplotlib.org



Ingestion Metadata Processing Machine Analysis and External
Learning Visualization Access

[Psyllidis et al. 2015] X X X
[Consoli et al. 2015] X X
[Cheng et al. 2015] X X X
[Rathore et al. 2016] X X X
[Hashem et al. 2016] X X X X
[Costa and Santos 2017] X X X
[Mehmood et al. 2019] X X X X

Table 1. Functional Requirements

Scalability Availability Security and Privacy
[Psyllidis et al. 2015] X
[Consoli et al. 2015]
[Cheng et al. 2015] X
[Rathore et al. 2016] X X
[Hashem et al. 2016] X
[Costa and Santos 2017] X
[Mehmood et al. 2019] X X

Table 2. Non-functional Requirements

enable data integration and ease of use.

The data arriving at the platform may be inaccurate, incomplete, inconsistent, or
redundant. Additionally, this data may need aggregation, filtering, or analysis before
enabling knowledge discovery. Thus, platforms must offer resources for creating and
executing data processing procedures.

Extracting knowledge and insights of data is of paramount importance to enable
better decision-making in cities and support the implementation of efficient public poli-
cies. Therefore, data integration platforms must enable the creation, maintenance, and
execution of custom machine learning models.

Data analysis and visualization refer to the presentation of data in user-friendly
graphical formats, to help users understand the behavior of cities and the use of resources.
A data integration platform must offer features to support the creation of custom reports
and dashboards for managers to convert data into knowledge.

The external access refers to the possibility of external systems consuming the
data stored on the platform, allowing the development of new applications to improve the
services provided to the population or to optimize the use of available resources. Only
authorized users or systems should have access to the data.

2.2.2. Non-functional Requirements

Table 2 shows the non-functional requirements mentioned in the related work of Sec-
tion 2.1. We describe each one of the requirements in the sequence.

Scalability refers to the ability to increase or decrease computational resources
according to the need of the system. Scalability can be vertical, meaning adding (remov-



Microservices with features not provided by the solutions of the related works are highlighted in bold.

Figure 1. The proposed software architecture for data integration in smart cities.

ing) resources to (from) a single node; or horizontal, when adding (removing) nodes to
(from) a distributed system.

Availability refers to the ability of the platform to be resilient to hardware, soft-
ware, and power failures to keep services available for as long as possible.

Security and privacy refer to restrict access to the stored data to authorized users
and systems, preventing leakage and misuse of information. It also includes the plat-
form’s ability to comply with data protection policies so that sensitive data is properly
anonymized and secured.

The implementation of these requirements imposes challenges due to the
large volume of data and the heterogeneity of sources and formats. According to
[Cheng et al. 2015], scalability is an important issue as the amount of data greatly in-
creases over time, with the availability of new services and technology, and also with the
population growth. Security and privacy are important issues as well since there is a lot of
sensitive data being collected in smart cities, and the cyber attack attempts become each
day more frequent [Cheng et al. 2015, Hashem et al. 2016].

3. A Microservice Architecture for Data Integration in Smart Cities
In this section, we present a new architecture to guide the development of data integration
software platforms for smart cities. Figure 1 shows the diagram of the architecture. This
architecture was initially derived from the architectures of related works, and then it was
significantly improved to address the requirements and issues discussed in Section 2.2.

3.1. Components of the Architecture

The lowest-level component in the proposed architecture is the Data Lake Storage, a
distributed storage system responsible for storing data as close as possible to its original
format, so that end-users do not need to understand details of how data is stored in order



to be able to use it. To prevent the storage system from being a bottleneck for query en-
gines, data must be stored in a standardized, compressed format that facilitates analytical
querying and reduces storage size and cost, but information cannot be discarded or lost.
The most used open-source distributed file system is HDFS. Data can be standardized into
Avro13 or Parquet14 format and compressed using Snappy or Gzip compression.

The Data Ingestion microservice is responsible for asynchronously consuming
data from the message queues, converting the original data to a standardized and com-
pressed file format, and then sending it to Data Lake Storage by using a pre-established
communication channel. It is necessary to have at least two message queues, one for real-
time data (i.e. from sensors and social networks) and one for batch data. The separation
of queues is important to enable the prioritization of the ingestion of data in real-time and
to improve the scalability of the system. This microservice can be implemented using
Kafka, RabbitMQ15 and Spark streaming.

The Metadata Manager is a metadata catalog with features for registering data
sources and information about data schema, data origin, privacy policies, schema version-
ing, and data mapping rules. It is also responsible for requesting the creation or updating
of the data view for the Data Query microservice whenever a new version of the metadata
is created. The latter are important to make data from different schema versions compati-
ble, so that even legacy data can be easily discovered and used by the authorized persons.
The metadata model must follow the World Wide Web Consortium (W3C) standards. We
suggest the adoption of standard models such as the RDF vocabulary Data Catalog Vo-
cabulary (DCAT16). DCAT facilitates the consumption and aggregation of metadata from
multiple catalogs. It is integrated with other standards, such as Schema.org and PROV
Ontology (PROV-O17). The catalog is maintained in the microservice’s own database
(preferably NoSQL, to facilitate the storage of metadata in JSON).

The Data Query is the microservice responsible for processing the creation orders
of visualization of data stored in Metadata Manager and synchronously executing SQL
queries on the data in Data Lake Storage. Query statistics such as execution frequency
and response time should be stored to allow the use of automatic indexing and caching
techniques to speed up the access to frequently used data. Softwares like Hive and Spark
SQL can be used to implement this microservice.

The analysis and processing of data in real-time are made by the Stream Process-
ing microservice. This microservice enables the execution of tasks on data as soon it en-
ters the platform. It provides an interface for developers to create and manage their jobs.
Results of the data processing must be stored, enabling their use by other applications.
This microservice can be implemented using tools such as Kafka and Spark Streaming.

The Smart Analyzer microservice provides tools to support data mining and the
creation, management, and execution of machine learning models on the datasets in the
Data Lake Storage, and data streams provided by the Stream Processing. It can gen-
erate notification events in a message queue for consumption by other applications. To
implement this microservice, Spark ML and Scikit Learn18 can be used.

13https://avro.apache.org/
14https://parquet.apache.org/
15https://www.rabbitmq.com

16https://www.w3.org/TR/vocab-dcat-3
17https://www.w3.org/TR/prov-o
18https://scikit-learn.org/



Batch Processing is responsible for enabling the processing of large datasets
stored in Data Lake Storage, providing an interface for the creation, management, and
execution of tasks. The processing results can be saved in Data Lake Storage or pub-
lished in a message queue so that they can be consulted by APIs and visualization tools,
or consumed by other applications. For batch data processing, MapReduce can be used.

Data Visualization supports graphical interfaces for presenting and analyzing
data stored in Data Lake Storage and data generated by Stream Processing and Smart
Analyzer. It allows users to create reports and dashboards. This service can be made
available using tools such as Apache Superset19 or Kibana20.

The API Gateway provides for external applications a single access point (with
load balancing) to the others microservices. The communication between the API Gate-
way and the external applications must use an encrypted communication channel. Fur-
thermore, every request must consult the Auth Server microservice, which authenticates
the user and generates a cryptographic token to be used in future requests. After suc-
cessful authentication, the request is enriched with user information and forwarded to the
targeted microservice. The gateway can be implemented using Apache Knox21 or Kong22,
for example. The Auth Server can be implemented using Apache Syncope23 or Auth024.

The Public UI is responsible for enabling users to access the web interface of
other microservices in a single web interface. This way, each microservice offers the type
of interface that suits it best. This microservice is public and uses a single access point,
the API Gateway, with an encrypted communication channel and identified user. Among
the technologies that can be used to implement the Web interface and integrate it with the
functionalities provided by other microservices are NodeJS25, React26, and HTML5.

There are several concerns that an implementation of these microservices have
to address. For example, Data Ingestion must be able to handle large data volumes
and heterogeneity. Metadata Management must couple with structural and semantic data
changes, to provide data compatibilization. Data Query must provide good performance
(with automatic indexing, caching, etc.). API Gateway must balance load to handle re-
quests in the most efficient manner. All the microservices must be scalable and fault-
tolerant, while ensuring data security and privacy.

To increase the productivity and reliability of the platform’s development, we sug-
gest reusing free software in its implementation, mainly those that have an active commu-
nity of developers; support to stable versions; evolutionary versions; a rich documenta-
tion; as well as integration with security and data privacy tools. To facilitate the operation
and maintenance of the platform, we suggest the adoption of DevOps best practices, such
as continuous integration, continuous delivery, continuous deployment, and monitoring.

3.2. Comparison with Related Architectures

Our architecture supports functionalities for data ingestion and physical integration using
approaches similar to those of the works analyzed in Section 2. However, it extends the

19https://superset.apache.org
20https://www.elastic.co/pt/kibana
21https://knox.apache.org
22https://konghq.com/kong

23https://syncope.apache.org
24https://auth0.com
25https://nodejs.org
26https://reactjs.org



related works by supporting some unique features, such as: a single point of access to mi-
croservices by external applications; an authentication and access authorization service;
a centralizing interface for the services; the creation of new data collections based on ex-
isting ones; and compatibilization of data in collections that have suffered structural or
semantic changes over time, using the metadata modification history and mapping rules.

[Mehmood et al. 2019] had also proposed using metadata to support the data inte-
gration. Their architecture works with data models to provide unified vocabulary among
data sources and align syntactic and semantic differences, demanding the definition of
data models for each city sector (e.g., environmental, social, and economic data). In our
work, we made a more comprehensive proposal for metadata management, using DCAT
to describe the data sources. Moreover, we do not enforce uniformization in data inges-
tion. The data is stored as it comes from the source. Then, it can be compatibilized when
it is queried. Views of compatibilized data can be materialized to speed up queries.

4. Performance Evaluation
To evaluate the performance of a system that implements the proposed architecture, the
Cloud Evaluation Experiment Methodology (CEEM) [Li et al. 2013] can be used. CEEM
is a methodology for systematically evaluating the performance of cloud services by ex-
periments, which can be easily replicated or extended to any environment.

The methodology proposes ten steps to evaluate a service: (1) Requirement Recog-
nition – define the problem and objectives of the assessment; (2) Service Feature Identi-
fication – identify the services and features to be evaluated; (3) Metrics and Benchmarks
Listing – list the metrics and benchmarks that can be used; (4) Metrics and Benchmarks
Selection – select the appropriate metrics and benchmarks for evaluation; (5) Experi-
mental Factors Listing – list factors that may impact in the experiments’ evaluation; (6)
Experimental Factors Selection – select the factors to be studied and define the acceptance
criteria; (7) Experimental Design – design the experiments based on the previous steps;
(8) Experimental Implementation – prepare the test environment and run the designed ex-
periments; (9) Experimental Analysis – analyze and statistically interpret the experimental
results; and (10) Conclusion and Reporting.

In the following, we present a guideline for applying CEEM to evaluate the per-
formance of microservices of our data integration software architecture.

4.1. Requirement Recognition and Service Feature Identification
We want to assess the individual capacity of each microservice to function under both
normal and above-normal workload conditions. In particular, we want to evaluate the
effectiveness of self-scalability to support an increase in the number of users or simulta-
neous requests for the microservice’s main functionalities, while keeping an acceptable
quality of service.

The main functionalities to be evaluated through the experiments are: ingestion
of data streams and batches received by the API in the Data Ingestion microservice; cre-
ating, querying, and compatibilizing metadata in the Metadata Manager microservice;
and recovery of data from the Data Lake Storage in the Data Query microservice.

The number of users and requests per time interval to be supported by a microser-
vice instance must be defined according to the smart city platform to which the system



is coupled. These values will be used as parameters for the execution and analysis of the
experiments. Therefore, they must be defined for each microservice to be analyzed.

This guideline does not include experimental scenarios for the API Gateway,
Auth Server, Stream Processing, Batch Processing, Smart Analyzer and Data Visu-
alization microservices because we assume that open-source tools with assessed good
performance will be used in their implementation. The Public UI will not be considered
either because it is a front-end application, thus it impacts the system’s general perfor-
mance less than the other components.

4.2. Metrics and Benchmarks Listing and Selection
In this analysis, we will consider the catalog of metrics presented by [Li et al. 2012b].
Four metrics of the catalog are particularly appropriate to assess the performance of the
microservices: CPU utilization, RAM utilization, latency, and the number of requests
processed per time interval. These metrics enable us to validate whether the developed
system is capable of serving the expected number of users and requests with low latency.

4.3. Experimental Factors Listing and Selection
[Li et al. 2012a] point out the operating system and container manager versions as experi-
mental factors to be considered. CPU clock speed and number of cores, type and capacity
of RAM memory, and storage capacity are important factors as well, since both software
and hardware changes can affect the performance results. To avoid the microservices’ in-
stances competing for computing resources, we suggestt running them in containers with
limited resources.

4.4. Experimental Design and Implementation
This section describes three experiments designed to evaluate the microservices’ perfor-
mance. Each one of the experiments must be run with three different configurations:

Configuration 1 Execution with a single instance of the microservice with auto-scaling
disabled, and a workload that gradually increases over time (both in the number of users
and in the number of concurrent requests per time unit), until reaching the maximum size
expected for the system. The goal in this configuration is to measure the microservice’s
performance under normal workloads.

Configuration 2 Execution with a single instance of the microservice with auto-scaling
disabled, and a workload that gradually increases over time (both in the number of users
and in the number of concurrent requests per time unit), until CPU or RAM usage is close
to 100%. In this configuration, the goal is to identify the maximum number of users and
concurrent requests that a single instance can handle.

Configuration 3 Execution of the microservice with auto-scaling enabled, and a work-
load varying between the lower and the upper limit values supported by a given fixed
number of instances. In this configuration, the goal is to assess the capacity of the mi-
croservice to self-adjust to the current demand, increasing or decreasing the number of
instances according to the variations in the workload.

During the execution of the experiments, information about the CPU and RAM us-
age, request processing time, and number of messages processed per time unit (through-
put) must be collected and recorded. The number of replications of each experiment



should be defined taking into account the resources available, and the desired sensitiv-
ity and confidence of the performance indexes to be obtained from the measurements.
Generally, the sensitivity increases with the number of replications of the experiment.

Experiment 1 – Data Intake Latency Start a single instance of the Data Ingestion
microservice and trigger real-time and batch data provisioning, varying the number of the
simulated users and requests over time according to the configuration being executed.

Experiment 2 – Response Time For Operations on Metadata Start a single instance
of the Metadata Manager microservice and simulate the simultaneous execution of
metadata creation, query, and compatibilization requests for different data collections,
varying the number of simulated users and requests over time according to the experi-
ment configuration being executed.

Experiment 3 – Response Time of Data Queries To evaluate the Data Query, first
initialize the Data Lake Storage with data from different collections and sources until
reaching a considerable percentage of use of its storage capacity, to make possible the
evaluation of the response time of queries over a large volume of data. Then, for each
data collection stored, create a view in the Data Query. After this initialization, launch
an instance of Data Query. Use a simulator to generate and execute queries with filters
and random aggregations over the pre-existing views, varying the number of simulated
users and requests over time according to the experiment configuration being executed.

4.5. Experimental Analysis
To analyze data collected in the experiments and drawn conclusions, it is strongly recom-
mended the use of statistical methods to ensure robustness [Li et al. 2013]. Nevertheless,
even simple graphical tools (e.g. dot plots, histograms, and box plots), showing the re-
sponse time, throughput, CPU usage, and RAM usage over time, may help to visualize
how well a microservice self-adjust to workload variations.

5. Conclusion
The contribution of this work is twofold. First, it provides a panorama of the requirements
of data integration for smart cities and state-of-the-art solutions. Second, it presents an
architecture to help researchers and developers to approach the implementation of these
requirements and also guidance to assess its performance.

We have identified functional and non-functional requirements of data integration
in smart cities and the challenges involved in their implementation by analyzing the re-
lated literature. Then, we have proposed a microservices architecture for a data integration
platform that meets these requirements. We have also specified the software components
needed to implement them. Our software architecture extends those of related work by
providing a solution for metadata management that keeps the history of changes in the
structure and semantics of attributes, to enable the compatibilization of data in queries.
Another differentiated feature of the architecture is the API Gateway, which provides a
secure data access point for external applications (through encrypted and authenticated
communication channels). We are currently working on an implementation27 of this ar-
chitecture on top of InterSCity28, an open-source platform for smart cities.

27https://gitlab.com/interscity/data-integration.git 28https://gitlab.com/interscity/interscity-platform



Following the CEEM methodology, we have designed a set of experiments that
can be used to evaluate the performance of the microservices of the architecture under
both normal and above-normal workload conditions. With these experiments, one can
assess the effectiveness of self-scalability to keep acceptable quality of service while the
number of users and requests vary over time.

References
Cheng, B., Longo, S., Cirillo, F., Bauer, M., and Kovacs, E. (2015). Building a big

data platform for smart cities: Experience and lessons from Santander. In 2015 IEEE
International Congress on Big Data, IEEE BigData 2015, pages 592–599.

Consoli, S., Mongiovic, M., Nuzzolese, A. G., Peroni, S., Presutti, V., Reforgiato Recu-
pero, D., and Spampinato, D. (2015). A smart city data model based on semantics best
practice and principles. In 24th Intl. Conference on World Wide Web, WWW’15.

Costa, C. and Santos, M. Y. (2017). The SusCity big data warehousing approach for smart
cities. In Proceedings of the 21st International Database Engineering & Applications
Symposium, IDEAS 2017, page 264–273. ACM.

Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., Ahmed, E.,
and Chiroma, H. (2016). The role of big data in smart city. International Journal of
Information Management, 36(5):748 – 758.

Li, Z., OBrien, L., and Zhang, H. (2013). CEEM: A practical methodology for cloud
services evaluation. In IEEE 9th World Congress on Services, pages 44–51.

Li, Z., O’Brien, L., Zhang, H., and Cai, R. (2012a). A factor framework for experimental
design for performance evaluation of commercial cloud services. In 4th IEEE Intl.
Conf. on Cloud Computing Technology and Science Proceedings, pages 169–176.

Li, Z., O’Brien, L., Zhang, H., and Cai, R. (2012b). On a catalogue of metrics for eval-
uating commercial cloud services. In 2012 ACM/IEEE 13th International Conference
on Grid Computing, pages 164–173.

Mehmood, H., Gilman, E., Cortes, M., Kostakos, P., Byrne, A., Valta, K., Tekes, S., and
Riekki, J. (2019). Implementing big data lake for heterogeneous data sources. In IEEE
35th Intl. Conference on Data Engineering Workshops (ICDEW 2019), pages 37–44.

Psyllidis, A., Bozzon, A., Bocconi, S., and Titos Bolivar, C. (2015). A platform for
urban analytics and semantic data integration in city planning. In Computer-Aided
Architectural Design Futures. The Next City - New Technologies and the Future of the
Built Environment, CAAD Futures 2015, pages 21–36. Springer Berlin Heidelberg.

Raghavan, S., Simon, B. Y. L., Lee, Y. L., Tan, W. L., and Kee, K. K. (2020). Data
integration for smart cities: Opportunities and challenges. In Alfred, R., Lim, Y.,
Haviluddin, H., and On, C. K., editors, Computational Science and Technology, pages
393–403. Springer Singapore.

Rathore, M. M., Ahmad, A., Paul, A., and Rho, S. (2016). Urban planning and build-
ing smart cities based on the internet of things using big data analytics. Computer
Networks, 101:63 – 80.


