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Abstract

Smart Cities combine advances in Internet of Things, Big Data, Social Networks, and Cloud Computing technologies with
the demand for cyber-physical applications in areas of public interest, such as Health, Public Safety, and Mobility. The
end goal is to leverage the use of city resources to improve the quality of life of its citizens. Achieving this goal, however,
requires advanced support for the development and operation of applications in a complex and dynamic environment.
Middleware platforms can provide an integrated infrastructure that enables solutions for smart cities by combining
heterogeneous city devices and providing unified, high-level facilities for the development of applications and services.
Although several smart city platforms have been proposed in the literature, there are still open research and development
challenges related to their scalability, maintainability, interoperability, and reuse in the context of different cities, to name
a few. Moreover, available platforms lack extensive scientific validation, which hinders a comparative analysis of their
applicability. Aiming to close this gap, we propose InterSCity, a microservices-based, open-source, smart city platform
that enables the collaborative development of large-scale systems, applications, and services for the cities of the future,
contributing to turn them into truly smart cyber-physical environments. In this paper, we present the architecture of the
InterSCity platform, followed by a comprehensive set of experiments that evaluate its scalability. The experiments were
conducted using a smart city simulator to generate realistic workloads used to assess the platform in extreme conditions.
The experimental results demonstrate that the platform can scale horizontally to handle the highly dynamic demands
of a large smart city while maintaining low response times. The experiments also show the effectiveness of the technique
used to generate synthetic workloads.
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1. Introduction

Most large cities around the world are challenged by
problems related to population growth, shortage of re-
sources, air pollution, traffic congestion, and public safety,
among many other modern urban problems. Research on5

Smart Cities seeks to mitigate these problems using Infor-
mation and Communication Technology (ICT) to leverage
the city infrastructure and resources as part of a highly
integrated, diverse, and large-scale smart cyber-physical
environment. The goal is to enable systems and applica-10

tions that will ultimately turn the city into a smart envi-
ronment, contributing to improve the quality of life of its
citizens.

A number of industry initiatives have been success-
fully adopted in cities around the world, tackling differ-15
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ent urban problems. They combine cyber-physical systems
with mobile applications to enable the realization of bike
sharing services, bus tracking systems, and smart traffic
lights, which are now widespread in large urban centers.
Smart navigation systems such as Waze and Google Maps20

are examples of smart city applications capable of serving
millions of users by combining geolocation, crowd-sensing,
and real-time data. The early adoption of ICT in the con-
text of urban problems has significantly impacted multiple
application domains. Although several of the mentioned25

systems handle scalable data processing and services, they
do not offer an integrated infrastructure to facilitate the
development of other smart city applications through fa-
cilities that can be shared across multiple domains and
services.30

In the academia, several efforts have been devoted to
the study and development of the smart city paradigm,
leading to a proliferation of initiatives around the world,
targeting different domains such as urban mobility, energy
management, and healthcare. Despite their early success,35

there is a need for more effective solutions for data integra-
tion and sharing as several of those initiatives have been
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developed using ad-hoc approaches [1]. They neither fol-
low a common set of practices and standards nor consider
the need for data and resource sharing among the different40

systems in the city [2, 3]. This hinders the development
of smart city solutions that are both sustainable in the
long term and reusable in cities with different characteris-
tics, thus creating market islands and raising extensibility,
adaptability and interoperability issues.45

The use of smart city platforms facilitates the fast de-
velopment, deployment, and operation of integrated, high-
quality smart-city services and applications [3]. Such plat-
forms typically implement a set of common functional re-
quirements in the form of reusable services that applica-50

tion developers can use, including services for the inte-
gration of Internet of Things (IoT) devices, as well as for
data storage and processing, and for context-awareness.
Similarly, the architectures of those platforms may meet
multiple non-functional requirements such as adaptabil-55

ity, privacy, interoperability, and evolvability, according to
the specificities of the problem that they intend to solve.
In particular, in this paper, we are mainly interested in
designing and evaluating such platforms for scalability, a
non-functional requirement for future cyber-physical sys-60

tems that is specially critical in the context of smart urban
spaces, which may encompass entire cities, with millions
of sensors, actuators and humans in the loop [3, 4].

A smart city platform must handle a large number of
devices that are part of or are integrated with the city in-65

frastructure. It needs to store and process large volumes
of data related to the city, which are continuously pro-
duced and consumed by devices and client applications.
At the same time, the platform must be able to support
thousands of requests from users and from services that70

run on top of it. The scalability demands thus vary ac-
cording to the characteristics of the city, as well as those
of the deployed applications and services. For instance, a
city may start with a pilot project in one of its districts
and then expand to other parts of the city as the required75

infrastructure becomes available.
Despite its importance, platform scalability has not yet

received the necessary attention in smart city research.
According to a previous systematic study of the litera-
ture [3], most of the works that supposedly meet scalability80

requirements only present superficial discussions of design
and implementation decisions that can lead to a scalable
architecture. Moreover, they often do not provide scientific
evidence of the feasibility of their approaches. Sanchez et
al. [5] highlighted that several IoT projects were able to85

present concrete solutions through new technologies and
architectural models, but failed to present conclusive vali-
dation of the proposed solutions, which are often restricted
to proofs-of-concept. However, demonstrating the actual
scalability of smart city platforms presents significant chal-90

lenges due to the lack of available infrastructure for real
experimental setups, as well as the lack of comprehensive
datasets.

This state of affairs derives from the difficulty in assess-

ing platform characteristics in real-world scenarios. This95

difficulty stems both from the significant deployment and
usage hurdles in most platforms and from the lack of ade-
quate evaluation techniques.

Middleware platforms for smart cities usually imple-
ment complex distributed architectures, requiring consid-100

erable effort in documentation and automation to run,
configure, and test them. Also, these platforms are of-
ten implemented as non-open-source software, hampering
their use and study by third parties, as well as the repro-
ducibility of results and collaborative development. Con-105

sequently, few projects are truly deployed in production
environments, as most of the existing infrastructures are
experimental and small in scale.

Even if this was not the case, the research community
still needs to advance in the direction of more sophisti-110

cated methods, tools, and benchmark strategies to enable
a comprehensive evaluation of smart city platforms. One
challenging related problem is the generation of represen-
tative workloads to assess the performance and scalabil-
ity of smart city software platforms. Two distinct funda-115

mental actors must be accounted for: (1) client applica-
tions, which generate requests using the platform facilities,
and (2) the underlying IoT devices, which continuously
produce sensed data and/or receive actuation commands.
In this context, the use of randomly generated synthetic120

workloads or a failure to consider either of these external
actors can result in experiments that, although useful for
evaluating the system in a limited context, do not repre-
sent realistic scenarios. This has been observed in most of
the reported evaluations of smart city platforms, as exem-125

plified by [6, 7, 8].
In a real smart city, citizens dynamically interact with

the cyber-physical infrastructure, triggering multiple events
and changing the context observed by pervasive devices
and systems. Similarly, platform clients, such as end-user130

applications and city management services, may vary their
interaction behavior with the platform due to events ob-
served in the physical world and real-time data provided
by the city. This dynamic behavior of citizens and plat-
form clients needs to be captured and modeled to generate135

meaningful and representative synthetic workloads.
Available benchmark tools focus on generating work-

loads for Smart Cities or IoT platforms by extrapolating
real sensor traces from various contexts or by emulating
the behavior of users based on Web traces. The use of140

smart city simulators can reduce the problems related to
workload generation by allowing large-scale experiments
on smart city platforms based on more realistic scenarios.
Such simulators implement models that reproduce smart
city environments based on the behavior of citizens, IoT145

devices, and other aspects of the city, such as vehicles,
buildings, and lamp posts [9]. Although data produced by
a simulator is still synthetic, it reflects the individual be-
havior of involved actors and their interactions, emulating
the dynamic behavior of a city and adapting the simula-150

tion accordingly. However, making a simulator interact
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with a smart city platform is not a trivial task. Notably,
the scalability of the simulator itself needs to be addressed,
as well as its integration with the target platform.

In 2016, we started the development of InterSCity1, an155

open-source, microservices-based platform that provides
a cloud-native software infrastructure to support the de-
velopment of smart city projects, applications, and ser-
vices. InterSCity has a microservices architecture that
contributes to its scalability. Its modularization through160

small, single-purpose and loosely-coupled interconnected
services enables the evolution of its design, which is a valu-
able property to adequately meet the continuously chang-
ing demands of novel smart city contexts and applications.

In this paper, we investigate the scalability of the Inter-165

SCity platform using InterSCSimulator, a scalable smart
city simulator [9]. In previous work [6], we introduced
the InterSCity platform and provided preliminary exper-
imental results indicating the feasibility of our approach
towards achieving a scalable architecture. Although we170

have maintained the main InterSCity modules in relation
to our previous work, we have refined important archi-
tectural decisions regarding microservices communication
and deployment, enabling greater scalability and the in-
tegration with the simulator. Also, we have implemented175

several improvements in the microservices code base re-
lated to database queries, caching mechanism, and data se-
rialization to avoid performance issues. This paper brings
three new fundamental contributions:

• A detailed exploration of the current architecture180

and implementation of the InterSCity platform, sup-
ported by a deeper discussion of the design decisions
made to meet scalability requirements and more com-
prehensive experiments considering realistic scenar-
ios and covering broader requirements than the ones185

of the previous version presented in [6].

• Advances on performance evaluation of smart city
platforms, with the proposal of a new method for
workload generation that addresses the dynamism
of smart cities by using large-scale simulations inte-190

grated with the platform.

• An application of the simulation-based experimental
strategy to evaluate the InterSCity platform based
on a Smart Parking application scenario. We pro-
vide an extensive analysis of the platform’s scalabil-195

ity properties, advancing the knowledge on the use
of the microservices architectural pattern to develop
smart city solutions.

This paper is organized as follows. Section 2 discusses
related work targeting either architectural proposals for200

scalable smart city platforms or the generation of work-
loads for scalability and performance evaluation of smart

1http://interscity.org/software/interscity-platform

city platforms. Section 3 explores the design and imple-
mentation details of the InterSCity microservices archi-
tecture related to scalability. Section 4 presents a brief205

overview of InterSCSimulator, its integration with the In-
terSCity platform, and the modeled smart city scenario.
Section 5 describes the experimental methodology to as-
sess the platform using the modeled scenario and a com-
prehensive scalability analysis. Finally, Section 6 presents210

our conclusions and discusses future work.

2. Related Work

Research on smart city platforms comprises a wide
range of areas and related problems. However, in the
context of this work, we are mainly concerned with the215

scalability of these platforms. Therefore, we divide rele-
vant related work into two categories: (1) projects that
propose novel smart city platforms that address scalabil-
ity challenges, and (2) tools and methodologies to generate
workloads for experiments on smart city platforms.220

2.1. Scalable Smart City Platforms

A number of smart city platforms have been proposed
in the literature to address challenges in the development
and deployment of smart city applications and services.
One of the most relevant smart city initiatives is Smart-225

Santander [10], which includes an infrastructure to collect
city data using more than 20,000 IoT devices, together
with a software platform to store this data and provide it
to other applications. The city of Santander has less than
200,000 inhabitants; we did not find any discussion on the230

use of this platform in more complex contexts, such as in
a large metropolis. Also, to the best of our knowledge, no
evaluation of the scalability of the SmartSantander plat-
form has been published yet.

CiDAP [11] is a big data analytics platform for smart235

cities deployed in the SmartSantander testbed. The main
objective of this platform is to use the data collected from
the testbed and analyze it to understand the city’s behav-
ior. CiDAP uses a set of Big Data tools, such as Apache
Spark and NoSQL databases, to improve the scalability240

of the platform. Access to data collected by the plat-
form is possible through a REST interface. Experiments
showed that CiDAP can handle almost 300 sensor data up-
dates per second. However, the authors failed to evaluate
their platform scalability considering other city-scale re-245

alistic scenarios. Moreover, their platform does not meet
key functional requirements to support the development
of smart city applications, such as resource discovery and
actuator support.

Similarly to CiDAP, the Scallop4SC (SCALable LOg-250

ging Platform for Smart City) [12] and the platform pro-
posed by Girtelschmid et al. [13] rely on the use of Big
Data tools such as Hadoop and Storm. Both works collect
data from the city infrastructure, store the data in NoSQL
databases and process the data using services implemented255
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with such tools. Likewise, the InterSCity project takes ad-
vantage of existing open source tools to leverage its func-
tionalities and performance. However, neither of the two
projects mentioned above present experiments to demon-
strate the maximum workload supported by the platforms.260

DIMMER is a microservices-based smart city IoT plat-
form focused on energy efficiency and management [14].
This is one of the few previous works that explore the
use of microservices to build smart city solutions, provid-
ing important discussions regarding the design and orga-265

nizational impact of this architectural style in this con-
text. The creators of DIMMER state that microservices
enable horizontal scalability, data partitioning, and scaling
through functional decomposition. However, no experi-
mental evaluation of the platform was reported to support270

these statements. In contrast, and supported by experi-
mental results, our work closely examines the impact of
adopting a microservices architecture in a more compre-
hensive smart city context.

OpenIoT2 is an open source middleware for the de-275

velopment of IoT-based applications. It has an API to
manage a Wireless Sensor Network and a directory service
to discover deployed sensors; it also has a component for
service definition and access. A Smart City project called
Vital [15] was built on this platform.280

CitySDK is an API that provides data collected from
the city for use in the development of smart city appli-
cations and services. According to Pereira et al. [16],
CitySDK is available for Amsterdam, Helsinki, Lamia, Lis-
bon, and Rome using a reference implementation of the285

API. The primary requirements handled by the API is
the use of static and dynamic data, caching for enabling
offline use, interoperability, distribution, and scalability.
The platform provides a set of REST services that call a
data management layer which in turn accesses a MongoDB290

database. Despite the deployments of CitySDK and the
stated scalability requirement, for the best of our knowl-
edge, there are no studies about the maximum workload
supported, neither numbers about the real scenarios al-
ready faced by the platform.295

The CityPulse framework facilitates the creation of city
services providing a distributed system for real-time data
stream processing, data analytics, and semantic discovery.
The main goal is to provide cross-domain data integration,
tackling the problem of silo applications for smart cities.300

The framework deals with data from different formats and
quality to create reliable city services. Puiu and Barnaghi
[17] present a study case of the framework using a Travel
Planer application. However, no scalability analyses or
discussion is presented in the paper.305

FIWARE is a multi-million Euro initiative funded by
the European Commission whose goal is to develop a large
collection of open source components and tools to facilitate
the development of Future Internet applications, including

2OpenIoT - https://github.com/OpenIotOrg/openiot

smart cities. To this end, the project specifies a reference310

architecture composed of Generic Enablers (GE), which
are software components that implement general-purpose
functions that can be combined through open APIs to pro-
vide middleware facilities for application development. FI-
WARE offers an open specification for each of its GEs, de-315

scribing its essential functionalities, interfaces, and APIs,
along with an open source solution that implements the
specification. FIWARE GEs have been exploited in vari-
ous domains [18, 19, 20, 21]. These works usually combine
a very small set of GEs to provide the basis for the devel-320

opment of different prototype applications for end users.
Such projects demonstrate that smart applications can
benefit from FIWARE components as reusable building
blocks. However, these works also evidence the technical
disparity between the different GEs in terms of technical325

quality, maturity, ease of integration, documentation, and
provided functionalities.

The projects discussed above describe tools and ar-
chitectures for the design of smart city platforms whose
features and principles have influenced the design of the330

InterSCity platform. However, most of these works failed
to either provide a thorough explanation of how they ad-
dress the scalability problems or perform scientific vali-
dation of the scalability of the proposed platforms. Such
problems are heightened in cases where the documentation335

is lacking or the source code is not available, thus limiting
the analysis of scalability and exploratory work by the re-
search community to just considering the discussions that
were presented in the original publications. To tackle these
problems, our work deepens the discussion about the use of340

a microservices architecture on smart cities via the open-
source InterSCity platform. In addition, this paper intro-
duces reproducible scientific experiments to demonstrate
the scalability of the platform. To this end, a companion
experimentation package is also made available3 which can345

be used and extended by the research community.

2.2. Workload Generation for Smart City Platforms

One of the major difficulties to evaluate the scalability
of smart city platforms is workload generation. Such plat-
forms interact with two layers that depend on each other350

at runtime: the city IoT infrastructure and client appli-
cations. The city dynamics (e.g., people and cars moving
across the city, car accidents, traffic jams, and weather
conditions) directly impact the infrastructure. For exam-
ple, if in a specific region many cars are moving in a spe-355

cific direction, intelligent traffic lights should be kept open
to optimize the flow. Conversely, changes in the cyber-
physical infrastructure affect the city behavior as well. For
instance, if a driver is heading to an available parking spot
and, in the meantime, a sensor detects that the spot has360

been occupied by another car, the driver will keep looking
for another available parking spot, increasing the number

3https://github.com/LSS-USP/interscity-k8s-experiment
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of vehicles moving around. Therefore, a realistic workload
in a smart city context must consider the dynamic inter-
action between the two layers. However, since real-world365

deployments of smart city platforms are still rare, there is
a lack of real traces of this kind of systems that could be
used to better characterize workloads.

IoT and smart city benchmarks, such as RIoTBench [22]
and CityBench [23], can be used to generate workloads re-370

lated to a city’s IoT infrastructure. These benchmarks are
based on real traces of IoT devices scattered across the city.
Their main goal is to assess distributed stream processing
systems, which are a crucial part of a smart cities plat-
form architecture. RIoTBench includes four stream-based375

workloads derived from real IoT observations of smart
cities and personal fitness devices, with peak stream rates
that range from 500 to 10,000 messages/sec, and different
frequency distributions[22]. CityBench, in turn, focuses on
RDF stream processing engines. It includes real-time IoT380

data streams generated from various sensors deployed in
the city of Aarhus, Denmark [23]. Although these works
represent significant steps towards the evaluation of smart
city platforms, they are limited to a set of specific function-
alities (such as data stream processing and the handling385

of several IoT devices at the same time) and encompass
only the behavior of the underlying IoT layer, failing to
consider the behavior of citizens and applications.

Another technique to generate workloads that repre-
sent the city’s IoT infrastructure is the use of simulation.390

SenSE (Sensor Simulation Environment) [24] is an open
source synthetic traffic workload generator, developed to
simulate complex environments, such as smart cities. This
tool can generate massive amounts of heterogeneous sensor
data simultaneously, being able to simulate tens of thou-395

sands of sensors based on pre-defined probability distribu-
tions [24]. However, it is also limited to the IoT layer.

To generate workloads representing client applications
of smart city platforms, common HTTP workload genera-
tion tools can be used, such as ApacheBench4 and HTTPerf [25].400

However, characterizing the workload to represent the fre-
quency and peaks of user requests is not easy. Workload
characterization is based on the analysis of measurements
collected from the infrastructure during its operation [26].
When real representative traces from smart city applica-405

tions are not available, workload characterization is not
a trivial task. This aspect is important because cities
and their citizens do not behave the same way during the
course of a day, week, month or year. In addition, there
is the occurrence of unexpected events. Thus, a realistic410

workload must include such variations.
To the best of our knowledge, no previous work ex-

plores the dynamic interactions among the different actors
in a city to characterize experimental workloads. The ap-
proaches described above present significant limitations in415

generating realistic workloads for smart city platforms as

4https://httpd.apache.org/docs/2.4/programs/ab.html

they do not encompass the two layers (city IoT infrastruc-
ture and client applications) and their cross-interactions.
Our proposal to solve this problem is to use a scalable
agent-based smart city simulator that manages the behav-420

ior of both the IoT infrastructure and the client applica-
tions at the same time, while also enabling the analysis
of the consequences of their interactions via the platform
during the simulation. The following sections present this
approach.425

3. The InterSCity Platform

Future smart cities will demand high-quality research
in multiple areas. The InterSCity project [27] is a multi-
disciplinary consortium that aims to develop scientific and
technological research to address key challenges related430

to the software infrastructure of smart cities, focusing on
Networking and High-Performance Distributed Comput-
ing, Software Engineering, Data Analysis, and Mathemat-
ical Modeling. The project aims at enabling the develop-
ment of reusable open-source technologies and methods to435

support future smart cities while advancing the state-of-
the-art.This section presents the InterSCity platform5, an
open-source, microservices-based middleware to support
the development of smart city applications and to enable
novel, reproducible research in the field.440

The InterSCity platform offers a set of high-level, Web-
based services that provide facilities to manage heteroge-
neous IoT services and resources, as well as to support
the discovery of city resources based on context data, to
store and process data, and to intermediate actuation com-445

mands. These services cover essential features required to
support integrated smart city applications in different do-
mains. The InterSCity platform intermediates communi-
cation between smart city applications and the IoT ser-
vices of the city, offering high-level abstractions that hide450

the complexity of city-scale data management and the in-
herent particularities of the communication with the un-
derlying IoT devices.

In addition to scalability, the main design require-
ments for the platform include: flexibility and extensi-455

bility, achieved via modular, decoupled, distributed ser-
vices that enable independent evolution of components and
facilitate the addition of new features; interoperability,
achieved with the adoption of open, well-accepted stan-
dards and protocols; code writing productivity and re-460

liability, achieved with the reuse of robust, highly-tested
open-source tools, libraries, and frameworks. By meeting
these requirements, we were able to design an evolvable
architecture facilitating the addition of new features and
resolving performance bottlenecks.465

Therefore, the platform design is based on a microser-
vices architecture from the outset, aiming to provide a

5The InterSCity source code is available at http://interscity.

org/software/interscity-platform under the MPL 2.0 license
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modular, evolvable, and scalable middleware infrastruc-
ture that can be easily extended and shared among multi-
ple research groups, smart city initiatives, and code de-470

velopment communities. Microservices are an architec-
tural style that promotes the modularity of a system in
terms of a set of distributed, fine-grained, independent
services that collaborate via network protocols such as
Web services or remote procedure calls [28]. The microser-475

vices model emerged from the software industry efforts to
build large-scale distributed systems combining the guide-
lines of traditional Service Oriented Architecture, Domain-
Driven Design, continuous delivery, on-demand virtual-
ization, infrastructure automation, and small autonomous480

teams [29].
Up to this date, the InterSCity platform has already

been used in four software development courses in differ-
ent Brazilian universities to support the development of
smart cities projects, reaching nearly 100 undergraduate485

and graduate students. Also, a Smart Cities Hackathon
was promoted at the University of São Paulo in which
teams developed hardware and software solutions based
on the platform. These allowed us to experiment with
the platform in different domains such as mobility, health,490

sports, interaction with social networks, and street light-
ing. Each of these events served as a valuable opportunity
to detect non-optimal design decisions leading to refine-
ments of the platform implementation and documentation.
Recently, research groups from other universities started495

to use the platform as a basis for their research. For ex-
ample, the authors of ContextNet extended the InterSCity
platform to include support for Complex Event Processing
[30]. With such experiences, we have been collecting feed-
back from the users of the platform, which have helped us500

to refine the endpoints provided in our API and to add
new useful features, such as the support for geolocalized
searches. Besides, it also motivated some external contri-
butions either through patches of code or bug reporting.

A broader description of the InterSCity platform was505

presented in a previous paper [6], covering high-level de-
tails of its architecture, modules, interfaces, design prin-
ciples, and development methods, such as DevOps tech-
niques and practices used by open-source communities.
Therefore, in this paper, we focus on presenting the refined510

decisions in the systems-level design and in the implemen-
tation of the platform to meet its scalability requirements.

Compared to the previous version of InterSCity, the
main enhancements we introduced in the new version de-
scribed in this paper did not impose significant changes in515

the high-level system components. The main changes im-
proved platform internal aspects such as deployment pro-
cedures, communication mechanisms among the microser-
vices, and improvements in the microservices code base to
resolve performance bottlenecks. Such enhancements in-520

clude using caching mechanisms to save the latest sensor
data and avoid database locking when reading from tables
that receive many writes; providing finer-grained API end-
points for internal communication between the microser-

vices, avoiding unnecessary overheads of object serializa-525

tion and deserialization; and refinement of the queries and
database indexes most commonly used by applications.

InterSCity leverages the microservices architecture as
its base strategy to achieve scalability. This is due to three
fundamental reasons, which we explore in further detail in530

the remaining of this section:

• Functional Decomposition: the microservices archi-
tecture promotes modularity via single-purpose, small
services that communicate through lightweight mech-
anisms to achieve a common goal. Also, functional535

decomposition leads to scalability as the system work-
load is split among distributed microservices.

• Design and Technology Heterogeneity: different de-
sign and technology decisions can be made for dis-
tinct microservices, although they do not exclude540

general choices that apply to the entire system; and

• Independent Deployment: each microservice can be
deployed, replicated, and replaced independently.

3.1. Functional Decomposition

By implementing a microservices architecture, the In-545

terSCity platform decomposes its functionalities across a
set of small, interconnected, collaborative services. Fig-
ure 1 presents an overview of the InsterSCity architec-
ture, exposing its main microservices: Resource Adaptor,
Resource Catalog, Data Collector, Actuator Controller, Re-550

source Discovery, and Resource Viewer. The figure also
highlights the top and bottom boundaries of the system,
which are accessed by smart city applications and by IoT
systems, respectively, through Representational State Trans-
fer (REST) APIs over the Hypertext Transfer Protocol555

(HTTP).
The architecture of InterSCity supports decentralized

management of city resources, dividing functional respon-
sibilities and data persistence across the microservices.
The Resource Adaptor is a proxy microservice that sim-560

plifies communication between external IoT systems and
the rest of the platform. It provides a single entry point
for the underlying IoT gateways to register and update
resources on the platform, post sensed data from those
resources, and subscribe to events that indicate actuator565

commands. As a proxy, Resource Adaptor is responsible for
validating the requests, augmenting them with additional
metadata and required adaptations. The adaptor either
broadcasts the requests to the entire system or calls a spe-
cific microservice to handle the request synchronously.570

The Resource Catalog is a vital microservice of the In-
terSCity architecture since it manages the static data of
city resources, working as a catalog for these resources. Af-
ter registering a new resource, the Resource Catalog assigns
it a new Universally Unique IDentifier (UUID) and asyn-575

chronously notifies the resource creation event to other
microservices. Both client applications and IoT gateways
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Figure 1: The InterSCity platform architecture (extracted from [6])

must use a UUID in later interactions that target a specific
resource, such as to get and publish sensor data.

City resources may have functional capabilities to pro-580

vide data and receive commands, which are respectively
supported by sensors and actuators coupled to the re-
source. InteSCity splits the responsibility for managing
sensors and actuators between two microservices: Data
Collector and Actuator Controller. Data Collector is respon-585

sible for storing and providing access to data collected by
city resources. An item of sensor data consists of either
context information or an event linked to a resource capa-
bility that is observed at a particular time. Data Collector
provides an API to allow access to both current and his-590

torical context data of city resources using a rich set of
filters that can be accessed via search endpoints. The Ac-
tuator Controller microservice, in turn, enables client ap-
plications to send commands to change the state of city
resources that have actuator capabilities. It is responsible595

for receiving and validating actuation requests from clients
and asynchronously notifying the underlying IoT gateway
through Webhooks. This microservice also records the
history and tracks the status of actuation requests made
through its API.600

Client applications need an easy way to find the re-
sources available in the city so they can interact with them
through the platform. For this purpose, the Resource Dis-
covery microservice provides a sophisticated context-aware
search API. It orchestrates the Data Collector and Resource605

Catalog to offer a set of filters by combining their results
based on location and static data (i.e., resources’ type and
capabilities), and by matching rules for latest context data.

For instance, one may search for all available city resources
capable of monitoring the environment located within a610

radius of 1 kilometer from a specific location, and whose
temperature sensors are scoring above 18 ◦C. Similarly to
Resource Dicovery, the Resource Viewer microservice also
orchestrates the Data Collector and Resource Catalog to
gather both static data and sensor data for visual presen-615

tation. It is a front-end microservice for presenting general
and administrative information regarding city resources
which are useful, e.g., for platform management.

As a result of its functional decomposition, the work-
load of InterSCity is handled by separate distributed ser-620

vices, cooperating towards its scalability. The partitioning
of the system workload is also reflected on the database
tier, since each microservice has its database and manages
a small set of the system’s data. Different smart city con-
texts may lead to different ways of splitting the workload625

of the platform among its microservices in a non-uniform
way. For instance, in a city with a large number of sensors,
two microservices of the InterSCity platform may be used
more often: Resource Adaptor and Data Collector. In an-
other type of scenario, a city with actuator resources might630

have management systems that send actuation commands
to the underlying IoT devices, thus placing a higher de-
mand on Actuator Controller.

3.2. Design and Technology Heterogeneity

Since microservices communicate via standardized pro-635

tocols, each microservice can be built with the most appro-
priate stack of technologies for its specific purpose. They
can also be maintained in separate repositories, enabling
polyglot persistence and technology diversity. Table 1
shows the technologies used by InterSCity services.640

Although we embrace the diversity of technologies in
InterSCity, we apply this principle with some caveats to
avoid increasing overall system complexity and the prolif-
eration of practical problems since a radical adoption of
technology diversity could lead to an unmaintainable ar-645

chitecture [31]. For this reason, we initially opted to use
Ruby-based tools to develop the foundation services of the
platform due to the high productivity and flexibility of
this language and the smooth learning curve for newcom-
ers who aim to contribute with the InterSCity codebase.650

Technological and design aspects related to contributions
in the form of new microservices are discussed with the
project team and may use other technical options accord-
ing to their purpose. However, if the new microservices
are supposed to be maintained within the main platform655

repository, they must have at least one maintainer that
has fluency in the adopted technologies and must conform
to the quality requirements of the project, such as having
highly automated test coverage.

In addition to the technology aspects mentioned above,660

several other design decisions permeate the development of
a microservice for the platform. One of the main issues is
to define strategies to enable a microservice to scale hori-
zontally while offering its functionalities with acceptable
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Table 1: Technology Stack of InterSCity Microservices

Service Language Framework Database Cache
Actuator Controller Ruby Ruby on Rails MongoDB
Data Collector Ruby Ruby on Rails MongoDB In-memory MongoDB (Percona)
Resource Adaptor Ruby Ruby on Rails PostgreSQL Redis
Resource Catalog Ruby Ruby on Rails PostgreSQL Redis
Resource Discovery Ruby Ruby on Rails
Resource Viewer Javascript EmberJS

performance. Several decisions may affect the internal665

implementation of a service, such as the use of caching
mechanisms, database schema and indexing, the choice
of algorithms, and API design. Decisions regarding how
a microservice interacts with the whole ecosystem of the
platform are also relevant in this perspective, such as com-670

munication protocols, discovery of other services, and the
handling of asynchronous messages, to name a few.

InterSCity implements two fundamental communica-
tion mechanisms to support the scalable orchestration of
its microservices: (1) Synchronous communication over675

HTTP and (2) Asynchronous messaging through the Ad-
vanced Message Queuing Protocol (AMQP)6.

For HTTP communication, we employ the API Gate-
way design pattern7 by using Kong8, a distributed, scal-
able open-source gateway that aims at facilitating the or-680

chestration of microservice APIs. Kong is backed by NG-
INX9 and extends its HTTP Web server features to offer
a dynamic management layer for the microservices HTTP
APIs. In summary, the API Gateway receives all incoming
HTTP requests, determines which InterSCity microservice685

should respond to a specific request, and forwards the re-
quest to the identified microservice. For this purpose, we
use URI-based rules: the system uses the path part of
an HTTP request to identify the target microservice of
the request. Figure 2 illustrates this strategy, highlighting690

the interaction of a client application and an IoT Gateway
with the platform through the HTTP APIs of its microser-
vices, which in turn are accessed via the API Gateway.

A clear advantage of implementing the above men-
tioned API Gateway strategy is that clients only need to695

interact with a single entry point (host address and port)
to access all InterSCity facilities, instead of keeping refer-
ences to multiple microservices.

The API Gateway also enables scalability as it lever-
ages the load balancing feature of NGINX so that it is700

possible to easily deploy multiple instances of the same ser-
vice. Figure 3 illustrates this by presenting the main inter-
actions among clients, the API Gateway, and the available
microservice instances. Whenever we run a new instance
of a microservice, the microservice uses Kong’s REST API,705

which is an implementation of the Self-registration design

6https://www.amqp.org/
7http://microservices.io/patterns/apigateway.html
8https://getkong.org/
9https://www.nginx.com/

Figure 2: InterSCity API gateway

pattern10, to register itself with the API Gateway as a
target for an existing URI rule. In the example, distinct
Resource Catalog instances register themselves as targets
for requests that match the /catalog URI rule, indicated710

by the black arrows. This approach enables the dynamic
creation of new instances of a service to split and dis-
tribute the increasing workload using a round-robin strat-
egy, without affecting other parts of the system or requir-
ing further reconfiguration. Round-robin load balancing is715

represented by the blue and yellow arrows in Figure 3.
The API Gateway constantly monitors the availability

of target instances by health checking the endpoints in or-
der to adjust its load balancing accordingly by not sending
new requests to unhealthy nodes. It identifies microservice720

instances as healthy or unhealthy based on the status code
in HTTP responses. A success code indicates a healthy
endpoint, whereas non-success status codes, timeouts and
TCP errors denote an unhealthy endpoint.

As Kong allows the registration of service instances,725

the API Gateway also supports the Server Side Discov-
ery design pattern11. This pattern facilitates HTTP-based
communication among microservices in the platform since
instead of having to manage references to all running in-

10http://microservices.io/patterns/self-registration.html
11http://microservices.io/patterns/server-side-discovery.

html
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Figure 3: InterSCity load balancing HTTP requests

stances, clients need to know only the address of the API730

Gateway, using URI-based rules to communicate with the
target microservice, as shown in Figure 2. A direct ad-
vantage of using the API Gateway design pattern is the
guarantee that requests for a given microservice will be
handled by any of its instances in an independent way, al-735

lowing for efficient load-balancing. This is an important
feature since the number of service instances and their lo-
cations may change dynamically.

Although services provide well-defined RESTful APIs,
we adopt asynchronous communication whenever possible740

to avoid the additional latency of blocking synchronous
request-reply interactions. To achieve this, a microservice
may use the publish/subscribe design pattern rather than
directly exchanging messages with other services. Inter-
SCity carries out asynchronous messaging by using Rab-745

bitMQ12, a widely used, lightweight, open-source messag-
ing middleware that implements the AMQP protocol.

Events of different types may generate data that need
to be broadcast to other modules in the platform. Exam-
ples are the registration of a new IoT resource, the recep-750

tion of sensor data, and requests to actuators. Each type of
event is mapped to a topic, to which interested services can
subscribe to receive new messages through queues main-
tained by RabbitMQ. By default, each subscription will
create a new queue. Messages sent to a specific topic are755

pushed to all of its subscribed queues.
InterSCity thoroughly exploits RabbitMQ messaging

features by using routing keys that enable the use of more
sophisticated criteria to route messages to subscribers. A
routing key is a list of dot-separated strings related to760

metadata about InterSCity’s internal abstractions. They
are added by publishers when sending messages to Rab-
bitMQ. When a city resource publishes sensor data on the

12https://www.rabbitmq.com/

platform, a new message is published on topic data stream
with a routing key of the form uuid.capability.others,765

where uuid is the unique identifier of the resource, capabil-
ity is the type of the sensor data, and others represents any
additional information regarding the posted sensor data
that could also be used to build the routing key. Similarly,
subscribers must inform a binding key when defining a770

queue to receive messages from a topic.
Figure 4 shows an example of an InterSCity topic-based

message exchange using routing keys. When the Resource
Adaptor receives sensor data from the underlying IoT in-
frastructure, it publishes the data on topic data stream,775

which has consumer queues for Data Collector, Resource
Catalog, and other services interested on the topic. As
Data Collector is responsible for saving the history of sen-
sor data, it is interested in any data on this topic (binding
key: #). On the other hand, Resource Catalog is only780

interested in sensor data that contains geolocation infor-
mation so that it can update the location of moving city
resources on its database (binding key: #.location.#).
Other microservices could be interested in any data from a
specific type of sensor, such as temperature data (binding785

key: *.temperature.#), regardless of which city resource
provided the data.

Figure 4: InterSCity Asynchronous messaging

To further decrease the latency of communication among
microservices and thus improve its scalability, InterSCity
employs a worker-based strategy for asynchronous messag-790

ing. InterSCity services that need to receive asynchronous
messages from the platform must implement a background
worker for each subscribed topic in RabbitMQ. By design,
these services support the addition of more workers to im-
prove the processing rate of the queued jobs by implement-795

ing the Competing Consumers design pattern[32]. Figure 5
presents this design pattern, where additional workers read
messages from the same queue concurrently and as fast as
possible, enabling parallel processing of background tasks.
As workers read from the same queue, messages are not800

replicated for each of them. Consequently, in the example,
messages X and W will be processed in this order by the
first two workers that finish their current jobs, represented
by messages Y, Z, and A.

3.3. Independent Deployment805

An important aspect of the InterSCity architecture is
that its components are designed as single-purpose, inde-
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Figure 5: Competing Consumers design pattern

pendently deployable services. Two sets of deployment-
related design decisions need to be considered: those re-
lated to the entire system, and those that concern individ-810

ual microservices. The former corresponds to decisions re-
lated to the choice of cloud provider, the allocation of com-
puting resources for the system, the packaging of service
instances (i.e., virtual machines, containers, and physical
hosts), the handling of common procedures (e.g., update,815

backup, and monitoring), and the deployment of comple-
mentary services used by the system (e.g., databases, mes-
sage brokers, and proxies). The latter concerns the distri-
bution of microservice instances across the available hosts
(e.g., single service per host, multiple services per host),820

service configuration, failure recovery, and scaling of a mi-
croservice to appropriately respond to changes in the work-
load.

Another related issue refers to the deployment of in-
dividual microservice instances across the different tiers825

of the distributed execution environment: cloud, fog, and
edge. For instance, a microservice that interacts heavily
with city infrastructure resources, such as Resource Adap-
tor, could be dynamically deployed at the edge to reduce
latency. Conversely, a microservice that requires signifi-830

cant computational power or a more global view of the
system, such as Resource Viewer, could be deployed in the
cloud. This aspect of microservice deployment, especially
considering dynamic redeployment, is the subject of ongo-
ing research in the project.835

The above examples of decisions related to the deploy-
ment of microservices-based systems highlight the multi-
ple trade-offs and challenges faced by engineers, as also
observed in [31]. DevOps techniques and tools are very
successfull in achieving a reliable and reproducible deploy-840

ment process, as well as in improving the operating envi-
ronment [29, 31]. The inherent complexity of the Inter-
SCity distributed microservices environment requires the
use of such techniques to automate the necessary proce-
dures. These include automated tests and the upgrading845

of microservice instances in the production environment,
as well as support for more complex tasks, such as scaling
and distributing microservices automatically based on the
monitoring of services and computational resources.

For this purpose, we packaged all the InterSCity mi-850

croservices into Docker13 containers and used them in ad-
dition to the containers provided by the community for
the supporting tools (i.e., RabbitMQ, Kong, MongoDB).
Moreover, we use Kubernetes14 to support the deployment
of Docker containers throughout a cluster of virtual ma-855

chines in a cloud infrastructure.
Kubernetes is an open source project that aims at au-

tomating the management of container-based applications
by offering tools for supporting two critical tasks. First,
it provides a declarative structure through YAML files for860

developers to define the desired state for the containers
that comprise the managed system [33] in compliance with
the Infrastructure as Code (IaC) principle, one of the pil-
lars of DevOps [34]. Second, the Kubernetes engine runs
the specified configuration on the cloud provider to man-865

age the deployment of the system by scheduling containers
across the available machines.

In dynamic smart city contexts, with varying demands
throughout the day and random citizen behavior, Inter-
SCity must be able to individually scale out the stressed870

services to properly support workload fluctuations, rather
than scaling the entire system as a whole. As we designed
InterSCity microservices as stateless services, we can place
several copies of the same microservice behind a load bal-
ancer (i.e., Kong). Likewise, multiple instances of the same875

microservice leverage the worker-based approach to dis-
tribute processing jobs across asynchronous workers. By
monitoring computational resources used by the platform
microservices, Kubernetes is capable of adjusting the num-
ber of instances for each microservice to adequately and880

automatically support a varying workload.

4. Smart City Simulation for
Workload Generation

This section discusses the fundamental steps to enable
simulation-based workload generation. This approach is885

meant to support comprehensive performance and scala-
bility experiments on top of the InterSCity platform, espe-
cially considering realistic, large-scale smart city scenarios.
In particular, we present InterSCSimulator, a smart city
simulator for the behavior of city actors and their inter-890

actions in large-scale settings. We also describe the sim-
ulated scenario and how we implemented the integration
between the InterSCity platform and InterSCSimulator to
perform the experiments.

4.1. InterSCSimulator895

InterSCSimulator is an open-source, scalable simula-
tor for large-scale smart city scenarios [9] developed in the
context of the InterSCity project. In its current version,
the simulator provides a set of mobility models for cars,
pedestrians, buses, and the subway. Previous work shows900

13https://www.docker.com/
14https://kubernetes.io/
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that InterSCSimulator is capable of simulating an entire
city such as São Paulo, with more than 10 million software
agents virtually moving across tens of thousands of streets.
The simulator is implemented in Erlang, a language suit-
able for the development of highly parallel and distributed905

applications based on the actor model.
Figure 6 shows the simulator architecture. InterSC-

Simulator builds on top of the Sim-Diasca simulator [35]
to perform general-purpose simulation activities such as
Simulation Time Management, Random Number Gener-910

ation, Load Balancing, and Base Actor Modeling. Inter-
SCSimulator contains the city street map graph and the
required actors for Smart City simulation such as cars,
buses, subways, and sensors. Actors execute tasks during
a simulation clock tick, which represents the simulation of915

one second in the real world. Lastly, the top layer com-
prises the scenarios that can be implemented using the
Smart City Model.

Sim-Diasca

Deployment 
Manager

Load 
Balancer

Result 
Manager

Time Manager Random 
Manager

Base Actor 
Model

InterSCSimulator

Pedestrians Vehicles Buses

City Map Sensors

Smart City Scenarios

Parking Spots

Figure 6: InterSCSimulator Architecture

InterSCSimulator has two main components: Scenario
Definition, which receives the input files and creates the920

simulation scenario, and Simulation Engine, which exe-
cutes the algorithms and models and generates the simula-
tion output. For mobility simulations, it receives three re-
quired files as input: map.xml, with the city street graph,
trips.xml, describing all the trips that must be simulated,925

and config.xml, with general options such as the total
simulation time. There are other optional files depending
on the simulated scenario such as park.xml, containing
all the parking spots and subway.xml with the subway
network graph of the city. At the end of a simulation, the930

simulator generates an output file with all the events that
occurred during the simulation. Figure 7 presents the In-
terSCSimulator components and their inputs and outputs.

config.xml

trips.xml

map.xml

Scenario 
Definition

Simulation 
Engine

subway.xml

park.xml

events.xml

Required Inputs

Optional Inputs

Output

Figure 7: InterSCSimulator components

4.2. Smart City Scenario

To evaluate the InterSCity platform, we implemented a935

Smart Parking scenario on InterSCSimulator, which uses
the existing mobility models in addition to new parking
spot actors. This scenario considers several car drivers
using a Smart Parking mobile application backed by the
InterSCity platform to assist in the difficult task of find-940

ing a free parking spot in a large city like São Paulo. This
application offers geolocated real-time information about
parking spaces. When using the mobile app, a car sends its
current location to the server application, which then an-
swers with a list of the closest available parking spots. In945

this scenario, we simulated the behavior of drivers that use
the mobile application, the behavior of the IoT devices in-
stalled in parking spots, and the interactions among them.

We extended the simulator with models to support the
monitoring of parking spots and to allow drivers to find950

parking spots in the city. A parking spot actor generates
events when a car parks on it or leaves it. It simulates
the behavior of a real smart parking infrastructure sup-
ported by cyber-physical systems to detect the presence
of cars based on technologies that are commonly used in955

smart parking solutions, such as Wireless Sensor Networks
(WSN), Light Dependable Resistor (LDR) sensors, Infra-
Red (IR) sensors, and magnetic sensors.

The simulation model consists of the following flow for
a single car agent: (I) the car starts its trip from an origin960

to a destination point; (II) when the car is close to arriving
at its destination, it requests the nearest free spots to the
Smart Parking application; (III) the application asks the
platform to find the nearest available spots considering
the user’s location; (IV) with the data returned by the965

platform, the simulator changes the route of the car to
the closest parking spot returned; (V) the driver arrives at
the spot and finishes its trip; (VI) the simulator updates
the status of the chosen parking spot on the InterSCity
platform, marking it as unavailable.970

If the platform does not find any parking spots that
match the request of a car driver, the corresponding sim-
ulation agent may return to step II increasing the search
radius. After three failed attempts, the agent stops using
the application and completes its execution in the simu-975

lation. Another special case might occur during step V,
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as the target parking spot might become unavailable (e.g.,
by being taken by another vehicle), requiring the car to
return to step II.

The interactions between the InterSCSimulator and980

the InterSCity platform required the integration of these
two systems. Such interactions impose workloads on the
platform both at the top layer, as the simulator consumes
data as a client application, and at the bottom layer, as it
updates the status of the underlying IoT infrastructure of985

smart parking spaces. The details of this integration will
be presented in Section 4.3.

To generate a meaningful workload to evaluate the
platform, we modeled a realistic scenario based on real
data from the very large city of São Paulo. This data990

was used as input to the simulator to define the number
and distribution of parking spots around the city and the
trips undertaken by drivers, including their origins, desti-
nations, and departure times. The data used to generate
workloads is detailed bellow:995

• Origin-Destination (OD) Survey: we created
the simulated trips based on the OD survey per-
formed by the subway company of São Paulo15. This
survey describes the trips of 200,000 people and ex-
trapolates the data to the entire population of the1000

city. The survey includes information on the ori-
gin, destination, transportation mode, and depar-
ture time. We used this data to define the behavior
of car agents. To generate the load for the platform
experiments, we simulated the traffic in São Paulo1005

during peak hours, from 5:40 am to 8:40 am. In the
OD survey, there are 492,976 cars that start their
trips during the considered time interval.

• OpenStreet Maps: to create the city graph used
in the simulation, we used the map from OpenStreet1010

Maps. This map contains all the streets and junc-
tions of the city, together with a number of attributes,
such as length, capacity, and speed limit. Such infor-
mation is used by the simulator to define the routes
taken by cars as they perform their trips, as well as1015

to simulate the impact of traffic on the speed of cars.

• Parking Spots: we created the simulated parking
spots based on data from OpenStreet Maps and from
Zona Azul16 (the rotary parking service of the city
of São Paulo).1020

To show the distribution of parking spaces and drivers
destinations throughout the city, Figure 8 presents two
heat maps: (a) the simulated distribution of parking spots
across the city; and (b) the distribution of trip destina-
tions throughout the entire simulation. It is worth noting1025

that parking spots with IoT infrastructure are significantly

15Origin-Destination Survey - http://goo.gl/Te2SX7
16http://www.cetsp.com.br/consultas/zona-azul/

mapa-zona-azul/mapa-zona-azul.aspx

more concentrated than trip destinations. This may lead
to situations where drivers do not find available parking
spots after three attempts. In such cases, the user agent
stops using the application and finishes its execution.1030

4.3. Simulator and Platform Integration

Enabling the scalability evaluation on the InterSCity
platform using InterSCSimulator requires an integration
of the two systems. To fully explore the dynamics of the
Smart Parking scenario on the workload generation, the1035

simulator needs to produce workloads for both the sta-
tus updates of parking spots (the IoT infrastructure) and
the requests performed by drivers to find available parking
spaces (using the client application).

For this integration, we implemented a two-way com-1040

munication interface between the simulator and the plat-
form. In one direction, the simulator updates the status
of the parking spots in the platform based on the simu-
lated IoT devices. This is carried out directly via the plat-
form’s RabbitMQ instance, by publishing update data on1045

the data stream topic. In the other direction, the simu-
lated users of the application perform synchronous HTTP
requests to the platform. To avoid blocking the simula-
tor while clients wait for a reply from the platform (and,
therefore, distorting the simulated passage of time), we im-1050

plemented an intermediate agent that runs independently
of the simulation cycle to perform these HTTP requests
and wait for the responses.

Figure 9 details, in the context of the Smart Parking
scenario, the integration of InterSCity and InterSCSimula-1055

tor in terms of the interactions between their components.
When a car (represented by its simulation agent) is close
to arriving at its destination, it asks a controller agent for
a nearby available parking space. Note that there are mul-
tiple controller agents, each one managing a set of parking1060

spots in the simulation. As we do not want to halt the
simulation waiting for the HTTP response from the plat-
form, the controller sends a message to an external Erlang
agent asking for an available spot nearby the latitude and
longitude of the car’s destination. This discovery agent is1065

responsible for actually making the HTTP request to the
platform. The agent keeps blocked until it receives the re-
ply. After that, the identifier of the suitable parking spot
is sent back to the controller inside the simulator. The
controller marks this spot as unavailable and passes its1070

identifier to the car. The car retraces its route to park in
the right place. This workflow simulates a single driver us-
ing the Smart Parking application. When a parking spot
becomes available or occupied, the controller agent sends
an AMQP message to the platform, via the RabbitMQ1075

instance, informing the event to the platform.
Finally, we added an idle agent to the simulator which

sleeps for a time very close to one second to ensure that
the simulator operates in real time (i.e., at the same rate
as the actual physical system). Each simulation step (cy-1080

cle) is a simulated second of the day in which all agents
are given the opportunity to perform some action. In its
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(a) Parking spots distribution (b) Destinations distribution

Figure 8: Heat maps of the distributions of parking spots and car trip destinations in the City of São Paulo

Figure 9: The 2-way integration of the InterSCity platform and InterSCSimulator

normal operation mode, the simulator runs as fast as pos-
sible, simulating multiple cycles under one real second. In
many cases, this is interesting because the simulation re-1085

sults (which may take hours) come faster. However, in our
case, the goal is to produce a realistic load to evaluate the
platform, so we want to process as close to real time as
possible.

4.4. Simulating Other Scenarios1090

Note that other scenarios could be simulated by defin-
ing a proper model of the city dynamics and creating asso-

ciated abstractions in the InterSCSimulator. For example,
one could consider extending the platform to deal with a
Smart Grid scenario in which each home or building in the1095

city could behave both as energy consumer and producer.
In this case, one should program new InterSCSimulator
agents [9] to model, for instance, the energy consumption
behavior of families in a residence, workers in an office, and
machines in a factory, as well as a simplified behavior of1100

wind turbines and solar panels (e.g., modeling how much
energy they produce). The simulator could then receive
as input (1) a map of the city’s energy distribution grid,
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(2) historical data about the level of solar radiation and
wind speed, and (3) a list of buildings and homes capable1105

of producing electricity from solar and wind energy.
With this setting, the simulator would be able to gen-

erate a realistic workload, consisting of events related to
energy consumption and energy production, generated by
the different simulation agents. This workload could then1110

be used to assess, for example, a Smart Grid monitoring
and accounting application built on top of the smart city
platform.

5. Experimental Evaluation and Analysis

Using the integrated environment described in Section 4,1115

we performed a comprehensive experiment to assess the
scalability properties of the InterSCity platform. The ex-
periment consisted of: (I) running a production-like in-
stance of the platform in a cloud environment; (II) en-
abling an auto-scaling mechanism for the platform’s mi-1120

croservices based on the variation of the workload; (III) set-
ting up the simulator in an isolated environment; (IV) start-
ing the simulation of the Smart Parking scenario; (V) mon-
itoring the platform’s performance and its usage of the
computational resources during the entire simulation; and1125

(VI) analyzing the obtained results.
Section 5.1 details the execution environment of the

experiments. In Section 5.2 we discuss the results from a
set of repeated rounds of the experiment on the InterSCity
platform.1130

5.1. InterSCity Configuration

To conduct the experiments, a production-like instance
of the InterSCity platform pre-populated with the resources
available in the city (parking spots) and their initial states
(available) is required. Only the microservices Resource1135

Catalog, Resource Discovery, and Data Collector are used
in the Smart Parking scenario. The Resource Adaptor is
not used since all communication with sensors happens
through RabbitMQ (as detailed in Section 4.3), whereas
the Actuator Controller is not required as the scenario does1140

not include actuators.
We used Docker containers for InterSCity microservices

and supporting services. In all experiments we used the
Google Cloud Platform17 (GCloud), which is an appropri-
ate infrastructure to run InterSCity in a production envi-1145

ronment as the platform is a cloud-native system. More
specifically, we used the Kubernetes Engine, a set of tools
provided by GCloud based on Kubernetes, to schedule
the deployment of containers throughout a GCloud clus-
ter. Among other tasks, we used Kubernetes to also au-1150

tomate the restarting, replication, and scaling of contain-
ers. Thus, Kubernetes increases the reproducibility of our
experiments by ensuring the correct application of deploy-
ment rules, configuration, and state. All the code used to

17https://cloud.google.com/

perform the experiments, as well as the Kubernetes con-1155

figuration files, are publicly available in an online reposi-
tory18.

We divided the cluster into 5 different node pools so
that Kubernetes could schedule the containers to the ap-
propriate pools. Figure 10 presents these node pools and1160

the number and type of the machines used by each one on
GCloud19. The Platform Pool comprises 25 machines of
type n1-standard-2 (2 virtual CPUs and 7.5GB of mem-
ory) and runs both InterSCity microservices and Kong.
There are three additional node pools composed of n1-1165

highmem-2 machines (2 virtual CPUs and 13GB of mem-
ory), which execute the support services of the InterSC-
ity environment. Both MongoDB and PostgreSQL pools
have 5 nodes running distributed, fault-tolerant instances
of their respective database systems, whereas RabbitMQ1170

has a dedicated machine in an isolated node. MongoDB is
deployed using the replica set strategy20 to distribute read
operations among secondary nodes (slaves), although write
operations are always performed on the primary node (mas-
ter). The same strategy is adopted for the PostgreSQL1175

instance for optimizing the read operations performed by
the Resource Catalog. Finally, the InterSCSimulator runs
on its own n1-highmem-16 machine (16 virtual CPUs and
104GB of memory), isolated from the rest of the services.

Figure 10: Cluster Node Pools for the experiments

For the Platform Pool, Kubernetes may schedule sev-1180

eral containers for the same host depending on the avail-
able computational resources. The distribution of contain-
ers across the 25 nodes may differ from one experiment to
another and is a variable that we did not control for dur-
ing the performed experiments. To evaluate the impact1185

of such variations on the analysis, we repeated the exper-
iment 15 times and studied the variability of the results.

As we were interested in assessing the platform scal-
ability considering a smart city scenario with a varying
workload, we used automatic scaling for the Resource Cat-1190

alog, Resource Discovery, Data Collector, and Kong services,
as they are designed to scale horizontally. For this pur-
pose, we specified a target of 60% of CPU usage for each
of those services, enabling the system to increase or de-
crease the number of containers per service. The system1195

18https://github.com/LSS-USP/interscity-k8s-experiment
19https://cloud.google.com/compute/docs/machine-types
20https://docs.mongodb.com/manual/tutorial/

deploy-replica-set/
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balances the workload to match the target CPU usage con-
sidering the average CPU usage of the running containers,
which is measured every 30 seconds. Initially, each service
has four containers, which is set as the minimum number
of running containers. This number may increase as long1200

as computational resources are available in the Platform
node pool. We run the containers behind a load balancing
service.

Although we could benefit from GCloud’s elasticity
properties by automatically adding and removing nodes1205

to our cluster using its auto-scaling feature, this would in-
troduce another level of uncertainty in our experiments,
since in our experience the time taken to create new VMs
may vary considerably. Thus, we created all the nodes
in advance, before starting the experiments, keeping them1210

running throughout the experiment.

5.2. Scalability Evaluation

To better analyze the behavior of the InterSCity plat-
form, we ran multiple rounds of the experiment. Our ob-
jective was to minimize the effects of uncontrollable vari-1215

ables inherent to the environment in which the tests were
performed, so as to evaluate important aspects of the sys-
tem and to ensure that the observed results are good esti-
mates for the general behavior of the system.

We performed a total of 15 rounds of the experiment.1220

Each round ran for 3 hours, corresponding to the simu-
lation of the morning peak traffic hours in São Paulo ac-
cording to the scenario described in Section 4.2. Figure 11
represents the average workload generated by InterSCSim-
ulator on the platform during the experiment and the stan-1225

dard deviation (black lines on top of each bar). It is worth
noting the constant increase in the workload during the
first 80 minutes. In the approximate interval of one hour
between 60 and 120 minutes, we observed the highest load
period of the experiment, whereas the maximum peak of1230

requests happens after 80 minutes, corresponding to more
than 113,000 requests in 10 minutes. In total, more than
one million requests were performed to the platform during
the experiment time. Since fulfilling each of these requests
requires a complex set of operations with multiple internal1235

steps, this translates to a very large computational load.
Figure 12 shows the dynamic creation and destruction

of InterSCity containers due to the application of the auto-
scaling strategy in a single round. The initial replication
of Kong instances was enough to support the entire work-1240

load during the entire experiment since it only performs
the low-latency task of forwarding the incoming requests
to the proper microservices. In turn, the three InterSCity
microservices, which are truly responsible for handling the
requests, were replicated according to the increasing work-1245

load. Thus, the number of containers for these services
varied from 4 to 25. It is important to mention that the
InterSCity elasticity mechanism also reduced the number
of containers as the demand decreased. As can be seen in
Figure 12, among the InterSCity microservices, Data Col-1250

Figure 11: Average workload generated by the InterSCSimulator

lector was the microservice that consumed the least CPU
time.

Figure 12: InterSCity services autoscaling

Figure 13 shows the average throughput of the Inter-
SCity platform over the duration of the experiment. The
throughput is defined as the rate of successful responses1255

received by the simulator. The result indicates that the
throughput closely matches the generated workload, as

15



can be seen by comparing Figures 11 and 13. Despite the
simulated variations in the drivers’ behavior throughout
the experiment, the platform was able to handle the vary-1260

ing demand thanks to its scalability and autoscaling sup-
port features, described in Section 3. However, we should
mention that the throughput did not match the generated
workload exactly, since some of the requests failed, rep-
resenting nearly 0.6% of all requests on average. Failed1265

requests include those that had responses with an HTTP
error code, as well as those that were not completed due
to connection refusal or timeout. But we consider that be-
ing able to handle over 99.5% of the requests under high
load is satisfactory; a typical user would see a failure every1270

200 requests, which is very good for this kind of real-time
smart urban application.

Figure 13: Average InterSCity throughput

Another fundamental aspect of the system assessment
is to analyze the performance of the platform to handle
application requests with a varying workload. In this re-1275

spect, we are mainly interested in analyzing the perfor-
mance degradation and verifying whether the platform is
scaling appropriately to serve its clients within acceptable
response times. For this purpose, we collected the response
time from the client’s point of view, as shown by Figure 14.1280

During most of the experiment duration, the platform was
able to respond in less than one second. However, differ-
ent from the throughput, the impact of the highest de-
mand period on the observed response time is noticeable
since, during a small time interval (after 110 minutes of1285

execution), the average response time was greater than 1
second. The response time went back down to 500 mil-
liseconds after that. But, we can see that even in periods
of high-load, the response time was kept under 2s, which

is a very good result for this kind of application.1290

Figure 14: InterSCity Average Response Time

We should recall that the distribution of containers on
the available nodes may impact the response time, as sev-
eral containers may compete for computational resources
if they are running on the same host machine. Moreover,
although the system handles the autoscaling task every1295

30 seconds, we have no control over the time it takes for
a container to be scheduled and become ready to receive
requests. On the other hand, this distribution may also
introduce a beneficial effect due to the scheduling of ser-
vices that constantly interact with each other to the same1300

machine, reducing network latency and unpredictability.

5.3. Threats to Validity

In this section, we clarify and discuss some important
aspects of our experiment design as they may threaten
the validity of our results and affect reproducibility. Most1305

of the threats are inherent to the environment where the
experiments were carried out, as there is considerable un-
certainty concerning the provisioning of resources and ser-
vices in cloud environments [36]. As the Google Cloud
Platform is not a controlled environment, it is impossible1310

to have complete knowledge of the system. For instance,
we cannot correctly specify all properties related to the
communication network used within the cluster, such as
network capacity, nor ensure constant bandwidth. Such
variables may directly impact results such as the observed1315

response time.
As discussed in Section 5.2, although Kubernetes plays

a crucial role in our experiments, it also raises some con-
cerns for their validation. Firstly, we do not control the

16



way Kubernetes distributes new containers across the avail-1320

able hosts of a node pool, except for the definition of the
minimum computing resource requirements for executing
a specific container. As a consequence, on each round of
the experiment, Kubernetes may distribute microservices
differently, which may lead to a different load distribution1325

among the hosts in use. For instance, consider the case of
a new container that has the minimum requirement of 30%
of available CPU and is allocated on a host whose CPU
usage is already at 60%. The container would probably
have less CPU time than if it had been allocated on a host1330

with less competition for resources or, at least, manifest
higher latencies. Another important aspect regarding Ku-
bernetes is the variation in the time spent for scheduling
new containers, especially in the auto-scaling task. In pe-
riods of increasing workload, the delay in the allocation of1335

new containers may directly impact the number of failed
requests and the response time.

Finally, since we advocate for the use of more appro-
priate scenarios to test smart city platforms, it is worth
mentioning the aspects related to the realism of the smart1340

city simulations performed as part of the experiments.
The conformance of the simulations with real-world fu-
ture smart cities scenarios depends on good models. In
this sense, the refinement of the models used to simulate
car trips, as well as the behavior of drivers in search for1345

parking spots in a large city might change the workload
generated on the platform. Moreover, in addition to Smart
Parking, it is essential to evaluate the platform using other
smart city scenarios, which may pose different demands
and require others functionalities, such as actuation on1350

city resources.

6. Conclusions and Future Work

Appropriate software platforms are critical to the fea-
sibility and widespread adoption of complex smart cyber-
physical environments, especially future smart cities, re-1355

quiring considerable development and research effort to
ensure their technical quality. Despite the existence of
numerous smart city projects, developing architectures to
support city-scale environments and evaluating them is
still challenging. Thus, this paper brought a comprehen-1360

sive discussion on the InterSCity platform microservices
architectural design and presented experimental results to
demonstrate its benefits on scalability and performance.
For this purpose, we introduced a novel approach that uses
a smart city simulator to generate realistic workloads, sim-1365

ilar to what one would expect in a metropolis with over
10 million inhabitants such as São Paulo. Such workloads
are essential to enable the execution of more appropriate
experiments and tests.

With respect to the InterSCity platform, the exper-1370

iment showed that its architecture is capable of scaling
up and down horizontally to handle a varying workload.
More precisely, it was able to handle more than one mil-
lion complex requests during approximately 3 hours, con-

sidering a Smart Parking scenario during São Paulo’s rush1375

hour. Also, the platform response time remained accept-
able, mostly 1 second or below, even at the highest demand
time interval. We highlight the use of modern tools such
as Kubernetes and Docker containers as essential means
to achieve these results.1380

We presented a mechanism to evaluate the scalability
and performance of the InterSCity platform via the in-
tegration of the platform and the InterSCSimulator. To
achieve a more representative workload for assessing the
platform, we extended the InterSCSimulator models with1385

real data gathered from a large metropolis. The simulator
managed both individual behavior and interactions among
IoT devices and the platform users considering a Smart
Parking scenario. This approach contributed towards the
characterization of more appropriate workloads for smart1390

cities.
As future work, we want to integrate other smart city

scenarios, enabling cross-domain experiments. We also in-
tend to devote efforts to decouple the presented integration
mechanism to allow experiments and tests of smart city1395

platforms other than InterSCity with the same simulation-
based approach.

There are still several open research challenges regard-
ing smart cyber-phisical platforms applied to smart urban
spaces, including: (I) meeting other critical non-functional1400

requirements, such as security and privacy; (II) extending
the core functionalities to better support application devel-
opment; and (III) deploying a production instance of the
platform on a real city. Also, we intend to perform further
experiments to continue exploring the scalability and per-1405

formance properties of the platform, mostly by considering
other smart cities scenarios and features. Finally, based on
our open source and open science approach, we encourage
the community to leverage the contributions described in
this paper and to contribute to the evolution of the field.1410
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